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Stochastic blockmodels have been proposed as a tool for detecting community structure in net-
works as well as for generating synthetic networks for use as benchmarks. Most blockmodels,
however, ignore variation in vertex degree, making them unsuitable for applications to real-world
networks, which typically display broad degree distributions that can significantly distort the results.
Here we demonstrate how the generalization of blockmodels to incorporate this missing element leads
to an improved objective function for community detection in complex networks. We also propose a
heuristic algorithm for community detection using this objective function or its non-degree-corrected
counterpart and show that the degree-corrected version dramatically outperforms the uncorrected
one in both real-world and synthetic networks.

I. INTRODUCTION

A stochastic blockmodel is a generative model for
blocks, groups, or communities in networks. Stochastic
blockmodels fall in the general class of random graph
models and have a long tradition of study in the so-
cial sciences and computer science [1–5]. In the simplest
stochastic blockmodel (many more complicated variants
are possible), each of n vertices is assigned to one of K
blocks, groups, or communities, and undirected edges are
placed independently between vertex pairs with probabil-
ities that are a function only of the group memberships
of the vertices. If we denote by gi the group to which
vertex i belongs, then we can define a K ×K matrix ψ
of probabilities such that the matrix element ψgigj

is the
probability of an edge between vertices i and j.

While simple to describe, this model can produce a
wide variety of different network structures. For exam-
ple, a diagonal probability matrix would produce net-
works with disconnected components, while the addi-
tion of small off-diagonal elements would generate con-
ventional “community structure”—a set of communities
with dense internal connections and sparse external ones.
Other choices of probability matrix can generate core-
periphery, hierarchical, or multipartite structures, among
others. This versatility, combined with analytic tractabil-
ity, has made the blockmodel a popular tool in a number
of contexts. For instance, the planted partition model [6],
which is equivalent to the model above with a specific
parametrization of the matrix ψ, is widely used as a the-
oretical testbed for graph partitioning and community
detection algorithms [7, 8].

Another important application, and the one that is
the primary focus of this paper, is the fitting of block-
models to empirical network data as a way of discov-
ering block structure, an approach referred to in the so-
cial networks literature as a posteriori blockmodeling [4].
A number of ways of performing the fitting have been
suggested, including some that make use of techniques
from physics [9–11]. A posteriori blockmodeling can be
thought of as a method for community structure detec-
tion in networks [8], though blockmodeling is consider-

ably more general than traditional community detection
methods, since it can detect many forms of structure in
addition to simple communities of dense links. Moreover,
it has the desirable property (not shared by most other
approaches) of asymptotic consistency under certain con-
ditions [12], meaning that if applied to networks that
were themselves generated from the same blockmodel,
the method can correctly recover the block structure.

Unfortunately, however, the simple blockmodel de-
scribed above does not work well in many applications
to real-world networks. The model is not flexible enough
to generate networks with structure even moderately sim-
ilar to that found in most empirical network data, mean-
ing that a posteriori fits to such data often give poor
results [13]. Just as the fitting of a straight line to intrin-
sically curved data is likely to miss important features of
the data, so a fit of the simple stochastic blockmodel to
the structure of a complex network is likely to miss much
and, as we will show, can in some cases give radically
incorrect answers.

Attempts to overcome these problems by extending the
blockmodel have focused particularly on the use of (more
complicated) p∗ or exponential random graph models,
but while these are conceptually appealing, they quickly
lose the analytic tractability of the original blockmodel as
their complexity increases. Other recent attempts to ex-
tend blockmodels take the flavor of mixture models that
allow vertices to participate in overlapping groups [14] or
to have mixed membership [15, 16].

In this paper we adopt a different approach, consider-
ing a simple and apparently minor extension of the classic
stochastic blockmodel to include heterogeneity in the de-
grees of vertices. Despite its innocuous appearance, this
extension turns out to have substantial effects, as we will
see. A number of previous authors have considered sim-
ilar extensions of blockmodels. As early as 1987, Wang
and Wong [17] proposed a stochastic blockmodel for di-
rected simple graphs incorporating arbitrary expected in-
and out-degrees, along with a selection of other features.
Unfortunately, this model is not solvable for its param-
eter values in closed form which limits its usefulness for
the types of calculations we consider. Several more recent
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works have also explored blockmodels with various forms
of degree heterogeneity [18–23], motivated largely by the
recent focus on degree distributions in the networks lit-
erature. We note particularly the currently unpublished
work of Patterson and Bader [23], who apply a variational
Bayes approach to a model close, though not identical,
to the one considered here.

