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How a network breaks up into sub-networks or communities is of wide interest. Here we show that
vertices connected to many other vertices across a network can disturb the community structures of
otherwise ordered networks, introducing noise. We investigate strategies to identify and remove noisy
vertices (“violators”), and develop a quantitative approach using statistical breakpoints to identify
when the largest enhancement to a modularity measure is achieved. We show that removing nodes
thus identified reduces noise in detected community structures for a range of different types of real
networks in software systems and in biological systems.

PACS numbers: 89.75.Hc, 89.75.Kd, 87.18.Tt, 05.10.-a

I. INTRODUCTION

The past decade has seen a surge of interest in the net-
work representation of a wide range of real world systems,
from social relationships among individuals, to interac-
tions of proteins in biological systems, to the interdepen-
dence of function calls in large software projects. Often
one wishes to divide a large network up into smaller re-
lated subnetworks, called “communities” or “modules”.
This has been approached using a wide variety of tech-
niques [1–10]. In real world networks, such community
structures may represent important groupings identifying
common background, interest or function [1].

The notion of overlapping communities, where nodes
are allowed to participate simultaneously in more than
one subnetwork, was more recently introduced [11–18].
Although such considerations greatly expand the appli-
cability of community structures, there still remain situ-
ations where nodes of relatively high degree can connect
across the network, disturbing the detected community
structures of otherwise well-ordered networks. (See Fig. 1
for an illustration.) Rather than belonging to multiple
communities, such “noisy” nodes do not belong preferen-
tially to any community. Here we study several networks
present in Open Source Software (OSS) systems and bi-
ological systems where this is the case. We introduce
methodology for identifying such nodes and develop a
quantitative criteria for their removal, showing the im-
provement in the quality of the community structures
that results. We provide a comparison with overlapping
community detection methods as well.

Relevant background and related work on community
structure and OSS networks is reviewed in Sec. II. In
Sec. III we develop techniques to reduce noise in com-
munity structure, investigating high degree removal, high
modularity removal and the use of statistical breakpoints.
Also in Sec. III we apply these techniques to OSS net-
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works and several biological networks. In Sec. IV we
compare results obtained with our methods to those re-
sulting from overlapping community algorithms. Overall
conclusions are presented in Sec. V.

II. BACKGROUND AND RELATED WORK

A. Empirical studies of noise

In some situations it is possible to use expert or do-
main knowledge to identify a priori nodes which may
introduce noise, such as in a study by Bird et al. ana-
lyzing the email communication network of OSS devel-
opers [19]. They hypothesized that developers would
divide into communities which parallel working groups
within the project yet found that a small set of develop-
ers (two or three per project) tended to connect to all
communities without preference. Such developers were
presumed to be project leaders or founders who com-
municated extensively with others regardless of working
group and these vertices were removed manually prior to
deploying community detection algorithms. Similarly, a
study of currency and commodity metabolites in mod-
ular metabolic networks by Huss and Holme identified
the 10 highest degree nodes as “currency metabolites”
which they remove manually before running community
detection algorithms [20].

In both [19] and [20], high-degree vertices were found
to be noisy. Figure 1 illustrates this concept. We gen-
erate a small network of 40 vertices where we impose a
community structure by initially assigning each vertex
to one of four different communities at random. We also
assign to each vertex a degree 1 ≤ k ≤ 30 drawn from
a power-law distribution, pk ∝ k−2.5. The two vertices
with the largest degree are chosen to be noisy vertices or
violators which connect without preference to any other
vertex in the network. The remaining nodes connect pref-
erentially within their communities, with approximately
85% of their edges falling within their assigned commu-
nities. Figure 1(a) shows the communities found in this
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FIG. 1: Community structures of a sample network (a) be-
fore and (b) after violator removal, showing the effect of 2
violators out of 40 nodes. Vertices are initially assigned to
one of four communities at random (identified via node shape
and shading). The two vertices with the largest degree are
violators (hexagons) and do not preferentially connect to any
single community. The remaining edges fall within communi-
ties with 85% probability and between them with 15%. Boxes
illustrate the communities detected using the algorithm in [4].

