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Recent advances in single-molecule chemistry have led to designs for artificial multi-pedal walkers
that follow tracks of chemicals. We investigate the motion of a class of walkers, called molecular
spiders, which consist of a rigid chemically inert body and several flexible enzymatic legs. The legs
can reversibly bind to chemical substrates on a surface, and through their enzymatic action convert
them to products. The legs can also reversibly bind to products, but at a different rate. Antal and
Krapivsky have proposed a model for molecular spider motion over regular 1D lattices [T. Antal, P.
Krapivsky, Phys. Rev. E 76, 2 (2007)]. In the model the legs hop from site to site under constraints
imposed by connection to a common body. The first time a leg visits a site, the site is an uncleaved
substrate and the leg hops from this site only once it has cleaved it into a product. This cleavage
happens at a rate r < 1, slower than dissociation from a product site, r = 1. The effect of cleavage is
to slow down the hopping rate for legs that visit a site for the first time. Along with the constraints
imposed on the legs, this leads to an effective bias in the direction of unvisited sites that decreases the
average time needed to visit n sites. The overall motion, however, remains diffusive in the long time
limit. We have reformulated the Antal-Krapivsky model as a continuous-time Markov process, and
simulated many traces of this process using kinetic Monte Carlo techniques. Our simulations show a
previously unpredicted transient behavior wherein spiders with small r values move superdiffusively
over significant distances and times. We explain this transient period of superdiffusive behavior by
describing the spider process as switching between two metastates: a diffusive state D wherein the
spider moves in an unbiased manner over previously visited sites; and a boundary state B wherein the
spider is on the boundary between regions of visited and unvisited sites and experiences a bias in the
direction of unvisited sites. We show that while the spider remains in the B state it moves ballistically
in the direction of unvisited sites, and while the spider is in the D state it moves diffusively. The
relative amount of time the spider spends in the two states determines how superdiffusively the
spider moves. We show that the B state is Markovian, but the D state is non-Markovian because the
duration of a D period depends on how many sites have been visited previously. As time passes the
spider spends progressively more time in the D state (moving diffusively) and less time in the B state
(moving ballistically). This explains both the transient superdiffusive motion and the eventual decay
to diffusive motion as t→ ∞.

PACS numbers:

I. INTRODUCTION

Controlling the transport of individual molecules
is a central problem in nanotechnology. Any
molecule free in solution is subject to thermally
driven diffusion. To enable directed movement of
molecules, a nanoscale system can use a chemical
scaffold and associated chemical walkers that tra-
verse the scaffold as a molecular transport mech-
anism. Such structures are ubiquitous in biologi-
cal systems—cells accomplish many of their com-
plex tasks using self-assembled filament tracks and
molecular motors that walk directionally along the
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filaments [1].

In addition to naturally occurring molecular
walkers, several synthetic walker systems have
been studied. Our work is inspired by molecular spi-
ders [2]. A molecular spider consists of a rigid, inert
chemical body to which are attached multiple flexi-
ble enzymatic legs. The legs are deoxyribozymes—
enzymatic sequences of single-stranded DNA that
can bind to and cleave complementary strands of a
DNA substrate. When a molecular spider is placed
on a surface coated with the single-stranded DNA
substrate, its legs bind to the substrate (Fig. 1).
A bound leg can either detach from the substrate
without modifying it, or it can catalyze the cleav-
age of the substrate, creating two product strands.
The “lower” product remains bound to the surface,
while the “upper” product is free to float away in
solution. Because the lower product is complemen-
tary to the nether part of the spider’s leg, there is a
residual binding of the leg to the product, although



this is typically much weaker than the leg-substrate
binding and thus much shorter lived. The leg kinet-
ics are described by the five chemical reactions in
Eq. 1 relating legs (L), substrates (S), and products
(P). In these equations we ignore the upper prod-
uct strand, and P refers to only the lower part of the
cleaved substrate that remains bound to the surface.
Additionally, we have combined the catalysis reac-
tion together with all of the subsequent dissociation
reactions (not shown) into a single kcat rate.

L + S
k+

S−→←−
k−S

LS
kcat−−→ L + P

L + P
k+

P−→←−
k−P

LP

(1)

Molecular walkers, including molecular spiders,
have many potential applications [3, 4]. Walkers
can be used as molecular shuttles [5], moving cargo
between sites over molecular tracks [6, 7]. They can
aid in the self-assembly of molecular structures [8]
that are otherwise thermodynamically unfavorable,
and proposals have been made to use the actions
of walkers to effect molecular communication [9]
and computation [10, 11]. More recently, molecu-
lar spiders have been shown to follow prefabricated
tracks of DNA substrates across a surface [12]. In
each of these applications, different statistical prop-
erties of the walker motion (mean squared displace-

FIG. 1: (Color online) A molecular spider system. The
spider moves over a surface of chemical sites as the legs
attach and detach. A leg cleaves a substrate site, turning
it into a product site when it detaches.

ment, first passage time, etc.) determine the useful-
ness of a particular walker design.

Recently, Antal and Krapivsky introduced an ab-
stract model of molecular spider motion [13, 14].
The Antal-Krapivsky (AK) model simplifies the re-
action rates in Eq. 1, setting the on-rates to be infi-
nite, and the substrate dissociation rate to be 0, so
that substrates are always cleaved to products be-
fore detachment. Essentially, the AK model defines

k+
S = k+

P = ∞,

kcat = r ≤ 1,

k−S = 0, and

k−P = 1.

