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Abstract

Percolation thresholds and critical exponents for universal scaling laws are computed for mi-

crostructures that derive from phase-transformation processes in two dimensions. The computed

percolation threshold for nucleation and growth processes, pc ≈ 0.6612, is similar to those obtained

by random placement of disks, and greater than that of spinodal decomposition, pc ≈ 0.4987.

Three critical exponents for scaling behavior were computed and do not differ significantly from

universal values. The time-evolution of a characteristic microstructural length was also computed:

for spinodal decomposition, this length grows according to a power law after a short incubation

period; for nucleation and growth, there are several transitions in the nature of the growth law.

We speculate that the transitions in nucleation and growth derive from competing effects of coales-

cence at short times and then subsequent coarsening. Short-range order is present, but different,

for both classes of microstructural evolution.
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I. INTRODUCTION

Percolation theory is of considerable interest for its application to understanding and

predicting microstructure-property relationships of multi-phase materials. For two-phase

composites, the universal scaling laws of percolation theory can be used to predict linear

material properties— diffusivity, conductivity, and elasticity—over a large range of the phase

fraction φ. By comparison, mean field approaches for composite material behavior can

provide rigorous material-property bounds, but are usually accurate only in the dilute limits

of φ. Thus, mean field approaches are difficult to apply when properties are governed by

phase topology and connectivity, whereas percolation theory’s scaling laws provide material-

property estimates near the percolation threshold. These estimates scale as |φ − φc|b: a

property-dependent power, b, of the deviation of the phase fraction from the percolation

threshold φc. The amplitudes and exponents for various property scaling laws are known

and tabulated [1, 2].

Percolation thresholds φc are known for many different types of arrangements of random

phases (e.g., square and triangular lattices, non-overlapping disks) [3–10]. However, materi-

als rarely have random phase distributions: correlations are produced during processing or

microstructural evolution. Finite-range correlations in the phase distribution do not change

the universal scaling relations, however they do shift the percolation threshold, pc, from its

known value in the random case [3, 11–23]. Scaling law estimates depend on shifts of pc

produced by such correlations, but in general these shifts are poorly understood in a quanti-

tative sense. While universal scaling relations are powerful predictors of material properties,

they cannot be applied when the percolation threshold is unknown—and it is unknown for

the majority of observed microstructures, which are correlated.

Correlations and the shift they induce in the percolation thresholds have been studied in

many specific systems [16–18, 22, 24–39]. In most of these studies, correlations are induced

artificially, or are intended to simulate some known effects of processing, as in the case of

composite materials that are formed by mixing phases [27, 32, 34, 40, 41]. However, one

important class of materials has received relatively little attention: microstructures that

form by a process of phase separation. Some prior work has examined the growth of clus-

ters during nucleation and growth and spinodal decomposition in Ising models, but we are

not aware of any work in the phase transformation literature that methodically studies the
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percolation transition [42–44]. In engineering contexts, most multi-phase microstructures

derive from phase transformations (e.g., eutectic, eutectoid or spinodal decomposition, or

by the nucleation and growth of a second phase in a matrix of the first). In these cases,

the resulting phase distribution is correlated. Decomposition processes involve local diffu-

sional fields that produce patterns in the resulting phases, such as the lamellar structure

characteristic of eutectic or eutectoid decomposition, or the bicontinuous spinodal structure.

In nucleation and growth transformations, second phase particles interact first through soft

impingement of their respective diffusion fields, and later through hard impingement on

solid contact; these interactions affect growth and coarsening kinetics and produce spatial

phase-distribution correlations.

Although the role of diffusional phase evolution during such transformations is known

to affect the resulting structure, we are not aware of any work relating such processes

of structural evolution to a shift in the percolation threshold. It is the purpose of this

paper to provide the first steps towards addressing this issue: we simulate microstructural

evolution from spinodal decomposition and from nucleation and growth processes, and then

compute the influence of these different transformation types on spatial correlations and the

percolation threshold.