network when using the spectral partitioning algorithm
of Newman [4]. The large boxes indicate the detected
communities, while colors and shapes represent the com-
munities to which the vertices were initially assigned; the
two violators are shown as hexagons. The algorithm finds
only three communities, two of which blend the assigned
communities. As expected, if we remove the two viola-
tors and run the same algorithm we recover the initially
assigned community structure as seen in Fig. 1(b). In
this small example it was known a priori the number
and identity of the violators. The methods we develop
herein allow detection of vertices acting as violators with-
out needing a priori knowledge or requiring that violators
necessarily be the largest degree vertices.

B. Community detection algorithms

There are numerous methods available to detect com-
munity structure in networks, with comprehensive re-
views in Refs. [21–23]. Due to its simplicity and easy
extension to directed and weighted networks, we choose
as our base algorithm the spectral partitioning algorithm
of Newman, which calculates the leading eigenvector of a
modularity matrix to identify a network’s modular struc-
ture [4]. However, our methods should easily generalize
to alternate community finding algorithms.

The chosen spectral partitioning algorithm determines
the number of communities via an optimization process.
It divides a network into communities by maximizing a
quality of modularity function Q. Here Q measures the
difference between the actual and expected number of
edges falling within a community, and is normalized to
range from zero to one. Specifically,

Q =
1

2m

∑

i,j

[

Aij −
kikj

2m

]

δ(Gi, Gj), (1)

where Aij is the ij’th element of the adjacency matrix,
ki and kj are the degrees of vertices i and j respectively,
δ(r, s) is the Krönecker delta, Gi and Gj are the groups
vertex i and j are assigned to, and m is the number
of edges in the network [4]. The goal of the algorithm
is to assign vertices to groups Gi and Gj so that Q in
Eq. 1 is maximized, with this maximal Q representing
how well a network breaks apart into sub-groups. Q is
not a property of a network, instead it is a measure of the
quality of a specific grouping of a network [10]. Finding
the global optimal assignment is NP hard, so one turns to
methods of approximation, some of which are stochastic.
As a result, one may not be able to ascertain a unique
maximal value of Q for a given network. Q was originally
defined for simple networks, but has now been extended
to weighted and directed networks [24–26].

Recently, several researchers have developed methods
for detecting community structure when vertices may be-
long to multiple communities and communities may thus
overlap [11–16]. However, in a network where some ver-
tices belong to one-quarter or one-half of all communi-
ties detected (as we show later is the case for many net-
works) the question arises as to whether these vertices
truly participate in all of the communities. Regardless,
such vertices can act as violators obscuring underlying
community structures.

C. Empirical OSS Networks

Both software developer communication networks and
software dependency networks have attracted much re-
search attention [27–29]. In this work we examine the de-
veloper communication networks from four OSS projects:
Apache HTTP server, Python, PostgresSQL, and Perl.
Each network is constructed by combining monthly mail-
ing list archives of the respective OSS project into a cu-
mulative view spanning several years [30–32]. In these
networks, a vertex is a developer and weighted directed
edges represent emails between developers. The size of
these projects range between 1,000 and 2,500 develop-
ers. Developers migrate in out of projects over time [32],
making the email social networks noisier than the Apache
callgraph network described next. As mentioned, project
leaders can participate broadly across the network and
introduce noise in community structures.

We also study the code base for the Apache 2.0 HTTP
server, an OSS project written in the C programming
language (a procedural, rather than Objected-Oriented,
software system). Our data is composed of monthly snap-
shots of the functions and function calls over a four-year
period. (For details on the extraction procedure see [33].)
The call-graph network is built by considering each func-
tion as a vertex and each function call a directed edge.
The Apache 2.0’s callgraph is extremely stable [34], with
data from each snapshot yielding similar results, thus we
report on a representative snapshot (10/1/2001).
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FIG. 2: Change in modularity in response to degree targeted
and to random vertex removal for the Apache callgraph (CG),
with N=2213 vertices, and E=6455 edges, and the Apache
email social network (Email), with N=1232 and E=8064.