(2)

Under these conditions the spider motion can be
studied as a function of the single rate parame-
ter r ≤ 1, which represents the ratio between the
substrate cleavage and product detachment rates.
Hence, a residency-time bias is established, where
legs detach faster from previously visited sites than
from unvisited sites. Antal and Krapivsky showed
that the asymptotic behavior of this spider model
is diffusive for all values of r. Thus, in the long
time limit the AK spiders cannot be used as a
faster-than-diffusion transport mechanism. How-
ever, our numerical simulations of the AK model re-
veal that when there is a residency-time difference
between previously visited and unvisited sites, the
spiders can move superdiffusively for time periods
that span many orders of magnitude. While the
asymptotic behavior of molecular spiders remains
diffusive, there is a possibility of exploiting their
transient superdiffusive behavior to perform useful
work in experimentally relevant situations where
spiders need only move for a finite time or over a
finite distance.

In Section II we formalize the description of the
AK model as a continuous-time Markov process
so that it is amenable to simulation using the ki-
netic Monte Carlo method. Section III gives the
numerical results of our simulations, carried out
to very long simulated times, and demonstrates
the dichotomy between the superdiffusive transient
and the diffusive asymptotic behavior.

Understanding the mechanism of the transition
from short-time to long-time behavior is essential
for designing nanoscale transport systems using
walkers such as molecular spiders. In Section IV we
show how the states of the AK Markov process can
be partitioned into two metastates. A spider is in
the diffusive metastate D when it is moving over the
region of previously visited sites. It is in the bound-
ary metastate B when it is attached to sites at the



boundary between regions of visited and unvisited
sites. The spider moves diffusively in metastate D
and ballistically in metastate B, and alternates be-
tween D and B over time. We show that the B state
is Markovian, but the D state is not. As the region
of cleaved products grows, so does the proportion
of time the spider spends moving diffusively in the
D state. Thus the observed transient superdiffu-
sive behavior of the spiders can be explained by the
gradual transition from a predominance of B peri-
ods to a predominance of D periods.

II. THE ANTAL-KRAPIVSKY MODEL

Antal and Krapivsky abstract away many of the
details of molecular spiders to arrive at a simplified
model that can explain how walkers with multi-
ple uncoordinated but collectively constrained legs
might move over a 1D lattice of sites [13], and how
this movement is affected by allowing the legs to ir-
reversibly modify the sites as they move [14]. The
model simplifies the chemical kinetics of Eq. 1, as-
suming the rates of Eq. 2. Under these conditions
the legs are always attached to the surface, because
the on-rates are infinite, so legs detach and then im-
mediately reattach, hopping from one site to the
next. Additionally, because k−S = 0, a leg bound
to a substrate will always cleave the substrate into
a product. This simplification focuses attention
on the two rates kcat and k−P and how their ratio
r < 1 controls the motion of the spiders through a
residency-time bias, i.e., longer residency times on
newly visited sites.

The model effectively but not explicitly describes
spider movement as a continuous-time Markov
process. We reformulate the model more precisely
to emphasize the states and transitions, and the
Markovian nature of the transitions when the state
is defined to include both the state of the spider and
the state of the surface sites.

We consider a system with a single k-legged spi-
der. The legs step over sites on a regular lattice
(Z). The states in the process are the combined
state of the lattice sites and the state of the spi-
der. Each lattice site is a substrate (uncleaved) or
a product (cleaved). Initially all sites are substrates,
so the state of the surface can be described by the
set P ⊂ Z of sites that have been cleaved. The
state of the spider is described by the set F ⊂ Z

of foot locations—lattice sites with a leg attached.
Together P and F completely define the state of the
spider system, i.e., the state of the Markov process
is X = (P, F).

We call F a configuration of the legs. The gait of a
spider is defined by what configurations and what
transitions between configurations are allowed in
the model. There are considerable possibilities for
variations on the spider gait. Antal and Krapivsky
describe the gait of a spider with the kinetics of
Eq. 2. With k+

S = k+
P = ∞, a leg immediately

reattaches after it detaches. Thus in any state X =
(P, F) of the process, all k legs are attached. To-
gether with the restriction that at most one leg may
be attached to a site, this implies that

|F| = k. (3)

Additionally, the legs are constrained by their at-
tachment to a common body. If the spider has a
point body with flexible, string-like legs of length
s/2, then any two feet can be separated by at most
distance s, thus

max(F)−min(F) ≤ s. (4)

This restriction is that of the “global spiders” of An-
tal and Krapivsky [13].

The transitions in the process correspond to indi-
vidual legs unbinding and rebinding. When a spi-
der is in configuration F, any foot i ∈ F can unbind
and move to a nearest-neighbor site j ∈ {i + 1, i−
1} to form a new configuration F′ = (F \ {i}) ∪ {j}
provided the new configuration does not violate
one of the constraints of Eqs. 3 and 4. A transi-
tion i → j is called feasible if it meets these con-
straints. The feasible transitions determine the gait
of the spider. The nearest-neighbor hopping com-
bined with the mutual exclusion of legs leads to a
shuffling gait, wherein legs can slide left or right if
there is a free site, but legs can never move over
each other, and a leg with both neighboring sites
occupied cannot move at all. If the legs of such a
spider were distinguishable, they would always re-
main in the same left-to-right ordering.

The rate at which feasible transitions take place
depends on the state of the site i. If i is a product
the transition rate is 1, but if i is a substrate the tran-
sition occurs at a slower rate r < 1. This is meant
to model the realistically slower dissociation rates
from substrates corresponding to chemical kinetics
where kcat/k−P = r < 1. The effect of substrate
cleavage is also captured in the transition rules. If
for state X = (P, F) where i ∈ F \ P, the process
makes the feasible transition i→ j, then the leg will
cleave site i before leaving, and the new state will
have P′ = P∪ {i}.

