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We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by ran-
dom reversals (flips) of the velocity of each particle at a rate λ. The system is maintained in a
nonequilibrium stationary state(NESS) by contacts with white noise Langevin reservoirs at differ-
ent temperatures. We show that the one-body and pair correlations in this system are the same
(after an appropriate mapping of parameters) as those obtained for a model with self-consistent
reservoirs. This is true both for the case of equal and random(quenched) masses. While the heat
conductivity in the NESS of the ordered system is known explicitly, much less is known about the
random mass case. Here we investigate the random system, with velocity flips. We improve the
bounds on the Green-Kubo conductivity obtained by Bernardin [5] . The conductivity of the 1D
system is then studied both numerically and analytically. This sheds some light on the effect of
noise on the transport properties of systems with localized states caused by quenched disorder.

PACS numbers:

Introduction.—
We consider heat transport in mass disordered harmonic lattices with stochastic bulk dynamics. For the 1D

disordered harmonic lattice without stochasticity the effect of localization due to disorder leads, in the presence of
pinning, to an exponential decay of the heat current as a function of the length [1, 2]. In the absence of pinning the
conductivity depends on the boundary conditions either growing as

√
N or decaying as 1/

√
N [3, 4]. The situation

is very different when one adds stochasticity to the dynamics. Bernardin [5] obtained finite positive upper and
lower bounds on the Green-Kubo conductivity of a harmonic lattice with periodic boundary conditions subjected to
stochastic dynamics which conserves energy but not momentum.

In this paper we study the heat flux of such a disordered harmonic system, both pinned and unpinned, connected
to white noise Langevin type heat reservoirs with different temperatures at the two ends. The stochastic part of
the bulk dynamics consists of random reversals of each particle’s velocity at a rate λ. The analytical as well as
accurate numerical tractability of this model makes it a good test system to address the problem of the effect of noisy
dynamics on transport properties of disordered systems. To the extent that stochastic dynamics affect phonon-phonon
interactions in some rough sense similar to anharmonicity, this may also teach us something about the effects of the
latter. The effect of interactions on localization and transport in disordered systems has generated much interest and
has been studied both for the case of electron and phonon transport [2, 5–13] . A study by two of us [2] of the heat
conductivity of the disordered 1D pinned lattice with anharmonicity found that a small amount of anharmonicity was
sufficient to cause a transition to a diffusive regime with a finite value of κ. The question of whether the transition
from an insulator to conductor occurs at zero or some finite small value of anharmonicity remains an open problem.
For the noisy dynamics on the other hand [5] shows that an arbitrarily small noise leads to normal transport. The
work of [13] suggests a transition at zero nonlinearity for classical systems (the quantum situation may be different).

There have been some recent studies [14, 15] on the NESS of ordered harmonic chains with noisy dynamics conserving
both energy and momentum, and with white noise Langevin baths at different temperatures at the two ends. It was
shown in these studies that the time-evolution of the pair-correlations formed closed sets of equations. This closure is
true also for the energy conserving model that we study. In addition we show a mapping of the steady state equations
for one-body and pair-correlation functions to that of the self-consistent reservoirs model first introduced by Bolsterli
etal [16, 17] and recently solved exactly for the ordered case by Bonetto etal [18].

The plan of the paper is as follows. In sec we define the model precisely and show the mapping to the model with
self-consistent reservoirs. In sec we use the method of Bernardin [5] to obtain improved lower and upper bounds
for the Green-Kubo thermal conductivity of the random mass system. In sec B we present results from numerical
calculations as well as nonequilibrium simulations for the dependence of the heat flux in the random mass case on
system size and on noise strength. Both the pinned and unpinned system are studied. For the pinned case conductivity
decreases with the strength of the binding and increases with strength of the noise. For the unpinned case we study
the effect of boundary conditions (BCs) [23]. Finally we conclude with a discussion of the nature of the NESS for this
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model. While it is easily checked that the NESS is not strictly Gaussian, we find that the one particle momentum
and position distributions are very close to Gaussian distribution. Furthermore their values at different sites or of
momentum and position at the same site are essentially uncorrelated.