III. REMOVING NOISY VERTICES

We hypothesize that, for the software callgraph, low-
level functions which are called commonly by other func-
tions across the network disrupt community detection.
This is analogous to the empirical observations that
project leaders in OSS projects, who have high degree,
and currency metabolites, such as H2O and CO2, inter-
fere with community detection [19, 20]. The in-degree
of a function is the number of other functions it is called
by, thus low-level functions have high in-degree. Note, for
Apache, the largest in-degrees are an order of magnitude
larger than the largest out-degrees. (Ref. [34] contains a
discussion of constraints giving rise to this disparity.)

In the remainder of this section we show that degree-
targeted node removal is not always satisfactory and that
better results are obtained by targeting removal of nodes
that cause the largest increase in Q. We also introduce
the statistical technique of change point detection as a
criteria to determine when to stop node removal.

A. Degree targeted removal

To assess the impact on modularity of removing ver-
tices successively from a network, in Fig. 2 we show the
modularity for the Apache callgraph (dark line) and the
Apache developer email network (light line) for both de-
gree targeted (solid line) and random removal (dashed
line) of vertices. (Under degree targeted removal, we re-
calculate the degrees of every vertex after each removal.)
Note, the modularity is calculated for the largest con-
nected component of the network which remains com-
parable (more than 80%) with its original size through-
out the first 10 removals for both networks and both re-
moval strategies. Under degree targeted removal modu-

larity increases very rapidly. Yet, it continually increases
with subsequent vertex removal within the regime shown.
Thus Q alone does not indicate the relative value gained
by that node removal and hence when to stop removal.

As shown previously, dependent upon the degree se-
quence it is possible for a network constructed at random
to exhibit relatively high values of modularity [35–37].
We consider this the modularity inherent in the degree
sequence and denote it by Qconfig. Thus, we consider the
difference between the actual value of Q (as shown in
Fig. 2) and Qconfig, the value for that particular degree
sequence, and call Q − Qconfig the absolute modularity

of the real network. A maximum in Q − Qconfig after a
certain number of vertex removals indicates that the re-
moved vertices where adversely impacting the modularity
score more than would be expected by random chance.

In [35] a simple function is introduced as an ansatz
to approximate Qconfig, while in [36, 37] more complex
mathematical methods are proposed. We find a simpler
approach is sufficient. We take the exact degree sequence
of the network of interest and generate an ensemble of
10 random networks with this same degree sequence via
the configuration model [38, 39]. Then we calculate the
values of inherent modularity, Qconfig, by averaging over
these generated networks. Note that increasing the num-
ber of random networks beyond 10 does not change the
results for Qconfig, but only adds computational cost.

In Fig. 3(a) we plot Q for the Apache callgraph and
Qconfig of the corresponding degree sequence as a func-
tion of degree-targeted node removal (with their differ-
ence Q − Qconfig plotted inset). The inset plot shows
that Q − Qconfig reaches a maximum value after approx-
imately 15 vertices are removed, a reasonable number of
low-level functions. However, the data is noisy and sev-
eral local maxima exist as well. We plot the same quanti-
ties for the Apache email network in Fig. 3(b). The inset
plot of Q−Qconfig is very noisy and reaches its maximal
value after more than 40 vertices removed, which is an
order of magnitude larger than the two to three devel-
opers identified in [19]. We find similar results to those
in Fig. 3(b) for the other three email networks studied
(Python, PostgresSQL, and Perl). In summary, for the
callgraph networks high-degree node removal is plausible,
with the location of the peak in Q − Qconfig providing a
criteria for when to stop removing vertices. The email
networks, however, are not amenable to this treatment.