In order to compactly represent the state of a
spider process, Antal and Krapivsky introduced a



graphical notation. The symbol ◦ represents an un-
occupied site and • represents an occupied site. All
sites initially have a hat ˆ indicating they are un-
cleaved (substrate) sites. A site is cleaved into a
product when a leg detaches from it for the first
time, denoted by removing the hat. For example,
a spider in the B state (Fig. 12) with a configuration
of legs F = {i, i + 2} can be illustrated thus:

· · · ◦̂i−4
◦̂

i−3
◦

i−2
◦

i−1
•
i
◦

i+1
•̂

i+2
◦̂

i+3 · · ·

Since the transition rates are translationally in-
variant on the lattice, we can generally omit the in-
dexes on the sites.

Antal and Krapivsky have analytically studied
the expectation of the random variable T(n), which
for the bipedal spider with s = 2 is defined as the
time when a leg steps onto an uncleaved site after
n + 2 sites have already been cleaved. When this
event occurs the spider is always in the following
position (or its reflection),

· · · ◦̂◦̂◦◦ · · · ◦•◦
︸ ︷︷ ︸

n+2

•̂◦̂ · · · .

One can alternatively think of T(n) as the time
at which the spider first visits n distinct sites not
counting the three sites its legs span at that time.
Since a spider always cleaves a substrate site it vis-
its, T(n) is equivalent to the time for n + 2 products
to be formed. For the case s = 2, k = 2, when r = 1,
it was found that

〈T(n)〉 = n2 + n, (5)

but more generally, when 0 < r ≤ 1, the leading
coefficient is reduced to

〈T(n)〉 =
3

2

1 + r

2 + r
n2 +

1

r
n. (6)

This implies that a large residency-time bias be-
tween unvisited and visited sites, corresponding to
small values of r, leads to a faster mean time to visit
n sites for large enough n. Antal and Krapivsky
also showed that one-legged spiders do not exhibit
this behavior. Thus, it is the combination of hav-
ing more than one leg and the ability to irreversibly
change the sites and hence rates that allows the spi-
der to move faster. While for small r values T(n) is

smaller, it is still O
(
n2

)
, and hence not asymptoti-

cally faster than an ordinary diffusive process.
Antal and Krapivsky note that with r < 1 there

is an effective bias in the spider’s motion when it
has one leg on a substrate at the boundary between
cleaved and uncleaved sites. In such a situation the
spider moves with probability p+ in the direction
away from previously visited sites and with prob-
ability p− towards previously visited sites. Antal
and Krapivsky calculated that the strongest bias is
in the r → 0 limit when p− = 3/8 and p+ = 5/8.
In the next section we show via simulation that spi-
ders experience an initial period of superdiffusive
behavior when r < 1, and in Section IV we show
how this behavior is caused by the effective bias,
yet asymptotically dominated by diffusive motion
over previously visited sites in the limit as t→ ∞.

III. SIMULATION RESULTS

We use the Kinetic Monte Carlo method [15] to
numerically sample traces of the spider Markov
process. In our simulations, a single two-legged
(k = 2) spider with maximum leg separation con-
straint s = 2 is placed on a one-dimensional infinite
lattice of substrates and allowed to move according
to the model. We vary the rate r to see how it in-
fluences the motion. The case r = 1 corresponds
to ordinary diffusion because there is no effective
difference between substrates and products.

A. Simulation Description

For each value of r ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005}
we simulate 5000 traces of the Markov process. We
record samples of several random variables (e.g.,
mean squared displacement and first passage time)
that are functions of time, distance, or the number
of sites visited. To ensure that each simulation trace
provides a sample for each measured value of the
random variables, we run each simulation until all
of the following conditions are met: (1) the time is
greater than tmax = 108 time units; (2) the spider

has visited at least cmax = 104 sites; and (3) the spi-

der has moved at least a distance dmax = 104 sites
away from the origin. We sample so that each of the
plots with time on the x-axis that follow is obtained
from 6000 measurement points equispaced for the
independent variable axis of the plot (linear or log-
arithmic). For plots that have distance and number

of cleaved sites on the x-axis we use 104 measure-
ment points each.



B. Agreement with Analytical Results

We are primarily interested in using the simula-
tions to obtain estimates of random variables for
which we do not already have analytical results.
However, we should also show our simulations
agree with Antal and Krapivsky’s calculations for
〈T(n)〉 (Eq. 6).

Figs. 2 and 3 show simulation results for 〈T(n)〉
and its dual quantity 〈N(t)〉, respectively. These
quantities show how fast a spider cleaves the sub-
strates and are especially relevant because for real
molecular spiders it has been possible, using sur-
face plasmon resonance, to measure the loss of mass
due to cleavage [2].
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FIG. 2: Simulation estimates for 〈T(n)〉.
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FIG. 3: Simulation estimates for 〈N(t)〉.

We can estimate how well the simulation results
fit the analytical formula using the R2 statistic

R2 = 1− ∑
n
i=1 (〈T(i)〉 − t(i))2

∑
n
i=1 (t(i)− t̄)2

.

Here n is the number of measured points, 〈T(i)〉
is given analytically by Eq. 6, t(i) is the mean of
the i-th observed value for each trace, and t̄ =
∑

n
i=1 t(i)/n. We found the R2 values were greater

than 0.999 for all measured values of r, indicat-
ing excellent agreement between theory and sim-
ulation.

C. Observed Instantaneous Superdiffusion of
Spiders

Superdiffusive motion can be quantified by ana-
lyzing the mean square displacement of a spider as
a function of time. For diffusion in 1D space with
diffusion constant D, the mean squared displace-
ment is given by Eq. 7.

msd(t) = 2Dtα







α = 0 stationary

0 < α < 1 subdiffusive

α = 1 diffusive

1 < α < 2 superdiffusive

α = 2 ballistic or linear

(7)

We shall say that the spider is moving instanta-
neously superdiffusively at a given time t if

α(t) =
d(log10 msd(t))

d(log10 t)
> 1. (8)

This definition is similar to that used by Lacasta
et al. [16] to describe transient superdiffusive be-
havior.