In this paper we build upon the ideas of these au-
thors but take a somewhat different tack, focusing on
the question of why degree heterogeneity in blockmodels
is a good idea. To study this question, we develop a
degree-corrected blockmodel with closed-form parameter
solutions, which allows us more directly to compare tra-
ditional and degree-corrected models. As we show, the
incorporation of degree heterogeneity in the stochastic
blockmodel results in a model that in practice performs
much better, giving significantly improved fits to network
data, while being only slightly more complex than the
simple model described above. Although we here exam-
ine only the simplest version of this idea, the approaches
we explore could in principle be incorporated into other
blockmodels, such as the overlapping or mixed member-
ship models.

In outline, the paper is as follows. We first review
the ideas behind the ordinary stochastic blockmodel to
understand why degree heterogeneity causes problems.
Then we introduce a degree-corrected version of the
model and demonstrate its use in a posteriori blockmod-
eling to infer group memberships in empirical network
data, showing that the degree-corrected model outper-
forms the original model both on actual networks and on
new synthetic benchmarks. The benchmarks introduced,
which generalize previous benchmarks for community de-
tection, may also be of independent interest.

II. STANDARD STOCHASTIC BLOCKMODEL

In this section we review briefly the use of the original,
non-degree-corrected blockmodel, focusing on undirected
networks since they are the most commonly studied.

For consistency with the degree-corrected case we will
allow our networks to contain both multi-edges and self-
edges, even though many real-world networks have no
such edges. Like most random graph models for sparse
networks the incorporation of multi-edges and self-edges
makes computations easier without affecting the funda-
mental outcome significantly—typically their inclusion
gives rise to corrections to the results that are of or-
der 1/n and hence vanishing as the size n of the net-
work becomes large. For networks with multi-edges, the
previously-defined probability ψrs of an edge between
vertices in groups r and s is replaced by the expected
number of such edges, and the actual number of edges
between any pair of vertices will be drawn from a Pois-
son distribution with this mean. In the limit of a large
sparse graph, where the probability of an edge and the
expected number of edges become equal, there is essen-

tially no difference between the model described here and
the standard blockmodel.

With this in mind, the model we study is now defined
as follows. Let G be an undirected multigraph on n ver-
tices, possibly including self-edges, and let Aij be an el-
ement of the adjacency matrix of the multigraph. Recall
that the adjacency matrix for a multigraph is convention-
ally defined such that Aij is equal to the number of edges
between vertices i and j when i 6= j, but the diagonal el-
ement Aii is equal to twice the number of self-edges from
i to itself (and hence is always an even number).

We let the number of edges between each pair of ver-
tices (or between a vertex and itself in the case of self-
edges) be independently Poisson distributed and define
ωrs to be the expected value of the adjacency matrix el-
ement Aij for vertices i and j lying in groups r and s
respectively. Note that this implies that the expected
number of self-edges at a vertex in group r is 1

2
ωrr be-

cause of the factor of two in the definition of the diagonal
elements of the adjacency matrix.

Now we can write the probability P (G|ω, g) of graph G
given the parameters and group assignments as

P (G|ω, g) =
∏

i<j

(ωgigj
)Aij

Aij !
exp

(

−ωgigj

)

×
∏

i

(

1
2
ωgigi

)Aii/2

(Aii/2)!
exp

(

− 1
2
ωgigi

)

. (1)

Given that Aij = Aji and ωrs = ωsr, Eq. (1) can after
a small amount of manipulation be rewritten in the more
convenient form

P (G|ω, g) =
1

∏

i<j Aij !
∏

i 2Aii/2(Aii/2)!

×
∏

rs

ωmrs/2
rs exp

(

− 1
2
nrnsωrs

)

, (2)

where nr is the number of vertices in group r and

mrs =
∑

ij

Aijδgi,rδgj ,s, (3)

which is the total number of edges between groups r and
group s, or twice that number if r = s.