B. High ∆Q targeted removal

Degree-targeted removal provides a starting point, yet
the highest degree vertices are not necessarily violators.
For instance in the OSS email networks it is possible that
a developer with very high degree may be strongly tied
to just one community. To develop intuition on methods
to remove the correct nodes from a network efficiently,
we first simulate a series of networks in which noisy ver-
tices are known, enforcing that the simulated networks
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FIG. 3: Q for the real networks plotted in black and the modularity of an ensemble of random networks with a degree sequence
identical to the real network, Qconfig, in gray, both as functions of in-degree targeted removal for (a) the Apache callgraph and
(b) the Apache developer email network. The points in the main figure indicate “breakpoints” as discussed in Sec. IIIC. The
inset plot shows Q − Qconfig, with the vertical dashed line indicating the location of the first breakpoint.
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FIG. 4: Modularity change for simulated networks having the degree sequence of the Apache callgraph and with three nodes set
to be violators. Inset is Q−Qconfig, with the vertical dashed line indicating the location of the first breakpoint. (a) Modularity
change by removing high degree vertices. (b) Modularity change by removing high ∆Q vertices.

have the same degree sequences as the real networks of
interest. We construct the model networks by assigning
most vertices to one of four predefined communities at
random, while three vertices out of the 10 highest de-
gree ones are selected at random to be violators which
connect without preference across the network. We use
a modified configuration model technique where an edge
was allowed to fall between non-violator vertices in dif-
ferent communities with a probability, pbetween = 0.15
and between non-violator vertices in the same commu-
nity with a probability, pwithin = 0.85. After construct-
ing this model network we identify the communities and
calculate the modularity via maximizing Eq. 1.

We exhaustively search through each vertex in the net-
work and identify the vertex who’s removal would lead
to the largest increase in modularity ∆Q, and remove it.
We then apply this technique recursively to the remaining

network to find the next noisy vertex, and so on. Notice
here ∆Q values must be recalculated after each vertex
removal, making this strategy time-consuming. (In prac-
tice, for the simulated networks and all the real networks
studied herein, ranging to a few thousand nodes in size,
testing the 20 highest degree nodes present at any mo-
ment is sufficient; increasing the number further does not
change the results obtained.)

Results for the simulated networks with the degree
sequence of Apache callgraph, generated as described
above, are shown in Fig. 4. The modularity change in
response to degree targeted removal is shown Fig. 4(a),
while response to high ∆Q removal is shown in Fig. 4(b).
In Fig. 4(a), we see both Q and Q−Qconfig are extremely
noisy. Furthermore, on examining the identities of ver-
tices, we find that the high degree vertices removed first
are not the violators we had intended to remove. As
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FIG. 5: Modularity change resulting from successively removing high ∆Q vertices, shown for (a) the Apache callgraph and (b)
the Apache email network. The inset plot shows Q − Qconfig, with the vertical dashed line indicating the first breakpoint.

shown in Fig. 4(b), Q increases rapidly as the first three
nodes are removed under high ∆Q removal. On inspect-
ing the identity of these three vertices we find that they
are exactly the three nodes set initially to be violators.

As seen in Fig. 4(b), Q−Qconfig reaches its maximum,
not right at three as we would expect, but after three
nodes are removed. Thus a peak in Q − Qconfig does
not provide a rigorous criteria to determine when to stop
node removal (as will be developed in Sec. III C). Note,
we also examined different number of violators and dif-
ferent simulated networks (e.g. with the degree sequence
of developer email network) and all show similar results:
modularity increases rapidly while violators are being re-
moved and then stabilizes.

When we apply the high ∆Q removal method to the
data for the real Apache callgraph, as shown in Fig. 5 (a),
we find similar results to those found based upon re-
moving vertices simply by decreasing degree (shown in
Fig. 3(a)). In particular, we find that almost the identi-
cal nodes are removed by both techniques.

Results for high ∆Q removal for the real Apache devel-
oper email network are shown in Fig. 5(b). Although Q

increases much more smoothly than via degree targeted
removal (shown in Fig. 3(b)), we still cannot identify a
clear global or local maximum in the quantity Q−Qconfig.
In comparing the degree-target removal and high ∆Q re-
moval methods applied to this data set, we find substan-
tial differences in the vertices removed indicating that
the highest degree vertices are not necessarily the most
noisy. We show only the results for the Apache developer
email network, however the email networks for the other
projects behave very similarly.