Fig. 4 shows msd(t) for different r values. In
this log-log plot, straight lines correspond to power
laws, that is, to Eq. 7, and the parameter α is given
by the slope. A reference line for diffusion is shown
to illustrate that the r = 1 spider is ordinary dif-
fusive, and all spiders eventually become ordinary
diffusive asymptotically. A reference line propor-

tional to t2 is also shown for comparison to ballistic
motion, which shows that spiders with small r val-
ues experience significant periods of superdiffusive
behavior.

We use finite difference methods to estimate α(t)

(Eq. 8). Fig. 5 shows the result of using the Savitzky-

Golay smoothing filter [17] on these estimates. The
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spiders with r = 1 indeed move diffusively, with

α(t) ≈ 1 for all times. However, the spiders with

r < 1 show a pattern of three distinct diffusion

regimes at different time scales. The first of these

is an initial regime when the times are small enough

that the mean number of cleavages is less than 1

and the spiders show significantly subdiffusive be-

havior. This can be explained by considering that

the spider starts in the configuration defined by An-

tal and Krapivsky,

· · · ◦̂−2
•
−1
◦
0
•̂
1
◦̂
2 · · · .

From this state either the right leg moves at rate
r or the left leg moves at rate 1, but if r ≪ 1 the
mean time to move the right leg is large. Until the
right leg has moved, the left leg is restricted to hop-
ping between sites −1 and 0. Thus, the parameter
r determines the time scale of this initial period as
0 ≤ t ≤ 1/r.

When t > 1/r, the average number of cleavages
is greater than one. After this time, the spider has
taken several steps, and has cleaved out a small re-
gion (sea) of products which defines a boundary be-
tween regions of visited and unvisited sites. As An-
tal and Krapivsky noted, there is an effective out-
ward bias for bipedal spiders near this boundary
when r < 1. Fig. 5 shows that spiders with small
r values move significantly superdiffusively in the
period of time after the initial regime. Hence, we
call this the superdiffusive regime. We quantify this
regime as the period of time when α(t) > 1.1. The
choice of 1.1 is arbitrary, but is a sensible threshold
that corresponds to a spider moving significantly
superdiffusively. Using this threshold, we define t∗

and t∗∗ as the time when the spider enters and exits
the regime of superdiffusive motion. Table I sum-
marizes these values. We also compute the maxi-
mum value of α(t), and the time t at which the max-
imum is reached. These values show an increas-
ingly significant superdiffusive regime for smaller
values of r. These effects were not predicted by an-
alytical methods as they are only transient effects—
eventually all spiders move diffusively. However,
the fact that these transient behaviors last several
decades in time means that spiders could poten-
tially be exploited to achieve faster-than-diffusion
transport over experimentally practical times.

As predicted by Eq. 6, the spiders must eventu-
ally move diffusively. This leads to the third and
final diffusive regime, in which all spiders asymptot-
ically move with msd(t) ∝ t. Thus while the pro-
cess is not mathematically identical to unbiased dif-
fusion, it is practically no faster than diffusion for
transport over very long times.

To quantify when a particular r-value spider is
faster than the r = 1 spider (in terms of msd(t)),
we define t̂(r) as the first time when msdr(t) >

msd1(t), and summarize the values in Table I. Be-
tween the times t̂ and t∗∗ the spider is farther on av-
erage than a diffusive spider and it is still moving
faster by more than a constant factor. Thus during
this interval, the spider is more efficient in every re-
spect than an ordinary diffusive spider.



r max α(t) argmax α(t) t∗ t∗∗ t̂

0.5 1.10 1.20× 101 - - 2.25× 101

0.1 1.32 1.26× 102 8.83× 101 4.06× 103 5.89× 102

0.05 1.40 2.08× 102 1.51× 102 2.83× 104 2.67× 103

0.01 1.60 2.15× 103 6.89× 102 5.68× 105 5.59× 104

0.005 1.68 5.70× 103 1.39× 103 2.49× 106 2.44× 105

TABLE I: Properties of the mean squared displacement and the superdiffusive regime defined by α(t) > 1.1.

D. First Passage Time

We also measured the mean first passage time,
Fig. 6. This property is useful for describing how
efficiently spiders can be used to transport cargo
from the origin to a destination—when the spider
reaches the destination point for the first time it has
completed the task. The r < 1 spiders reach new
unvisited sites faster than the diffusive r = 1 spider,
and so they are more efficient as a transport mech-
anism. However, as with the average number of
cleaved sites, there is a limit on how much one can
reduce the first passage time by decreasing r.
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FIG. 6: Mean first passage time.

E. Asymptotic Behavior and Distributions

To describe a process as unbiased ordinary diffu-
sive, one must show not just that the mean squared
displacement increases linearly with time, but more
specifically that the distribution of the displace-
ment is Gaussian. Initially this is not true for spi-
ders with r < 1. The bias at the boundary tends

to keep spiders towards the outside of the region of
cleaved products, leading to a bimodal distribution
peaked around the average locations of the bound-
aries at that time. However, as time increases and
the size of the sea of products grows, spiders spend
increasingly more time moving in an unbiased,
diffusive manner over these sites. This eventu-
ally leads to a more Gaussian-shaped distribution.
Fig. 7 shows the displacement distributions for the
r = 0.01 spider at three times: at argmax (α(t)),
when the spider is moving most superdiffusively;
at t̂, when the spider mean squared displacement
overtakes the r = 1 spider; and at tmax, when the
spider is in the diffusive regime. Fig. 8 shows a
comparison of the distributions at the same three
times for the r = 0.01 and the r = 0.005 spiders. The
spider with the smaller r value has a sharper peak
near the boundary at time t = argmax (α(t)), corre-
sponding to the slower release from substrates.