Noisy dynamics and self-consistent reservoirs.— The results in this section apply in any dimension. For simplicity
of notation we consider here explicitly the one dimensional case; a harmonic chain with the Hamiltonian:

H =
∑
l=1,N

[
p2
l

2ml
+ ko

q2l
2

]
+
∑
l=2,N

k
(ql − ql−1)2

2
+ k′

[
q21
2

+
q2N
2

]
(1)

=
1
2

[
pM̂−1p+ qΦ̂q

]
,

where {ql, pl} denote the position and momenta of the particles. We have used the notation p = (p1, p2, ..., pN ), q =
(q1, q2, ..., qN ) and M̂ and Φ̂ are N × N matrices corresponding to masses and forces respectively. When ko > 0 we
have the pinned case and set k′ = k. In the unpinned case, ko = 0, we consider fixed, k′ > 0, and free, k′ = 0,
boundary conditions.

The system’s evolution has a deterministic part described by the Hamiltonian above and a stochastic part consisting
of two different processes: (i) every particle is subjected to a noise which flips its momentum, i.e. for the lth particle
the transition pl → −pl occurs with a rate λ, (ii) the particles at the boundaries l = 1 and l = N are attached to heat
baths with Langevin dynamics at temperatures TL and TR respectively. Thus the end particles have additional terms
in their equation of motion of the form −γpα/mα + (2γTα)1/2ηα(t), for α = 1, N , with 〈ηα(t)ηα′(t′)〉 = δα,α′ δ(t− t′),
γ is the friction constant and T1 = TL, TN = TR are the bath temperatures.

The master equation describing the time evolution of the full phase space probability density is therefore given by:

∂P (x)
∂t

=
∑
l,m

âlmxm
∂

∂xl
P +

∑
l,m

d̂lm
2

∂2P

∂xl∂xm
+ λ

∑
l

[P (...,−pl, ...)− P (..., pl, ...)] , (2)

where x = (q1, q2, . . . , qN , p1, p2, . . . , pN ) = (x1, x2, . . . , x2N ) and â and d̂ are 2N × 2N matrices given by:

â =
(

0 −M̂−1

Φ̂ M̂−1Γ̂−1

)
d̂ =

(
0 0
0 2T̂ Γ̂

)
. (3)

Here T̂ and Γ̂ are diagonal matrices with diagonal elements given by T̂ll = TLδl,1 + TRδl,N and Γ̂ll = γ(δl,1 + δl,N )
respectively. Similar to the case studied in [14] we also find that the equations for the one-body and pair correlation
functions of the system are closed. (In fact there are closed equations for each order of the correlation.) We define
the vector ρ , ρl =< xl >, l = 1, 2 . . . 2N and the pair correlation matrix

ĉ =
(

û ẑ
ẑT v̂

)
. (4)

where the N × N matrices û, ẑ and v̂ are given by ûlm = 〈qlqm〉 , v̂lm = 〈plpm〉 and ẑlm = 〈qlpm〉 . It follows then
from Eq. (2) ρ and ĉ satisfy the following equations of motion:

dρ

dt
= −âρ+

(
dρ

dt

)
col

,

dĉ

dt
= −âĉ− ĉâT + d̂+

(
dĉ

dt

)
col

, (5)

where the last terms in the above two equations arise from the flip dynamics and are given by:(
dρ

dt

)
col

= −2λ
(

0
〈p〉

)
(
dĉ

dt

)
col

= −2λ
(

0 ẑ
ẑT 2(v̂ − v̂D)

)
, (6)

and v̂D is a diagonal matrix with matrix elements [v̂D]ll = v̂ll = 〈p2
l 〉.
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In the steady state, dρ/dt = 0 which implies ρ = 0. Setting dĉ/dt = 0 gives the following set of equations for the
pair correlations in the NESS:

ẑT = −M̂ ẑM̂−1 ,

v̂ =
1
2

(M̂ûΦ̂ + Φ̂ûM̂) +
1
2

(M̂ ẑΓ̂M̂−1 + M̂−1Γ̂ẑT M̂) ,

(M̂ûΦ̂− Φ̂ûM̂) + (M̂ ẑΓ̂M̂−1 − M̂−1Γ̂ẑT M̂) + 2λ(M̂ ẑ − ẑT M̂) = 0 ,

(Φẑ + ẑT Φ̂) + (M̂−1Γ̂v̂ + v̂Γ̂M̂−1) + 4λ(v̂ − v̂D) = 2T̂ Γ̂ . (7)

Using the fact that û and v̂ are symmetric matrices we have N2 + N(N + 1) unknown variables and there are that
many independent equations above.