II. SIMULATION METHODS

We use phase-field simulations to study the effects of phase correlations introduced dur-

ing diffusion-controlled microstructural evolution. Two specific microstructural evolution

pathways are considered: (i) spinodal decomposition, and (ii) nucleation and growth. For

spinodal decomposition we use a dual well free energy function of the form:

F (c) =
16Fmax

(cβ − cα)4
[(c− cα)(c− cβ)]2 (1)

where cα and cβ are the limiting concentrations of the α- and β-phases, c is the concentration

of the B-component and Fmax is the height of the saddle point between the wells [45]. For

concentrations within the miscibility gap, cα < c < cβ, the equilibrium β-phase fraction, p∞,

is determined by the lever rule: p∞ = (c0 − cα)/(cβ − cα) where c0 is the system’s average

concentration [49]. The evolution of c(~x, t) is simulated with the Cahn-Hilliard equation:

∂c

∂t
= Mc

[

▽2
∂F (c)

∂c
− ǫ2c ▽4 c

]

(2)
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where Mc is a positive kinetic coefficient, F is the free energy function given in Equation 1

and ǫc is the diffuse-interface parameter controlling the energy penalty due to concentration

gradients [46]. The numerical values used for all simulation parameters are listed in Table I.

To study the universal scaling parameters dependence on the β-phase fraction for the

spinodal case, decomposition is assumed to initiate from a nearly uniform concentration

field c(x, y, t = 0) = c0 + δ where c0 = caα + p∞(cβ − cα) for 0 < p∞ < 1 and δ is chosen

from a uniform random distribution −10−3 < δ < 10−3 at each node on a discrete square

grid.

For the nucleation and growth simulations, we employ the homogeneous free energy

function for a binary eutectic proposed by Wheeler et al., with a few simplifying assumptions

[46]. Specifically, we use the dimensionless, symmetric version of their model and assume

that the system is isothermal and solid throughout at all times. This model introduces a

second phase field parameter, ψ(x, y), representing the spatial variation in phase. The free

energy interpolates between the free energy functions for the pure α and β phases based on

the local value of ψ(x, y). The resulting free energy function is:

F (T̃0, c, ψ) = f̃0 +
W̃ψ

4
g(ψ)T̃0I(c)

+ L̃(T̃0 − 1)[h(ψ)c+ (1 − h(ψ))(1 − c)]

+ L̃(τ T̃0)[h(ψ)(1 − c) + (1 − h(ψ))c] (3)

where T̃0 is the dimensionless temperature, W̃ψ the dimensionless energy barrier height, and

L̃ the dimensionless latent heat. h(ψ) = ψ2(3−2ψ) and g(ψ) = ψ2(1−ψ)2 are interpolating

functions and I(c) = c ln(c)+(1−c) ln(1−c) is an entropic contribution to the Helmholtz free

energy [46]. A more detailed derivation and description of the model is found in Wheeler

et al. [46]. As in spinodal decomposition, the evolution of the concentration field during

nucleation and growth is simulated with the Cahn-Hilliard equation (i.e., Eq. 2 with F (c)

replaced by F (T̃0, c, ψ)). The evolution of ψ is simulated with the Allen-Cahn equation:

∂ψ

∂t
= −Mψ

[

∂F (T̃0, c, ψ)

∂ψ
− ǫ2ψ ▽2 ψ

]

(4)

where Mψ is a positive kinetic coefficient, F is the homogeneous free energy function, and

ǫψ is a parameter affecting interface width [47].

Simulations of nucleation and growth begin with the system containing primarily α-phase

(ψ ≈ 0), with randomly placed discs of finite ψ that serve as nuclei for the β-phase (ψ ≈ 1)
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[50]. To specify the equilibrium phase fraction, p∞, the c0 is chosen by the lever rule as

in spinodal decomposition. However, because the averaged perturbation is positive, the

algorithm to specify the initial concentration field must be modified. To accomplish this, a

second parameter is introduced, p∞
0

, that determines the initial fraction, p0, of the system

covered by nuclei of the β phase according to p0 = p∞
0
p∞.