C. Breakpoints to identify the number of violators

To develop a rigorous criteria for determining the num-
ber of noisy vertices, we turn to a well-known tech-

nique from statistics called change-point detection [40].
This technique was originally used to quantify struc-
tural changes in linear regression, identifying breakpoints

which divide the data into distinct segments where,
within each segment, the regression relationship is sta-
ble while the coefficients of the regressions vary between
the distinct segments. We utilize a dynamic program-
ming algorithm to estimate the optimal breakpoints [41].
Additional details of the algorithm can be found in [40]
and [42]. The breakpoints found are indicated in Figs. 3-
5. For all these simulated and real data sets, we find that
the first breakpoint is the appropriate stopping point for
removing vertices acting as violators. Likewise, similar
exact agreement between location of breakpoints and the
number of violators was found when we implement dif-
ferent numbers of violators in the simulated networks.

In all of our examples we analyze Q as the first 60
nodes are removed (with figures focusing on the first 40).
If we look only at n < 60 points, the exact number and
location of the breakpoints can vary, but the location of
the first breakpoint is extremely stable so long as the data
sample can be divided into at least three breakpoints.

D. Interpreting results for OSS networks

For the real Apache callgraph data, as shown in Fig. 5
(a), the first breakpoint occurs at the point where 8 ver-
tices have been removed. Four of these 8 functions come
from APR, a low-level interface library. The other four
are from the C standard library. All these eight functions
are basic and low-level with general functionality. Yet,
there exist even lower level functions which are not iden-
tified as violators. Upon manual inspection we find that
these lower level functions have very specific functionality
and belong to only one or a few communities.

Manually inspecting the communities detected in the
Apache callgraph after violator removal, we find that
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each community roughly corresponds to a group of func-
tions which complete one relatively independent or sev-
eral similar tasks. These communities typically contain
only functions belonging to one or a few distinct mod-
ules, where modules are organized software sub-projects
with different concerns. For example, there is an identi-
fied community consisting only of functions from a single
module, called SDBM (which handles database trans-
actions), and the low-level functions they call. These
coherent communities, which reflect the function of the
project, were originally hidden and only emerge as we
iterate the removal of violators.

Under high ∆Q removal three of the OSS developer
email networks (Apache, Perl and Python) have break-
points when three vertices are removed, while for Post-
gres the breakpoint occurs when four vertices are re-
moved. The four OSS projects have different manage-
ment styles. Apache is a foundation based project with
a group of core developers and several more minor de-
velopers. Perl and Python are considered Monarchies,
with only a few core developers. Postgres is a community
without identified project leaders. It is reasonable that
in project with only a few core developers one finds viola-
tors. More interesting is that even in a project structured
like Postgres (with dynamic self-organized communities),
there can exist a small number of “noisy” developers.

Commensurate with the intuition put forth by
Bird et al. we find approximately three violators in each
of the developer email networks [19]. Bird et al. used
an a priori criteria of removing the three vertices with
the highest betweenness centrality. In both Apache and
Perl, two of the three violators identified by our technique
are also among the three highest betweenness vertices; in
Postgres, three of the four violators are the top three be-
tweenness vertices; but in Python, only one of the three
violators identified are among the top three betweenness
vertices. Similar to how degree targeted removal can re-
sult in removing high-degree nodes which are not vio-
lators, our results indicate that previous methods may
have wrongly removed vertices with very high between-
ness that where not violating community structures.

Note that removing vertices necessarily reduces the size
of the largest connected component in a network, but
not significantly. For example, with all 8 violators re-
moved, the largest connected component of the Apache
callgraph network is 97% of its original size. For all four
email social networks after violator removal, the largest
connected component is at least 80% of its original size.

E. Application to biological networks

We apply our technique to different types of networks
present in biological systems. In particular, we inves-
tigate two gene regulation networks (E. coli and yeast
transcription network [43]), one metabolite network (E.

coli metabolite network [18]), and five protein protein in-
teraction (PPI) networks (all from the online BioGRID
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FIG. 6: Modularity change for four biological networks with
high ∆Q vertex removal. Breakpoints for each network are
shown respectively; all the first breakpoints occur at three.

database [44]). The two transcription networks are di-
rected and weighted, while the E. coli metabolite network
and the PPI networks are undirected and unweighted.