At tmax = 108, most of the spiders have α(t) ≈ 1.
Table II shows the results of using the Shapiro-Wilk
normality test [18] to test the hypothesis that the
displacement distribution is Gaussian at time tmax.
The p-values are significant enough to support this
hypothesis. However, note that the p-values are in-
creasingly small for small r values. This likely indi-
cates that the spider processes for small r values are
still slowly moving towards ordinary diffusion, and
hence are not quite normal, especially near the ends
of the distribution due to the bias at the boundary.

Nevertheless, all the spiders are sufficiently close
to normally distributed at time tmax so that we can
use

D(t) =
msd(t)

2t
(9)

as an approximation to the effective diffusion rate
of the spiders. The value D(tmax) should be
thought of as the diffusion constant an ordinary
diffusive process would need in order to have the
same mean squared displacement at time tmax as
the given spider process. In this way it can make
sense to compute D(t) even at times when the spi-
der processes are significantly subdiffusive or su-
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FIG. 7: Displacement distribution for r = 0.01 at three
characteristic times.
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FIG. 8: (Color online) Comparison of displacement distri-
butions for r = 0.01 and r = 0.005 at three characteristic
times argmax (α(t)), t̂, and tmax.

perdiffusive. For these times we interpret the D(t)
value as a measure relating the msd of the spider
process to that of an ordinary diffusive process with
diffusion constant D. In Fig. 9, we use Eq. 9 to com-
pute D(t) for all times. Finally, in Table II we esti-
mate D(tmax) with 95% confidence bounds for each
value of r. The analytical value for r = 1 is 1/4,
which is within the error bounds of our estimate.
We should expect these values to be monotonically
increasing with decreasing r, and this is true (within
confidence intervals). However, the D(tmax) value
for the r = 0.005 spiders is not representative of
their true long-term behavior, as these spiders still
have not moved for long enough for their 〈T(n)〉
value to surpass that of the r = 0.01 spiders. The
r = 0.005 spiders are still moving superdiffusively
enough at tmax that the D(tmax) value is substan-
tially smaller than its asymptotic value. The same
would be true of the D(tmax) value for any spider
with an even smaller r.

Of practical interest, from these diffusion rates
we estimate that at time tmax a spider with r = 0.005
will be approximately 31% farther from the origin
on average than an ordinary-diffusive spider with
r = 1 (or equivalently an ordinary random walker
with D = 0.25). Thus, given enough time, a spider
with slower enzymatic rate kcat can transport objects
significantly farther.
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FIG. 9: D(t) as computed by Eq. 9.

r D(tmax = 108) Shapiro-Wilk
p-value (at tmax = 108)

1.0 0.247± 0.010 0.747
0.5 0.313± 0.012 0.518
0.1 0.413± 0.016 0.620
0.05 0.407± 0.016 0.677
0.01 0.435± 0.017 0.250
0.005 0.417± 0.016 0.206

TABLE II: The estimated diffusion coefficient D for differ-
ent r values with 95% confidence bounds, and the p-value

for Shapiro-Wilk normality test at time 108, showing the
distributions are reasonably normal at this time.

IV. MECHANISM OF TRANSIENT SPIDER
SUPER-DIFFUSION

Our simulation results have shown that the spi-
ders of the AK model for s = 2, k = 2 move su-
perdiffusively over a significant distance and time,
and that this effect increases with decreasing values
of r. Eventually, however, the motion decays to an
ordinary diffusive walk.

In this section, we argue that there is a general
principle underlying spider motion that can be un-
derstood by viewing spiders as existing in one of
two metastates, a diffusive metastate D wherein
a spider moves over visited sites, or a boundary
metastate B wherein a spider moves ballistically
away from the origin when it is on the boundary
of uncleaved sites. Because the duration of a B pe-
riod remains independent of the past, but the dura-
tion of a D period grows with time, eventually the
spider will approach an ordinary diffusive motion.

The s = 2, k = 2, r < 1 AK spider model is the
simplest model exhibiting the boundary/diffusive
state decomposition and the resulting superdiffu-
sive behavior.

A. The Boundary and Diffusive Metastates

As explained in Section II, in the AK model legs
only hop to nearest-neighbor sites and cannot hop
over one another. This leads to a shuffling gait. If
the legs were distinguishable their ordering would
not change. Thus for concreteness we can refer to a
leftmost and a rightmost leg. Because the legs only
move to nearest-neighbor sites, they cannot jump
over any site; and because a leg always cleaves a
substrate into a product, a spider cannot leave any
substrates behind. Thus a spider with this shuffling
gait will cleave out an interval of products so that
for state X = (P, F), we find

P = {bL(t) + 1, . . . , bR(t)− 1}, (10)

where

bL = min (P)− 1, and bR = max (P) + 1. (11)

We call bL and bR the left and right boundaries, as
they define the interval of products (Eq. 10) we call
the product sea. This product sea includes the origin
and contains no substrates within it. Thus, a spider
in the product sea has all its legs on products so it
must hop without bias at rate 1, and its motion is
diffusive. Any state in which all the spider’s legs
are contained within the product sea belongs to the
diffusive or D metastate. Formally, for state X =
(P, F), X ∈ D if and only if F ⊆ P.

The only other possible state is for the spider to
have a single leg on a substrate at one of the bound-
aries. This must be either the leftmost leg on bL or
the rightmost leg on bR. No other situation is pos-
sible because of the shuffling gait of the legs en-
forced by nearest-neighbor hopping. In either of
these cases, we say that the spider is in the bound-
ary or B metastate, so that for X = (P, F), we have
X ∈ B if and only if bL ∈ F or bR ∈ F.