Now consider the case of heat conduction across a harmonic chain with Hamiltonian given by (1) and self consistent
reservoirs attached to all sites. This is in addition to the two end reservoirs at fixed temperatures TL and TR. Each
of the side reservoirs is a Langevin bath with a friction constant γ′l and a temperature T ′l , l = 1, 2, ...N , which is
self-consistently fixed by the condition that there is no net flow of energy into the reservoir [18]. The stochastic
equations of motion of this system are:

dp1

dt
= −Φ1mqm −

γ

m1
p1 −

γ′1
m1

p1 + (2γTL)1/2η1(t) + (2γ′1T
′
1)1/2ζ1(t)

dpl
dt

= −Φlmqm −
γ′l
ml

pl + (2γ′lT
′
l )

1/2ζl(t) l = 2, ..., N − 1 ,

dpN
dt

= −ΦNmqm −
γ

mN
pN −

γ′N
mN

pN + (2γTR)1/2ηN (t) + (2γ′NT
′
N )1/2ζN (t) , (8)

where η1, ηN and ζl, l = 1, 2, ..., N are independent Gaussian white noise sources with unit variance. It is immediately
established that the probability distribution P (x) in the NESS of this model is a Gaussian. The self consistency
condition for zero current into the side reservoirs is given by T ′l = v̂ll = 〈p2

l 〉/ml. Making the identification γ′l = 2λml,
it is seen that the equations for the pair-correlations in the steady state corresponding to the above equations are
given precisely by Eq. (7).
The self-consistent model was first studied by Bolsterli et al [16] who introduced the self-consistent reservoirs as a
simple scattering mechanism mimicking anharmonicity and which might ensure local equilibration and the validity
of Fourier’s law. The model was later solved exactly by Bonetto et al [18] who proved approach to local equilibrium
and validity of Fourier’s law for the ordered case, i.e where all the ml’s are equal. They also obtained an explicit
expression for the thermal conductivity of the system in all dimensions. (see Eq. (13) below)

Bounds on Green-Kubo conductivity .— Bernardin [5] considered a model of a disordered harmonic chain with a
stochastic noise that changes the momentum of neighboring particles while keeping the sum of their kinetic energies
constant. He obtained an exact result for the Green-Kubo conductivity of an ordered chain and also rigorous upper
and lower bounds for the conductivity of disordered chains. Here we use Bernardin’s approach for our model to obtain
an exact expression for the ordered chain. We also obtain bounds for the conductivity of the disordered chain which
are slightly improved from those of Bernardin’s.

The time evolution of the phase space density is given by Eq. (2) which we rewrite here in a more abstract form
for convenience.

∂P (x)
∂t

= LP (x)

where L = A+ λS

AP (x) =
N∑
l=1

[− pl
ml

∂P (x)
∂ql

+
N∑
m=1

Φlmqm
∂P (x)
∂pl

]

SP (x) =
∑
l

[P (...,−pl, ...)− P (..., pl, ...)] . (9)

The total current which is carried entirely by the Hamiltonian part can be written in the following form:

J =
k

2

N∑
l=1

pl
ml

(ql+1 − ql−1) , q0 = qN , qN+1 = q1. (10)
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The Green-Kubo expression for the thermal conductivity at temperature T is given by:

κGK = lim
z→0

lim
N→∞

1
NT 2

∫ ∞
0

dt e−zt 〈J (0)J (t)〉

= lim
z→0

lim
N→∞

1
NT 2

∫ ∞
0

dt e−zt
∫
dx J eLt ( J Peq )

= lim
z→0

lim
N→∞

1
NT 2

〈 J , (z − L)−1 J 〉 . (11)

where we have used the notation 〈f, g〉 =
∫
dxf(x)g(x)Peq for any two functions f, g of phase space variables x =

(q1, . . . , qN , p1, . . . , pN ) and Peq ∼ exp[−βH] where H is given by the periodicized version of Eq. (1) with k′ set equal
to 0.