Our goal is to maximize this probability with respect to
the unknown model parameters ωrs and the group assign-
ments of the vertices. In most cases, it will in fact be sim-
pler to maximize the logarithm of the probability (whose
maximum is in the same place). Neglecting constants
and terms independent of the parameters and group as-
signments (i.e., independent of ωrs, nr, and mrs), the
logarithm is given by

logP (G|ω, g) =
∑

rs

(mrs logωrs − nrnsωrs). (4)

We will maximize this expression in two stages, first
with respect to the model parameters ωrs, then with



3

respect to the group assignments gi. The maximum-
likelihood values ω̂rs of the model parameters (where hat-
ted variables indicate maximum-likelihood estimates) are
found by simple differentiation to be

ω̂rs =
mrs

nrns
, (5)

and the value of Eq. (4) at this maximum is
logP (G|ω̂, g) =

∑

rsmrs log(mrs/nrns) − 2m, where
m = 1

2

∑

rsmrs is the total number of edges in the net-
work. Dropping the final constant, we define the unnor-
malized log-likelihood for the group assignment g:

L(G|g) =
∑

rs

mrs log
mrs

nrns
. (6)

The maximum of this quantity (called a “profile likeli-
hood modularity” by Bickel and Chen [12]) with respect
to the group assignments now tells us the most likely set
of assignments [24]. In effect, Eq. (6) gives us an objec-
tive or quality function which is large for good group as-
signments and small for poor ones. Many such objective
functions have been defined elsewhere in the literature on
community detection and graph partitioning, but Eq. (6)
differs from most other choices in being derived from first
principles, rather than heuristically motivated or simply
proposed ad hoc.

Equation (6) has an interesting information-theoretic
interpretation. By adding and dividing by constant fac-
tors of the total number of vertices and edges the equa-
tion can be written in the alternative form

L(G|g) =
∑

rs

mrs

2m
log

mrs/2m

nrns/n2
, (7)

where again we have neglected irrelevant constants. Now
imagine, for a given set of group assignments, that we
choose an edge uniformly at random from our network,
and let X be the group assignment at one (randomly se-
lected) end of the edge and Y be the group assignment at
the other end of the edge. The probability distribution
of the variables X and Y is then pK(X = r, Y = s) =
pK(r, s) = mrs/2m, which appears twice in the above ex-
pression. The remaining terms in the denominator of the
logarithm in (7) are equal to the expected value of the
same probability in a network with the same group as-
signments but different edges, the edges now being placed
completely at random without regard for the groups. Call
this second distribution p1(r, s). Equation (7) can then
be written

L(G|g) =
∑

rs

pK(r, s) log
pK(r, s)

p1(r, s)
, (8)

which is the well-known Kullback–Leibler divergence be-
tween the probability distributions pK and p1 [25].

The Kullback–Leibler divergence is not precisely a dis-
tance measure since it’s not symmetric in pK and p1.

However, if the logarithms are taken base 2 then it mea-
sures the expected number of extra bits required to en-
code X and Y if p1 is mistakenly used as the distribution
for X and Y instead of the assumed true distribution pK .
So intuitively it can be considered as measuring how far
pK is from p1. The most likely group assignments under
the ordinary stochastic blockmodel are then those as-
signments that require the most information to describe
starting from a model that does not have group structure.

This type of approach, in which one constructs an ob-
jective function that measures the difference between an
observed quantity and the expected value of the same
quantity under an appropriate null model, is common in
work on community detection in networks. One widely
used objective function is the so-called modularity:

Q(g) =
1

2m

∑

ij

[Aij − Pij ]δ(gi, gj), (9)

where Aij is an element of the adjacency matrix and Pij

is the expected value of the same element under some
null model. The null model assumed in our blockmodel
calculation is one in which Pij is constant. Making the
same choice for the modularity would lead to

Q(g) =

K
∑

r=1

[pK(r, r) − p1(r, r)]. (10)