Together B and D form a partition of the state
space for the spider Markov process. Thus, we
can view a spider process as a (non-Markovian)
stochastic process that moves between a B state and
a D state (Fig. 10).

For a particular realization of the spider Markov
process, we define a B period as an interval of time
during which the spider is in the B metastate and a
D period as an interval of time spent in the D state.
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FIG. 10: (Color online) A spider process moves between
two metastates, a B state in which the spider is on the
boundary between substrates and products, and a D state
in which the spider is diffusing in the product sea.
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FIG. 11: (Color online) A realization X = (P, F) of the
spider Markov process. We plot the mean body position
as the mean of the feet locations, ∑i∈F i/|F|. At each time
the spider is in a B (shaded area) or D (white area) metas-
tate. The top and bottom dashed lines show bR and bL
respectively. Thus, at any time t the sites below the bot-
tom dashed line and above the top dashed line have not
yet been visited.

Fig. 11 shows a particular simulated trace of the
Markov process and the partitioning of time into B
and D periods.

B. The Diffusive Metastate D

The D metastate is the simpler state, as it corre-
sponds to an unbiased diffusion over the product
sea, and no sites can be cleaved while in the D state.
Let 〈τD(t)〉 be the mean duration of a D period that
begins at time t. This quantity depends only on the
size of the product sea P.

To derive 〈τD(t)〉 we follow the analysis of An-
tal and Krapivsky [14], and consider that the spider
always begins a D period in the state

· · · ◦̂◦̂◦ · · · ◦
︸ ︷︷ ︸

N

••◦◦̂◦̂ · · · .

From here it executes an unbiased random walk
on the product sea in which each step corresponds
to a ±1/2 step in the mean of the leg locations.
Thus, the process of exiting the D state is equiva-
lent to that of a normal random walker exiting an
interval of size M = 2N + 4, starting at position
x = 2N + 1. For general M and x this time is

T(M, x) =
x(M− x)

2
,

whence we obtain

T(2N + 4, 2N + 1) =
3(2N + 1)

2
. (12)

Antal and Krapivsky [14] calculated that asymptot-
ically

〈N(t)〉 =
√

t
Γ

(
3+3r
4+2r

)

Γ
(

5+4r
4+2r

) . (13)

Now, combining Eqs. 12 and 13, allows us to show
that asymptotically

〈τD(t)〉 =
3

2



2
√

t
Γ

(
3+3r
4+2r

)

Γ
(

5+4r
4+2r

) + 1



 . (14)

Notice that 〈τD〉 grows with time, hence the D
state is non-Markovian.

C. The Boundary Metastate B

In contrast to the D state, the B state is Marko-
vian. For a B period we can compute the num-
ber of steps a spider takes (SB), the length of the
B period (τB), and the number of cleavages the spi-
der performs (CB). We find that each of these ran-
dom variables is independent of time, independent
of the size of product sea, and independent of the
absolute position of the boundary. These conclu-
sions show that the spider walking in a B period
is essentially Markovian—independent of the past
history of the spider, and translationally invariant.
This means that as soon as the spider cleaves the
boundary site and moves onto the new boundary
site the process is renewed.

When s = 2 and k = 2, legs can either be on adja-
cent sites or separated by a single unoccupied site.
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FIG. 12: (Color online) To compute SB and τB we consider
in detail the two states contained within the B state. A
spider always enters the B state by moving to state B1.
It can leave the B state by moving its right leg, cleaving
the site, and moving to the D state as there are no longer
any legs on the boundary. If a spider in state B1 moves
its left leg instead, it goes to state B2. From B2 the spider
can move either leg. It moves its right leg at rate r which
cleaves the current boundary site, moving the boundary
to the right and the spider back to state B1. Also from
state B2 the spider can move its left leg which moves the
spider back to state B1 without changing the boundary.

By definition, in the B state one of the legs is always
on a substrate at the boundary. Without loss of gen-
erality, assume the spider is on the right boundary,
so that the right leg is at bR. Then the B metas-
tate can be partitioned into two smaller metastates
(Fig. 12), a state B1 in which the legs are separated
by one site, and a state B2 in which the legs are adja-
cent. In either B1 or B2 each leg has exactly one tran-
sition it can make, and since one leg is on a product
and one leg is on a substrate the total rate of transi-
tion out of either B1 or B2 is

R = 1 + r.

A spider can only leave the B metastate when it is
in state B1 and the next action is to move the right-
most leg off the substrate. In the state B2, either leg
moving results in the spider moving to state B1.

To derive the distribution for SB, the number of
steps the spider makes in the B state, we note that
each B period begins with the spider moving into
state B1. From B1 the spider has a r/R probabil-
ity of moving off the boundary into the D metas-
tate. But with the remaining 1/R probability, the
spider moves to state B2 and subsequently back to
B1. Thus a B period can be thought of as Y ≥ 0
loops B1 → B2 → B1, ending at state B1, and a final
move to state D, meaning that the number of steps

taken in the B state will be

SB = 2Y + 1. (15)

Each time the spider is at B1 it has an independent
1/R probability of making a loop through B2, thus
Y is geometrically distributed with mean 1/R,

P [Y = y] =

(
1

R

)y ( r

R

)

=
r

Ry+1
. (16)

Combining Eqs. 15 and 16 gives

P [Sb = s] =

{
0, s even

r

R
s+1

2

, s odd (17)

Each of these SB steps occurs with total rate R,
hence the time for the i-th step is exponentially dis-
tributed with scale parameter 1/R. Therefore, the
duration of a B period, conditioned on the event
that SB = s steps are made in the period is gamma-
distributed with probability distribution function

f
τB|SB

(t|s) = Gamma(s, 1/R). (18)

Using the distribution of Y, we find the marginal
probability distribution function as

fτB(t) =
∞

∑
y=0

Gamma(2y + 1, 1/R) (P [Y = y])

=
∞

∑
y=0

(
t2ye−Rt

R−(2y+1)Γ(2y + 1)

) ( r

Ry+1

)

= e−Rt
∞

∑
y=0

t2y

(2y)!

r

R−y (19)

= re−Rt
∞

∑
y=0

(t
√

R)2y

(2y)!