We note the following relations which are easy to prove:

AJPeq =
∑
l,j

Φljqj
ml

(ql+1 − ql−1)Peq

and SJPeq = −2JPeq (12)

A. Green-Kubo conductivity for equal mass ordered case

For the equal mass case Eq. (12) gives AJPeq = 0. This is true with or without pinning and corresponds to the
fact that for periodic boundary conditions the current operator commutes with the Hamiltonian. Hence we get:

κGK = lim
z→0

lim
N→∞

1
T 2N

∫
dx J 1

z + 2λ
J Peq = lim

N→∞

〈J 2〉
2λT 2N

.

Using the form of J in Eq. (10) we then get:

κGK =
kD

8λm
, (13)

where D =
4k

2k + ko + [(ko)(4k + ko)]1/2
.

This agrees with the result of [18] [Eq. (4.18)] where the conductivity was defined as κ = limN→∞〈JN 〉N/(TL − TR)
where 〈JN 〉 = k〈qlpl+1/ml+1〉 (l = 1, 2, . . . , N − 1) is the average heat flux in the NESS of the system with self-
consistent reservoirs specified by (8). The mapping between the noisy dynamics model and the self-consistent reservoirs
model (with the transformation γ = 2λm ) implies that for our noisy model also κ = κGK in the ordered case. Following
the methods in [18] it is easy to show that the value of κ is independent of boundary conditions for the ordered case
and while not proven we expect this to be true also for the disordered case for N →∞ at fixed λ > 0. In fact there
is every reason to believe that whenever the Green-Kubo formula for κGK converges to a finite value when N → ∞
then it will agree with the conductivity in the NESS defined as κ = limN→∞ limTL→TR→T N〈JN 〉/(TL − TR).

B. Upper and lower bounds on the Green-Kubo conductivity

We now consider the random case where the masses are independently chosen from some distribution. Bernardin’s
proof that the conductivity κGK is bounded away from zero and infinity is based on an identity between 〈J , (z−L)−1J 〉
and a variational expression (Eq (15) in [5]),

〈J , (z − L)−1J 〉 = Sup{2〈u, J〉 − 〈(z − λS)u, u〉 − 〈(z − λS)−1Au,Au〉} (14)

where the supremum is carried out over the set of smooth functions u(q, p). The derivation of this formula is
straightforward for A=0. More generally we can consider a symmetric L, e.g one corresponding to a stochastic
dynamics satisfying detailed balance with respect to Peq. Then we have that u is the solution of the equation Lu = J
, and both sides of Eq.(14) are equal to 〈J , u〉. For a derivation of Eq. (14) in the case L = S+A with A antisymmetric,
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see [22].
Lower bound: Choose a test function u = µ

∑
l pl(ql+1 − ql−1), where µ is a variational parameter:

〈u,J 〉 =
kµT

2

∑
l

〈(ql+1 − ql−1)2〉 = NT 2µD

2
,

〈(z − λS)u, u〉 = (z + 2λ)〈u2〉 = (z + 2λ)µ2T
∑
l

ml〈(ql+1 − ql−1)2〉 .

where D is defined in Eq. (13). Denoting by [...] an average over disorder we then get:

[〈(z − λS)u, u〉] = NT 2(z + 2λ)
µ2D[m]

k
.

Similarly,

〈(z − λS)−1Au,Au〉 = (z + 4λ)−1〈(Au)2〉 = (z + 4λ)−1µ2T 2
∑
l

(
1
ml
− 1
ml+1

)2

mlml+1 ,

and averaging over disorder gives

[
〈(z − λS)−1Au,Au〉

]
= 2NT 2(z + 4λ)−1µ2

(
[m]

[
1
m

]
− 1
)
.