The algorithm for initializing the system to meet these criteria is as follows. The number

of initial nuclei is determined by the value of p0:

Nnuclei =
p0NxNy

s

where Nx and Ny are the numbers of discrete grid points in the x- and y-directions and

s is the size of each individual nucleus. All nuclei are initially circles of radius r0 = 2dx,

which is the smallest integral radius for supercritical nuclei. s is determined by counting

the number of lattice sites that fall within the nucleus. For all simulations we set p∞
0

= 0.1

so that the system is initially at 10% of its equilibrium volume fraction. The concentration

of B-component outside of the nuclei needed to arrive at the desired average concentration,

c0, is calculated:

celse =
NxNyc0 −Nnucleisc

β

NxNy −Nnucleis

The x- and y-values for centers of nuclei are chosen randomly but overlaps are rejected. The

concentration and phase fields of each node within a radius r = r0 of x and y is initialized

to c = cβ and ψ = 0.99; otherwise each node (representing untransformed material) is

initialized to to c(x, y) = celse and ψ(x, y) = 0.01. This process is repeated until all Nnuclei

are placed.

We use finite difference methods to integrate the governing equations (i.e., Eq. 2 for

spinodal decomposition and Eqs. 2 and 4 for nucleation and growth) for each case, and

allow each system to evolve until the fraction of β phase reaches 95% of its equilibrium

value; the time at which this value is attained is recorded as teq.

The values used for the various parameters in each model are presented in Table I. The

mesh size, dx, and time step, dt, are also listed. The time step is chosen to be less than the

maximum stable time step for either of Eqs. 2 and 4.

Upon the completion of each simulation, we use a modified Hoshen-Kopelmann algorithm

to identify the clusters present in the system [1]. Because we are interested in the percolation

threshold of the growing β phase, pβc , we identify clusters using level-set criteria ψ > 0.5
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for nucleation and growth, and c > 0.5 for spinodal decomposition to determine whether a

computational grid node is included in the α- or the β-phase. We then determine whether

or not a spanning cluster is present, the average cluster size in the system, and the fraction

of the system occupied by the largest cluster.

TABLE I: Model parameters for spinodal decomposition and nucleation and growth

Spinodal Decomposition Nucleation and Growth

dt 0.00001 0.001

dx 1/256 1/256

Mc 0.001 0.0001

Mψ N/A 1.0

Fmax 1.0 N/A

cα 0.119 N/A

cβ 0.881 N/A

ǫc 0.015 0.005

ǫψ N/A 0.005

W̃ψ N/A 10.0

L̃ N/A 20.0

T̃0 N/A 0.4

τ N/A 1.1

p∞0 N/A 0.1

r0 N/A 2dx

III. SIMULATION RESULTS

Time lapse images of systems evolving through nucleation and growth and through spin-

odal decomposition at three equilibrium volume-fractions are presented in Fig. 1 and Fig. 2

respectively. Each type of microstructural evolution has a distinct visual characteristic that

follows from its kinetics.

• Nucleation and growth (Fig. 1) results from a first order transition where the inserted

nuclei are necessary to initiate the phase transformation. The nuclei initially grow by
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absorbing solute that diffuses from the immediately surrounding media. Subsequently,

some of the neighboring nuclei coalesce and form a network of the growth phase. At

later stages, the microstructure evolves by a coarsening process wherein diffusion is

driven by differences in surface curvature.