= re−Rt cosh (t
√

R).

To compute CB, the number of cleavages in a B
period, we must pay closer attention to the transi-
tions out of state B2 in Fig. 12. In state B2 either
leg can move. If the leftmost leg moves, it is con-
strained to move left and the spider moves back
to B1 without cleaving a site. If the rightmost leg
moves, it cleaves the substrate, moves the bound-
ary (bR → bR + 1), and the leg is constrained to
move right onto the new boundary, leaving the spi-
der in state B1 again but at a new absolute position.

A spider always enters a B period in state B1.
From this state there are two ways to cleave exactly
one site. Either (1) the spider follows a sequence



of non-cleaving moves ending in state B2 and then
moves its right leg, cleaving that site and moving
back to state B1; or (2) the spider follows a sequence
of non-cleaving moves ending in state B1 and then
moves its right leg, cleaving that site and exiting to
the D metastate. Let Z1 and Z2 be the events (1) and
(2) respectively. Then, for c ≥ 1 we can compute the
distribution of CB as

P [CB = c] = (P [Z1])
c−1 P [Z2] . (20)

Note that P [CB = 0] = 0 since at least one substrate
will be cleaved when the spider leaves the bound-
ary.

To compute P [Z1] we must account for all the
ways a spider can cleave exactly one substrate and
return to B1. The spider must first move to B2 with
probability 1/R, then it can move B2 → B1 → B2 an
arbitrary number of times without cleaving by mov-
ing the left leg in state B2 with probability 1/R and
subsequently moving its left leg again when in state
B1 with probability 1/R. Finally, the spider will
move its right leg with probability r/R, cleaving a
site and returning to B1. Thus,

P [Z1] =
1

R
×

∞

∑
i=0

(
1

R2

)i

× r

R

=
r

R2

R2

R2 − 1
(21)

=
r

R2 − 1
=

1

r + 2
.

For event Z2, the spider can leave the boundary
by first moving B1 → B2 → B1 an arbitrary number
of times without cleaving by moving the left leg with
probability 1/R when in state B1 and again mov-
ing the left leg with probability 1/R when in state
B2, and finally in state B1 moving the right leg with
probability r/R to exit to state D. Thus,

P [Z2] =
∞

∑
i=0

(
1

R2

)i

× r

R

=
rR

R2 − 1
=

r + 1

r + 2
. (22)

Therefore,

P [CB = c] = (P [Z1])
c−1 P [Z2]

=

(
1

r + 2

)c−1 (
r + 1

r + 2

)

. (23)

Hence, CB is geometrically distributed with mean

〈CB〉 =
r + 2

r + 1
. (24)

Together these random variables characterize
most of the important characteristics of the B pe-
riods. Each of τB, SB, and CB is independent of
the state of the process when it enters the B period.
For this reason we say that the B state is Marko-
vian with respect to the B/D state decomposition
of Fig. 10.

D. How B and D States Explain Spider Motion

The random variable CB is important because
sites can only be cleaved during a B period. Also,
because CB is independent of the state of the sys-
tem when it enters a B period, the only thing that
affects the number of sites cleaved at time t is the
number of B periods that have occurred. Let B(t)
be the random variable giving the number of com-
pleted B periods at time t, and if the spider is in
the middle of a B period, let K(t) be the number
of sites it has cleaved up to time t in that period
(K(t) = 0 if the spider is in the D state). Recall An-
tal and Krapivsky’s definition of N(t) as the num-
ber of sites cleaved at time t, to see that

N(t) =
B(t)

∑
i=1

CBi
+ K(t). (25)

Therefore,

〈N(t)〉 = 〈B(t)〉〈CB〉+ 〈K(t)〉. (26)

Eqs. 26 and 13 together allow us to show

〈B(t)〉 =




√

t
Γ

(
3+3r
4+2r

)

Γ
(

5+4r
4+2r

) − 〈K(t)〉




r + 1

r + 2
. (27)

Note that asymptotically 〈K(t)〉 → 0, because, as
we have shown, 〈τD〉 (Eq. 14) increases with time
while 〈τB〉 (Eq. 19) and 〈CB〉 (Eq. 24) are indepen-
dent of time. As t → ∞, the probability to be in a B
period will tend to 0, and so also must 〈K(t)〉. Thus
for large t, Eq. 27 simplifies to

〈B(t)〉 =
√

t
r + 1

r + 2

Γ
(

3+3r
4+2r

)

Γ
(

5+4r
4+2r

) . (28)

The only way the spider can cleave substrates
and increase its maximum distance from the origin
is for it to be in a B state. In fact, if the spider never
left the boundary (i.e., if P [B→ D] = 0), it would
move ballistically away from the origin.



Thus, the B/D decomposition of Fig. 10 shows
how the spider process is in essence a constant al-
ternation between two types of motion: a ballistic
motion away from the origin in the B state, and
an ordinary diffusive motion over the contiguous
sea of products. The spider repeatedly switches be-
tween these states, and the average amount of time
spent in each state determines the average behavior
of the spider (ballistic vs. diffusive). Because

lim
t→∞

d〈B(t)〉
dt

= 0,

the spider initiates fewer and fewer B periods over
time, and in the limit spends all of its time in the D
state moving diffusively. It is for this reason that the
asymptotic behavior is diffusive. However, because at
least initially the spider spends a significant frac-
tion of its time in the B period, there is a superdif-
fusive transient.