Thus we have:

1
NT 2

[〈J , (z − L)−1J 〉] ≥ Dµ− Cµ2 (15)

where C =
2λD[m]

k
+

1
2λ

([m]
[

1
m

]
− 1) . (16)

The minimum of the bound occurs at µ = D/(2C) and this gives:

[κGK ] ≥ D2

4C
. (17)

Upper bound: By neglecting the last term in Eq. (14) which is clearly negative, we get the upper bound:

〈J , (z − L)−1J 〉 ≤ (z + 2λ)−1〈J 2〉 = (z + 2λ)−1T
k2

4

∑
l

1
ml
〈(ql+1 − ql−1)2〉 . (18)

Hence,

[κGK ] =
1

NT 2

[
〈J , (z − L)−1J 〉

]
≤ kD

8λ
[

1
m

] . (19)

Combining (17) and (19) gives:

kD

8λ[m](1 + k [1/m]−1/[m]
4λ2D )

≤ [κGK ] ≤ kD

8λ
[

1
m

] (20)

As λ → ∞, both bounds behave as 1/λ while for λ → 0, the upper bound diverges while the lower bound goes to
0 linearly in λ. The behavior of κGK and of κ in the NESS when λ → 0 after N → ∞ is thus not determined by
these bounds and remains an open problem for both the pinned and unpinned random mass case. What we do know
is that, if λ→ 0 with N finite then there is a significant difference between the pinned and unpinned cases [1, 2]. As
already noted in the introduction, for the pinned case all phonon modes are localized with a fixed localization length
independent of N and the current decays exponentially with system size. In the unpinned case the low frequency
modes are extended and the current has a power law decay with an exponent that depends on the boundary conditions
used [1], κN ∼ N−1/2 for fixed BCs [3, 19] and as κN ∼ N1/2 for free BCs [4, 20]. With the addition of the noisy
dynamics which conserves energy but not momentum we expect as noted earlier that the conductivity κ will be equal
to κGK and thus strictly positive for any λ > 0 [21]. In the following section we evaluate 〈JN 〉 as a function of λ and
N numerically and via computer simulations, to obtain information about its behavior when λ→ 0.
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Results from numerics and simulations.—
We study the dependence of the heat current in the NESS on the system size and on the strengths of the disorder

and noise. In all our computations we set k = 1. The masses {ml} are chosen from a uniform distribution between
1−∆ to 1 + ∆. This gives [m] = 1, [1/m] = 1/(2∆) ln[(1 + ∆)/(1−∆)]. The average heat current from site l to l+ 1
is given by jl+1,l = k〈qlpl+1/ml+1〉. In the steady state this is independent of l and we denote jl+1,l = 〈JN 〉. We
note that 〈JN 〉 = kẑl,l+1/ml+1 and hence we can obtain accurate numerical values for the current in the disordered
system by solving the equations for the correlation matrix i.e Eqs. (7). This involves solving large dimensional linear
matrix equations and we have been able to do this for system sizes less than N = 512. For larger sizes we performed
nonequilibrium simulations and obtained the steady state current by a time average. For small sizes we verified that
both methods agreed to very high accuracy. The number for disorder realizations was 100 for N ≤ 64, and varied
between 2 − 16 for larger sizes. The error bars in our data presented below are calculated using the results from
different realizations.

C. Pinned case

This corresponds to the case with ko > 0 and here we also set k′ = 1. All results in this section were obtained by
numerical solution of Eqs. (7). In Fig. (1) we plot 〈JN 〉N/∆T versus N for different values of the flipping rate λ and
with ∆ = 0.8, ko = 4. In all cases we see a rapid convergence to a system-size independent value which then gives
the conductivity κ of the system. In Fig. (2) we plot κ, obtained from the large-N data in Fig. (1), as a function of
λ. For comparison we also plot the lower and upper bounds for the Green-Kubo conductivity given by Eqs. (17,19).
It is seen that κ has a maximum around λ ' 0.5. This can be thought of as a balance between the flips delocalizing
the phonons and acting as scatterers of phonons.

In accord with the bounds we find that at large λ, κ ∼ 1/λ while at small λ, the numerical results suggest κ ∼ λ.
We note that for λ = 0, all phonon modes are exponentially localized within length-scales ` ∼ (ko∆2)−1. One can
argue that for small values of λ there is diffusion of energy between these localized states with a diffusion constant
∼ `2λ. This leads to the κ ∼ (k2

o∆4)−1λ and we now test this numerically. In Figs. (3,4) we show the numerical
data which suggests the scalings κ ∼ ∆−4 and κ ∼ ko

−2.5, which are roughly consistent with the expected behavior.
The reason for the discrepancy could be that we are not yet in the strong localization regime where the prediction is
expected to be most accurate.