• Spinodal decomposition (Fig. 2) results from a second order transition where the sys-

tem will evolve from an unstable initial uniform concentration whenever spatial pertur-

bations exist. The decomposition proceeds as the amplitudes of fourier components

of the initial perturbations grow until the concentrations approach cα and cβ while

maintaining the average system concentration. Only the amplitudes of those fourier

components greater than some critical wavelength (λcrit, see Eq. 12) will grow, and

amplitudes for those components at a slightly larger wavelength, λfast, will grow the

fastest. This additional length scale produces the characteristic (locally) lamellar mi-

crostructural features that become apparent in Fig. 2 at at teq/4. Visual inspection

suggests that the systems resulting from spinodal decomposition form more connected

networks of growth phase, suggesting that the percolation threshold should be lower

for spinodal decomposition than nucleation and growth —this result is confirmed by

the analysis presented below.

IV. PERCOLATION THRESHOLDS

The difference in percolation thresholds between the nucleation and growth and spinodal

decomposition cases is apparent in Fig. 3 where the probability of percolation, Π, is plotted

as a function of the equilibrium volume fraction of β-phase for systems at teq. We estimate

Π at each p∞ by computing the fraction of simulation runs containing a spanning cluster for

each set of initial conditions. The decreasing width of the percolation transition as system

size increases is also evident in these plots. By fitting each set of data with the empirical

equation:

Π(p) =
1

2

[

1 + erf

(

p− peff

c

∆

)]

(5)

we obtain values for peff

c (L) and ∆(L) at specific finite system sizes. An error function is

used to fit the data because it converges to a step function in the limit ∆ → 0. While the

goodness of the fit for the larger system sizes in Fig. 3 may not be immediately apparent,
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FIG. 1: (Color online) Sample time evolution of three systems generated by nucleation and growth

with p < pc in (a), p = pc ≈ 2/3 in (b) and p > pc in (c). Images show the local concentration cb

with red (dark gray) corresponding to concentrations near cβ and blue (light gray) to concentrations

near cα. Bright regions occur at intermediate concentrations and highlight the phase boundaries.

viewing those systems alone on a smaller scale confirms that the fit is acceptable. We use

the finite size scaling relations

peff

c (L) − pc ∝ L
−1

ν (6)

and

∆(L) ∝ L
−1

ν (7)

to extrapolate the value of pc as ∆ → 0, L → ∞, as shown in Fig. 4. This analysis

yields pc = 0.499 ± 0.003 for spinodal decomposition, and pc = 0.661 ± 0.003 for nucleation

and growth. For comparison, the percolation threshold for a randomly assigned square

lattice is pc = 0.592746 [1]. Continuum percolation of overlapping discs exhibits a threshold

pc = 0.6764 ± 0.0009 when the discs have a uniform radius, and pc = 0.6860 ± 0.0012 for

discs with a distribution of radii [3]. The overlapping disc values and the nucleation and

growth value are similar, but differ by more than a standard deviation.
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FIG. 2: (Color online) Sample time evolution of three systems generated by spinodal decomposition

with p < pc in (a), p = pc ≈ 1/2 in (b) and p > pc in (c). Images show the local concentration cb

with red (dark gray) corresponding to concentrations near cβ and blue (light gray) to concentrations

near cα. Bright regions occur at intermediate concentrations and highlight the phase boundaries.

The observed percolation threshold for spinodal decomposition is explained by considering

that the system is symmetric with respect to phase inversions. This fact, in combination with

the fact that only one of the phases can form a percolating network in two dimensions requires

that the percolation threshold be pc = 1/2, and our data supports this conclusion. The three

dimensional case is likely to be more interesting for spinodally decomposed systems as it

is possible for a bicontinuous network to form, although phase inversion symmetry should

remain. We speculate that the highly connected lamellar structure formed in a spinodally

decomposed system would lead to a relatively low percolation threshold in three dimensions.