V. DISCUSSION

Using Kinetic Monte Carlo simulations of the
Markov process defined by Antal and Krapivsky
we showed the unanticipated result that spiders
move superdiffusively over a significant span of
time and distance before eventually moving diffu-
sively as had been predicted analytically. This phe-
nomenon can be explained by considering the nat-
ural decomposition of the process as switching be-
tween two metastates: a diffusive state D where
a spider moves over the contiguous sea of prod-
uct sites, and a boundary state B where the spider
has a leg attached to a substrate at the boundary
between visited and unvisited sites. This decom-
position partitions the underlying continuous-time
Markov process into B periods and D periods. The
spider moves ballistically away from the origin dur-
ing B periods, but moves diffusively over visited
sites during D periods. The B state is Markovian
in that the transitions from the B state are indepen-
dent of the state of the system when it entered the
B state. However, the transitions from the D-state
depend on the size of the contiguous sea of prod-
ucts, and this size increases with time. This explains
the apparent superdiffusion at short times when the
spider spends more time moving ballistically in the
B state, and the decay to ordinary diffusion at long
times, as the spider spends nearly all of its time dif-
fusing over previously visited sites in the D state.
The AK model with k = 2, s = 2, r < 1 is the sim-
plest model of spider motion with this B/D state
decomposition and the resulting superdiffusive ef-

fect. With k = 1, there is no bias at the bound-
aries, and without irreversible cleavage of sites and
a rate r < 1 there is no biasing effect at the bound-
aries. Thus, the superdiffusive effect depends on
spiders having multiple legs and on the legs hav-
ing the ability to modify sites so that future steps
on those sites have different rates.

It is important to note that neither analysis nor
finite-time simulations will necessarily give the full
picture of the motion of spiders. Analytical calcula-
tions estimate the values of random variables in the
limit as t → ∞, which is the correct way to mathe-
matically characterize processes as diffusive or su-
perdiffusive. However, analysis may miss interest-
ing transient behavior that is especially important
in the context of real experiments that last for a fi-
nite time and where spiders cover a finite distance.
If the transient behavior is particularly long-lasting,
as it is with the AK spider model, then the char-
acteristics of the transient behavior will be impor-
tant to experimental designs. Indeed, the B/D char-
acterization offers an insight to developers of new
experimental designs: the designs should embody
gait and chemistry rules that minimize the rate of
escape from the B to the D metastate.

On the other hand, simulations can provide ac-
curate estimates of behavior for short times. How-
ever, care must be taken when drawing conclusions
from simulation results. All simulations are nec-
essarily finite and can only definitively determine
the behavior over the time span they are evaluated
over. The final behavior of simulations cut off at
a finite time is not the same thing as the asymptotic
behavior of the mathematical process. For example,
if one were to run the simulations of Section III only

up until time t = 104 (avoiding the enormous com-
putational expense which we incurred), one might
well conclude that small values of r are superdiffu-
sive in the long-time limit, and this would obviously
not be correct.

Recently, another model of molecular spider mo-
tion was proposed by Samii et al. [19]; we shall call
it S-spiders to avoid confusion with the AK spi-
ders discussed in this paper. The model incorpo-
rates dissociation rates of each leg, and permits S-
spiders to detach from the surface if all of their legs
detach simultaneously. S-spiders can also detach
from a substrate without cleaving. In consequence,
the region of products between the left and right
boundaries is not necessarily free of substrates. Be-
cause S-spiders can detach, they move only over
finite distances, hence direct comparisons between
this model and the AK model are difficult. The fo-
cus of Samii et al. was on the short-time behavior



of spiders and the effects of spider gait, substrate
cleavage, and spider dissociation on the initial mo-
tion of spiders. This focus on short times is born of
necessity, since when on-rates are rather slow, most
S-spiders will detach quickly.

In contrast, our work explores the medium- to
long-time behavior of spider-like systems. For any
non-zero asymptotic behavior to exist, spiders can-
not dissociate from the surface. This can be en-
forced by a model where either (I) the feasible tran-
sitions of the leg are restricted such that when a leg
detaches no other leg may detach until the first one
has reattached; or (II) the rates are set to k+

S = k+
P =

∞ (the choice made in the AK-model). Both of these
assumptions will lead to the same qualitative be-
havior. To see this, observe that even with infinite
on-rates, the spider’s legs never move from site to
site infinitely fast. The finite dissociation rates mean
that a leg must stay bound to a new site for a fi-
nite amount of time before moving again, even in
model (II). In model (I) we can incorporate finite
k+ rates by asserting that an attached leg can de-
tach with rate k−P (or kcat), but then the only allow-
able transition will be for that same leg to attach (at
some free site) with a finite rate k+ = k+

P = k+
S . Let

us define the hop time (HP) for product sites as the
elapsed time from when a leg steps on a product
site to when it steps onto the next site. In terms of
hop times, the difference is that in model (I) HP ∼
Exp

(
1/k−P

)
whereas in model (II) HP = H−P + H+

P

and H−P ∼ Exp
(
1/k−P

)
, H+

P ∼ Exp(1/k+) (a similar

relationship holds for HS where k−P is replaced by

kcat). But as k+ → ∞, 〈H+
P 〉 → 0, so there will be no

effective difference in mean displacement between
the alternative models. Hence, the infinite k+ rates
are not in and of themselves responsible for the su-
perdiffusive behavior—they merely act to prevent
the possibility of detachment, which in turn per-
mits the characterization of the asymptotic behav-
ior of such systems and the comparison with ordi-
nary diffusive processes.
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