D. Unpinned case

As noted above for the unpinned case with λ = 0, the two different boundary conditions(BC) namely fixed BCs
with k′ > 0 and free BCs with k′ = 0 give respectively 〈JN 〉 ∼ N−3/2 [3] and 〈JN 〉 ∼ N−1/2 [4]. The difference in
the asymptotic behavior of the current for different BCs can be understood as arising from the dependence on BCs
of the transmission of the low frequency modes which carry the current [1]. For any λ > 0 however we expect that
the system should have a unique finite value of the conductivity, independent of boundary conditions, the same as
for κGK . Physically we can argue as follows: The unpinned system without disorder has a finite positive κ given
by Eq. (13), which is independent of BCs [see comments at end of sec. ( A)]. The low frequency modes are weakly
affected by disorder hence we expect that as far as these modes are concerned the unpinned system with and without
disorder will behave similarly. Since these are the modes which led to the dependence on BCs for the case λ = 0, we
expect that for λ > 0 they will not have any effect.

We now present results of our numerical and simulational studies of the unpinned chain with free and fixed BCs. The
numerical results are obtained by solving Eqs. (7). The simulation involves evolving the system with the Hamiltonian
part, the momentum flips at all sites and the Langevin baths at the boundary sites. For N ≤ 512, the numerical
method was employed to arrive at the solution for the NESS whereas for larger values of N , we performed simulations
to obtain the data. In Fig. (5) we plot JN/(TL − TR) versus N for different values of λ for both fixed and free BCs.
The disorder strength is ∆ = 0.8. For both BCs we can see flattening of the curves at large system sizes for the
parameter values λ = 0.1, 0.01 implying a finite κ, which is independent of BCs. For λ = 0.001, 0.0001 it appears
that reaching the asymptotic limit requires larger system sizes. Using the large-N data in Fig. (5) we estimate the
conductivity κ = JN/∆T and this is plotted in Fig. (6). In Fig. (7) we show a typical plot of the temperature profile
for the case with fixed BC (this was obtained using exact numerics). The profile is close to linear consistent with the
fact that the conductivity is temperature-independent. We do not see any significant boundary temperature jumps
since the system size is sufficiently large. In Fig (8) we have the profile for N=128 for the case λ → 0 which shows
considerable jump in the temperatures across neighboring sites. It appears likely that for all λ > 0 the conductivity κ
is independent of BCs. However this is difficult to verify from simulations since one needs to study very large system
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TABLE I: Values of Correlation Functions for n=4 (TL = 4, TR = 1)

Correlation λ = 0.1 λ = 2 λ = 10
<p4

1>−3<p2
1>2

<p2
1>2 0.006 0.014 ∼ 10−4

<p4
2>−3<p2

2>2

<p2
2>2 0.054 0.058 0.049

<p4
3>−3<p2

3>2

<p2
3>2 0.061 0.110 0.098

<p4
4>−3<p2

4>2

<p2
4>2 0.038 0.018 0.002

<p2
1q2

1>−<q2
1><p2

1>

<q2
1><p2

1>
0.002 0.004 ∼ 10−5

<p2
2q2

2>−<q2
2><p2

2>

<q2
2><p2

2>
0.011 0.014 0.013

<p2
3q2

3>−<q2
3><p2

3>

<q2
3><p2

3>
0.012 0.025 0.023

<p2
4q2

4>−<q2
4><p2

4>

<q2
4><p2

4>
0.012 0.034 ∼ 10−4

sizes to reach the correct asymptotic limit. The reason for this can be roughly seen as follows. In the ordered case
the conductivity κ ∼ 1/λ and this can be understood in terms of an effective mean free path ` ∼ 1/λ for the ballistic
phonons because of scattering from the stochastic process. Hence we can expect that, to see diffusive behavior for
the low frequency ballistic modes, important in the disordered case, requires one to study sizes N >∼ ` or N >∼ 1/λ.
Finally we observe from Fig. (6) that at small λ, the conductivity appears to be diverging as 1/λ1/2. In the absence
of noise the localization length `L ∼ 1/ω2, hence it is expected that all modes with `L < ` or ω > λ1/2 stay localized.
The low frequency modes 0 < ω < λ1/2 become diffusive with mean free paths ∼ 1/λ thus resulting in a conductivity
κ ∼ λ1/2(1/λ) ∼ 1/λ1/2, which explains the observed behavior.