The observed percolation threshold (pc ≈ 0.661) for nucleation and growth is significantly

higher than that of both spinodal decomposition and the random square lattice. We spec-

ulate this may be associated with the formation of a depletion region around the growing

nuclei. At early stages of growth when the region surrounding a nucleus is oversaturated,
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two neighboring nuclei will coalesce if there is enough solute between them to form a con-

necting bridge. As the supersaturation decreases, the remaining neighboring distinct nuclei

become separated by a region that is relatively depleted and they compete for solute. The

effect would be similar to a hard core repulsion of the remaining nuclei. Thus, there is a

transition from a process that is network-forming to one that is network-resistant.

A. Critical Exponents

The behavior of many quantities that diverge near the percolation threshold follow a

simple power law of the form:

X ∝ |p− pc|b (8)

where X is the quantity of interest, and b is a critical exponent [4]. The universality hy-

pothesis states that the values of the critical exponents depend solely on the dimensionality

of the system, and not on its structure [3, 20, 21, 36]. We examined the critical behavior of

our diffusionally evolved systems to verify conformity to the expected scaling. We focused

on three critical exponents, ν, β, and γ. As seen earlier, ν is related to finite size scaling. To

determine the value of ν we examine the relationship between peff

c and ∆(L). The exponent

β is related to the scaling of the fraction of sites in the largest cluster, P , around pc [1]. γ

describes the scaling of the mean cluster mass, S, around pc, with S defined as:

S =
Σss

2ns
Σsns

where ns is the number of clusters containing s lattice sites [1].

The value of the critical exponent ν is estimated based on the scaling behavior of peff

c −pc
with system size as described in Equation (6), and is shown in Fig. 5, in double logarithmic

fashion. From these data, we obtain an estimate ν = 1.3 ± 0.5 for spinodal decomposition,

and ν = 1.4 ± 0.4 for nucleation and growth. For both processes, the fits are not distin-

guishable from the dashed lines in Fig. 5 that correspond to the exact value ν = 4/3. The

amplitudes of the power law fit for ν (as well as those for β and γ) using the universal

exponent values are tabulated in Table II.

β is estimated from the scaling behavior of the strength of the spanning cluster at the

percolation threshold, P (pc, L). This quantity has been shown to scale according to:

P (pc, L) ∝ L−
β
ν (9)
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FIG. 5: (Color online) Extrapolation of ν based on a log10-log10 plot showing the finite size scaling

of the effective percolation threshold. Solid lines are a least squares fit to the data, dashed lines

are a least squares fit with the critical exponent set to the known value, 4/3, for two dimensional

random percolation.

for systems of finite size L at p = pc [4]. β is estimated from the slope of the data in

Fig. 6, which yields β

ν
= 0.22 ± 0.06 for spinodal decomposition and β

ν
= 0.19 ± 0.03 for

nucleation and growth. Using the universal value ν = 4/3 gives β = 0.29± 0.08 for spinodal

decomposition, and β = 0.26 ± 0.04 for nucleation and growth. The expected value for

two dimensional systems is β = 5

36
≈ 0.13889 [1]. While the observed values of β differ

slightly from the exact value for random two-dimensional percolation, the dashed lines in

Fig. 6 showing the fit using the universal exponents fall well within the error bars. The

data plotted in Fig. 6 as well as Fig. 7 is from 60-250 simulations performed at each system

size (fewer simulations were run for the larger systems because of limited computational

resources) and the error bars are ±1 standard deviation properly scaled to the logarithmic

axes.

The scaling parameter γ speaks to the mean cluster mass S(pc, L) and its scaling behavior

is given by:

S(pc, L) ∝ L
γ
ν (10)

for systems at p = pc [4]. Therefore the slope of the double logarithmic plot in Fig. 7 gives

γ

ν
= 2.10± 0.09 for spinodal decomposition, and γ

ν
= 2.37± 0.05 for nucleation and growth.