In the yeast transcription network and three of the
PPI networks, we find that removing vertices does not
increase the modularity. Hence, we find no vertices act-
ing as violators in these networks. In the E. coli tran-
scription network and E. coli metabolite network, noisy
vertices are identified. As shown in Fig. 6 there are three
violators identified at the first breakpoint for E. coli tran-
scription network. (In contrast, the difference between Q
and Qconfig, not shown in the figure, reaches its maximum
around five.) Likewise, in E. coli metabolite network,
three violators are identified at the first breakpoint as
shown in Fig. 6. These three violators are proton, water
and ATP, which were found to belong to high numbers of
communities in [18] when overlapping communities were
considered (discussed in detail in the next section). For
two of the PPI networks from BioGRID (Mus musculus
and Synthetic rescue), we find violators by applying our
technique, as also shown in Fig. 6.

F. Quantifying the differences before and after

violator removal

As discussed above in the context of the Apache call-
graph network, using domain knowledge we are able to
verify the improvement in community detection when vi-
olators are removed. To quantitatively compare the dif-
ference in community structure before and after removing
violators, we adopt the measure of variation of informa-
tion (VI) [45]. This normalized measure, ranging between
zero and one, is used to compare statistical overlap of
two grouping results. When two groupings are exactly
the same, the measure is zero. Notice that it compares
different groupings of one specific network, thus we only
consider vertices present both before and after violator
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Apache callgraph Apache Perl Postgres Python E. coli trans. E. coli meta. Mus mus. Syn. Rescue

VI 0.3222 0.2252 0.1969 0.2390 0.2360 0.0838 0.2362 0.1453 0.2652

Groups 18→ 21(8) 5→6(3) 6→7(3) 7→7(4) 8→7(3) 20→ 18(3) 10→12(3) 40→30(3) 27→34(3)

TABLE I: Comparison of community structures before and after violators removal. The first row is the variation of information
between the grouping of the original network and the network with violators removed. The second row shows the change in
the number of communities detected, with the number of violators removed shown in parentheses.

removal. Table I shows results for the networks in which
violators are detected. Although most of VI values are
small, they are significant. (The only exception is E.

coli transcription network.) The number of communities
detected before and after violator removal are shown in
the second row of Tab. I, with the number of violators
detected indicated in parentheses.

IV. OVERLAPPING VERSUS NOISE IN

COMMUNITIES

To understand the role violator vertices play when
communities are allowed to overlap we implement two
methods for detecting overlapping community structure.
The first is the method of Palla et al. , which is one of the
original such techniques [11, 46]. The method initially de-
tects fully connected subgraphs of size k (i.e. k-cliques)
and forms communities by grouping together k-cliques
which share one or more vertices. Varying k results in de-
tection of different communities, and the authors suggest
a typically good choice is k = 4 [11]. When the algorithm
was applied to our Apache callgraph data only 141 out
of the total 2,213 vertices could be assigned to any com-
munity (as the algorithm does not guarantee that every
vertex will be assigned to at least one community). Yet
all eight of the vertices we detected as violators were as-
signed to one or more communities. Details are in Tab. II,
showing the total number of communities detected and
the number of communities to which each of the first
four violators (out of eight) belong. Of the 141 Apache
callgraph vertices assigned to communities, 119 belong
to only one community, 12 vertices belong to two com-
munities, and only 10 vertices belong to more than two.
As shown in Tab. II the first four violators belong to at
least four communities. In particular note apr pstrdup
and strlen which belong to seven and 11 communities
respectively, which are over 20% of all communities.

Shen et al. proposed a revised version of the
Palla et al. algorithm [14] which treats the maximal
cliques as vertices, and, moreover, guarantees all vertices
are assigned to at least one community. Table II shows
a comparison of the two methods. The Shen algorithm
finds in total fewer communities, yet that the violators
belong to multiple. Note, in particular the function strlen

which is assigned to eight of 18 communities (over 44%
of all communities), and the two functions assigned to 4
communities (over 22% of all communities).