Discussion.—
We have shown here that the stationary one-body and pair correlations in the velocity flip model are the same (after

setting γ′l = 2λml) as in the harmonic chain with self-consistent reservoirs. We have also numerically investigated the
dependence of the thermal conductivity κ of the disordered harmonic chain on the velocity flip rate λ. For λ → 0

16 32 64 128 256

N

0.0001

0.001

0.01

0.1

JN
/(

T
L
-T

R
)

λ=1.0
λ=0.1
λ=0.01
λ=0.001
λ =0.0001

FIG. 1: (Color online)Plot of JN/(TL − TR) versus N for for different values of λ. The parameter values were set at ko =
4, k = 1,∆ = 0.8. All the data shown here were obtained from exact numerical computation.
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FIG. 2: (Color online) Plot of κ versus λ obtained from the numerical data in Fig. (1). The lower and upper bounds for κGK

given by Eqs. (17,19) are shown by the dashed lines.

our results suggest κ ∼ λ for the pinned system and κ ∼ λ−1/2 for the unpinned system. Establishing these results
conclusively requires further work.

We note that while for the self-consistent reservoirs model the NESS is exactly Gaussian, this is not so for our
noisy model. Instead it will be in general a superposition of Gaussians. Computer simulations however indicate
that the single particle distributions are very close to a single Gaussian while the joint distribution of xl and pl or
of pl and pj , j 6= l, are essentially uncorrelated. In addition, the set of equations for the four variable correlation
functions was derived and for small values of n, they were solved numerically. The exact values obtained from these
numerics were found to be in close match with the simulation results. For n=4, and TL = 4, TR = 1, the results from
the numerical solution are shown in table I corresponding to 3 different values of λ. It was also observed that these
normalized forms of correlations (that go to zero when the temperatures of the two reservoirs are equal or when there
is no velocity flipping) have a limit when either the difference in temperature (TL − TR) or strength of stochastic
noise (λ) goes to infinity. When we let λ→∞, we observed that the correlations involving p1 and p4 went to zero.

We are currently investigating the O(N) corrections to the pair correlations in the noisy NESS . These are
known to behave like 1/N for certain diffusive lattice systems and to contribute terms of O(N) beyond those
obtained from the local equilibrium to the variance of the particle number in the NESS. Results of this kind are also
known partially for the continuum case with a different kind of noise, i.e instead of velocity reversals pairs of nearest
neighbor particles diffuse on the circle p2

i + p2
i+1 = C.
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discussions. Joel Lebowitz and Venkateshan K were supported by NSF grant DMR 08-02120 and by AFOSR[grant
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FIG. 3: (Color online)Plot of κ versus ∆ for different values of λ and with ko = 4 and k = 1. We also show a straight line with
slope −4.0.
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FIG. 4: (Color Online)Plot of κ versus ko for different values of λ and with ∆ = 0.8 and k = 1. We also show a straight line
with slope −2.5.
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FIG. 5: (Color Online)Plot of JN/(TL−TR) versus N for the unpinned case with both fixed (dashed lines) and free BCs (solid
lines) for different values of λ and parameter values k = 1 and ∆ = 0.8. The data for N < 512 were obtained using exact
numerics and in all these cases simulations give very good agreement with the numerics. For N ≥ 512, the data were obtained
from simulations alone.
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FIG. 6: (Color Online)Plot of κ versus λ for the unpinned system obtained from the numerical data in Fig. (5). The lower and
upper bounds for κGK given by Eqs. (17,19) are shown by the dashed lines. Also shown is a straight line with slope −1/2.
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FIG. 7: (Color Online)Plot of temperature profile (Ti = 〈p2
i /mi〉) for the unpinned case (with mass disorder ∆ = 0.8) with

fixed BCs for N = 128, λ = 5, TL = 4, TR = 1. The expected linear profile is also shown. The data was obtained from exact
numerical computation.
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FIG. 8: Same parameters as Fig. 7 except the velocity flip λ → 0. The data shown is from an exact numerical computation
with λ = 10−9. We have verified that this is close to the temperature profile for λ = 10−7 and expect that it is converging to
the λ = 0 value.
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