Using the universal value ν = 4/3 in each case to solve for γ gives γ = 2.8± 0.1 for spinodal

decomposition and γ = 3.16± 0.07 for nucleation and growth. The expected value for a two

dimensional system is γ = 43

18
≈ 2.3889. As in the case for the estimates of β, the estimates

12



100 500200 300150

0.10

1.00

0.50

0.20

0.30

0.15

0.70

P

L

Nucleation and Growth
Spinodal Decomposition

-β/ν = -0.19 ± 0.03

-β/ν = -0.22 ± 0.06

FIG. 6: (Color online) Extrapolation of β based on a log10-log10 plot showing the finite size scaling

of the fraction of sites belonging to the spanning cluster. Solid lines are a least squares fit to the

data, dashed lines are a least squares fit with the critical exponent set to the known value for two

dimensional random percolation, 5/36.
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least squares fit with the critical exponent set to the known value for two dimensional random

percolation, 43/18.

of γ for both cases differ from the expected value; again, the dashed lines in Fig. 7 show

that the difference is not large.

V. MICROSTRUCTURAL CORRELATION ANALYSIS

To relate the observed shifts in percolation threshold to the microstructural effects of

the phase transformation types, we characterize their spatial correlations. We use the pair
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TABLE II: Power law fit amplitudes using universal exponents

Nucleation and Growth Spinodal Decomposition

Fig. 5: peff
c (L) − pc 0.683 L

−1

ν 0.258 L
−1

ν

Fig. 6: P (pc, L) 0.660 L
β
ν 0.326 L

β
ν

Fig. 7: S(pc, L) 375.7 L
γ
ν 62.3 L

γ
ν

correlation function, gij(r) defined by:

gij(r) =
〈Nj(r)〉i
N(r)

1

cj
(11)

where i and j are indices corresponding to the α- and β-phases present in the system,

〈Nj(r)〉i is the ensemble average number of sites at distance r from a site of phase i that

contain phase j, N(r) is the total number of sites at distance r, and cj is the phase fraction

of phase j. Therefore regions where gij(r) = 1 correspond to no correlation, regions where

gij(r) > 1 correspond to the presence of more phase j than expected based on its phase

fraction, and regions where gij(r) < 1 correspond to the presence of less phase j than

expected. Because our systems are on a square computational grid and are isotropic on

average, we only considered distances r = ndx corresponding to sites that are separated by

an integral number of grid spacings in the x-direction. This “horizontal counting” avoids

the ambiguity of treating nodes near the edge of cylindrical shells on a square computational

grid and fixes N(r) = 2.

Pair correlation functions for α-α, β-β and α-β interactions are plotted in Fig. 8. The

functions are computed from fully evolved systems (t∞) at the percolation threshold. For

both spinodal decomposition and nucleation and growth, the correlations are short range.

That is, g(r) decays to 1 at long distances for all phase pairings. This confirms that the

universal scaling relations of percolation theory should be applicable to systems formed

through phase transformations. Furthermore, both types of systems have a short range

region where gii(r) > 1, corresponding to phases tending to segregate from one another.

Focusing on larger values of r we see that both types of systems exhibit some ordering

since there is a region where gii(r) < 1. For spinodal systems this region appears because

of the tendency of the system to form locally alternating stripes of the two phases due to

the continuous nature of the phase transformation. This tendency also results in a third,

smaller peak where g(r) > 1 that is not present for nucleation and growth, showing that
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FIG. 8: (Color online) Pair correlation functions calculated from fully evolved (t∞) systems gener-

ated by nucleation and growth (a) and spinodal decomposition (b). Both types of systems exhibit

short range order. The width of the first correlation peak, ℓ, is marked by the dashed line.

spinodal systems exhibit somewhat longer range order. The first ordering peak observed for

nucleated systems is likely a result of the formation of the depletion region (as described

above) around a growing nucleus, causing the region immediately outside the nucleus to be

more likely to consist of the α- (matrix) phase. There is no longer range order because the

nuclei are initially placed randomly.