Table III summarizes the results when applying these

tot. apr pstrdup strlen apr palloc apr pstrcat

Palla 31 7 11 4 6

Shen 18 4 8 2 4

TABLE II: The total number of communities detected (col-
umn 2) for the Apache callgraph data using two different al-
gorithms, labeled Palla [11] and Shen [14] respectively. The
remaining columns show the identity of the first four violators
and the number of communities each violator is assigned to
by each algorithm. (The clique size used is k = 4.)

algm. tot. v. 1 v. 2 v. 3

Apache social Shen 35 11 12 9

E. coli trans. Shen 12 1 1 1

E. coli metabolite
Palla 15 4 3 1

Shen 9 9 9 9

Mus musculus
Palla 3 0 0 0

Shen 23 1 1 1

Synthetic Rescue
Palla 8 1 0 1

Shen 25 1 1 1

Yeast
Palla 1 0 0 0

Shen 17 1 3 1

Co-purification
Palla 28 1 1 1

Shen 15 1 1 1

Dosage Rescue
Palla 28 3 1 0

Shen 31 1 1 1

TABLE III: Total number of communities identified by the
two algorithms [11] and [14], and the total number of com-
munities to which each of the first three vertices removed are
assigned. The first five networks listed were found via our
high ∆Q removal technique to have disruptive vertices, while
no such vertices are found in the final three networks.

two methods to the other networks. The first five net-
works listed were found by our high ∆Q method to have
disruptive vertices, whereas the final three networks did
not show this. The column titled “tot.” gives the total
number of communities detected via the Palla et al. and
Shen et al. algorithms. The last three columns indicate
the number of communities to which the three most noisy
vertices identified belong.

When applied to the Apache social network and the E.

coli network the Palla algorithm does not converge. (The
algorithm was run for more than three days without out-
putting a solution.) Yet the Shen algorithm converges
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for all of the networks. As seen in Tab. III, in most cases
the violators identified by our technique are those ver-
tices which belong to many communities. Of particular
note is the E. coli metabolite network where the three
violators (proton, water and ATP) are found to belong
to every community identified by the Shen algorithm. It
is also noteworthy that the Mus musculus and the Syn-
thetic Rescue networks show no indication of being noisy
when viewed from the overlapping community lens, yet
do show noise when treated by our techniques of high ∆Q

removal and breakpoints. Our technique, therefore, can
identify noise in scenarios where overlapping community
algorithms would not provide an indication.

V. CONCLUSIONS

Significant noise in the community structures of net-
works, even those comprised of thousands of nodes, can
be introduced by just a few nodes. This phenomena was
identified previously using a priori knowledge [19] and
heuristic techniques such as removal of the top ten high-
est degree nodes [20]. In the work presented here we
develop a quantitative framework for identifying and re-
moving noisy nodes. While high degree vertices tend to
be more noisy than low degree vertices, we show in sev-
eral places that the most noisy vertex is not necessarily
the vertex with highest degree. We instead develop a
procedure to identify and remove noisy nodes based on
high ∆Q removal iterated until the first breakpoint in
the resulting value of Q. The violators thus identified in
email social networks are commensurate with the viola-
tors identified using a heuristic approach developed using
domain knowledge in [19]. We also show our technique

identifies violators successfully in simulated networks and
in a series of biological networks. Our technique provides
a systematic solution to the problem of identifying noisy
vertices and can be especially useful in the absence of
domain knowledge.

We also compare our results with results obtained
by overlapping community finding algorithms. In many
cases the violators identified by our technique belong to
an extreme number of communities and should be classi-
fied as noise. Yet there are instances where overlapping
communities would not indicate evidence of noise yet our
technique nonetheless does identify noisy vertices. Our
method can be considered orthogonal or complementary
to overlapping community finding algorithms.

Here, we use Newman’s proceedure [4] as our base al-
gorithm. Any other algorithm which assigns each vertex
to a community could be used instead, as our method
depends only on calculating the modularity Q for the
resulting assignment of vertices to communities. Remov-
ing the noisy vertices thus identified can help improve the
quality of community structure detected in networks.
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