In order to relate the microstructural correlations for the two types of evolution, we

compare the time-evolution of a characteristic length scale, ℓ(t), defined as the first crossing

of gββ(r) = 1 (cf. ℓ(t∞) in Fig. 8). We believe that this corresponds to the average particle

size for nucleation and growth, and to half the wavelength of the fluctuations present in

spinodally decomposed systems. Figure 9 depicts the growth in ℓ as a function of time on a

ln-ln scale.

For nucleation and growth, there appear to be three regimes of evolution for the average
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FIG. 9: Time evolution of the width of the first correlation peak, ℓ, for nucleation and growth (a)

and spinodal decomposition (b). Regions where the data may be fit by a power law of the form

ℓ ∝ tn are labeled.

particle size. We speculate that the regimes may be distinguished by the following pro-

cesses: (i) at early times, all particles grow independently with short-range diffusion in a

super-saturated matrix; (ii), at intermediate times, a small fraction of neighboring particles

coalesce; (iii) at long times, a self similar coarsening process occurs in a depleted matrix.

However, none of these regions fit well to a power law function with exponents predicted

by mean field calculations of interface-limited or diffusion-limited processes (e.g., [45]). The

first calculated value of ℓ(t = 500dt) is 4.49dx, which corresponds with the initial diameter

of the nuclei in the system, d = 4dx, plus some growth in the first 500 time steps.

The evolution of ℓ(t) for spinodal systems is simpler. There is an initial region where ℓ is

roughly constant. During this time the single phase lamella are developing from the initial

concentration perturbations by transport of the B component between neighboring rich and

dilute regions. We expect this initial length scale to correspond to the critical wavelength

for spinodal decomposition, λcrit:

λcrit =
π

2
(cβ − cα)

√

ǫ2c
Fmax

(12)

and the fastest growing wavelength is λfast =
√

2λcrit [45]. Using the parameter values
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from the simulations λcrit = 4.60dx and λfast = 6.50dx. The first calculated value of ℓ at

t = 500dt is 2.43 which falls between λcrit/2 and λfast/2. Once the single phase regions

have reached their equilibrium concentrations the microstructure begins to coarsen and ℓ

increases with time. At long times the coarsening fits well to a power law with exponent

n = 1/3, corresponding to diffusion limited, curvature driven coarsening [48].

VI. CONCLUSIONS

In this paper we connect classical percolation concepts with the domain of structure

evolution, two areas of the statistical physics literature that have traditionally been separate.

Since phase correlations resulting from microstructural evolution processes lead to shifts in

the percolation threshold in comparison to other methods of producing multi-phase systems,

we believe that combining the knowledge of these two domains will allow scaling relations

to be used for material property prediction in a broad range of practically relevant systems.

Examining the microstructures that evolve through nucleation and growth reveals two

competing effects that alter the percolation threshold. We speculate that the increased pc

relative to the random square lattice involves the coalescence of neighboring nuclei at early

stages of growth. Subsequent competition for solute in a depleted matrix during growth

and curvature-driven coarsening impedes the coalescence of clusters, providing an explana-

tion for the decreased pc compared to randomly placed discs. For spinodal microstructures

the primary source of phase correlations is the critical wavelength of stable perturbations

that determines the initial microstructure. The quantitative analysis of the phase corre-

lations present shows that only short range order is present in the phase distribution of

microstructures derived from phase-transformations.

In addition to determining the value of the percolation threshold for these two types of

microstructures, we also examined their critical behavior at pc to confirm that the exponents

ν, β, and γ are close to those observed in other two dimensional systems. Although our

estimates have large statistical deviations (the number of computational experiments were

resource limited), our estimates agree reasonably with the univerally observed exponents for

other two dimensional systems. On the highest level the nature of the phase transformation

does only one thing in regards to percolation: it introduces a state of correlations. These

correlations affect the percolation scaling only if they are of infinite extent. Since phase

17



transformation induced correlations are all by definition local (diffusional fields, etc.), it

is reasonable that the critical exponents are unchanged. It is important to note that this

holds only for the percolation exponents, and not to confuse or conflate those with the time

exponents of the transformation.
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