The modularity, however, is not normally used this way
and for good reason. This null model, corresponding to
a multigraph version of the Erdős–Rényi random graph,
produces highly unrealistic networks, even for networks
with no community structure. Specifically, it produces
networks with Poisson degree distributions, in stark con-
trast to most real networks, which tend to have broad
distributions of vertex degree. To avoid this problem,
modularity is usually defined using a different null model
that fixes the expected degree sequence to be the same
as that of the observed network. Within this model
Pij = kikj/2m where ki is the degree of vertex i. Then
the probability distribution over the group assignments
at the end of a randomly chosen edge becomes

pdegree(X = r, Y = s) = pdegree(r, s) =
κr

2m

κs

2m
, (11)

where

κr =
∑

s

mrs =
∑

i

kiδgi,r (12)

is the total number of ends of edges, commonly called
stubs, that emerge from vertices in group r, or equiva-
lently the sum of the degrees of the vertices in group r.
(Note that Eq. (12) correctly counts two stubs for edges
that both start and end in group r.) Then the desired
group assignments are given by the maximum of

Q(g) =

K
∑

r=1

[pK(r, r) − pdegree(r, r)]. (13)
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This choice of null model is found to give significantly
better results than the original uniform model because
it allows for the fact that vertices with high degree are,
all other things being equal, more likely to be connected
than those with low degree, simply because they have
more edges. From an information-theoretic viewpoint, an
edge between two high-degree vertices is less surprising
than an edge between two low-degree vertices and we get
better results if we incorporate this observation in our
model.

Returning to the stochastic blockmodel, using p1 in-
stead of pdegree in the objective function causes problems
similar to those that affect the modularity. Fits to the
model may incorrectly suggest that structure in the net-
work due merely to the degree sequence is a result in-
stead of group memberships. We will shortly see explicit
real-world cases in which such incorrect conclusions arise.
The solution to this problem, as with the modularity, is
to define a stochastic blockmodel that directly incorpo-
rates arbitrary heterogeneous degree distributions.

III. DEGREE-CORRECTED STOCHASTIC

BLOCKMODEL

In the degree-corrected blockmodel, the probability
distribution over undirected multigraphs with self-edges
(again denoted G) depends not only on the parameters
introduced previously but also on a new set of parame-
ters θi controlling the expected degrees of vertices i.

As before, we assume there are K groups, ωrs is a
K×K symmetric matrix of parameters controlling edges
between groups r and s, and gi is the group assignment
of vertex i. As in the uncorrected blockmodel, let the
numbers of edges each be drawn from a Poisson distri-
bution, but now, following [22] and [23], let the expected
value of the adjacency matrix element Aij be θiθjωgigj

.
Then graph G has probability

P (G|θ, ω, g) =
∏

i<j

(θiθjωgigj
)Aij

Aij !
exp(−θiθjωgigj

)

×
∏

i

(

1
2
θ2i ωgigi

)Aii/2

(Aii/2)!
exp

(

− 1
2
θ2i ωgigi

)

.

(14)

The θ parameters are arbitrary to within a multiplicative
constant which is absorbed into the ω parameters. Their
normalization can be fixed by imposing the constraint

∑

i

θiδgi,r = 1 (15)

for all groups r, which makes θi equal to the probability
that an edge connected to the community to which i be-
longs lands on i itself. With this constraint, the probabil-
ity P (G|θ, ω, g) can be simplified to the more convenient

form

P (G|θ, ω, g) =
1

∏

i<j Aij !
∏

i 2Aii/2(Aii/2)!

×
∏

i

θki

i

∏

rs

ωmrs/2
rs exp

(

− 1
2
ωrs

)

, (16)

with ki being the degree of vertex i as previously and mrs

defined as in Eq. (3). As before, rather than maximizing
this probability, it is more convenient to maximize its
logarithm, which, ignoring constants, is

logP (G|θ, ω, g) = 2
∑

i

ki log θi +
∑

rs

(mrs logωrs − ωrs).

(17)
Allowing for the constraint (15), the maximum-likelihood
values of the parameters θi and ωrs are then given by

θ̂i =
ki

κgi

, ω̂rs = mrs, (18)

where κr is the sum of the degrees in group r as be-
fore (see Eq. (12)). This maximum-likelihood parameter
estimate has the appealing property of preserving the
expected numbers of edges between groups and the ex-
pected degree sequence of the network [26]. To see this,
let 〈x〉 be the average of x in the ensemble of graphs with
parameters (18). Then the expected number of edges be-
tween groups r and s is

∑

ij

〈Aij〉δgi,rδgj ,s =
∑

ij

kikjmgigj

κgi
κgj

δgi,rδgj ,s = mrs, (19)

where we have made use of Eq. (12). Similarly, the aver-
age degree of vertex i in the ensemble is

∑

j

〈Aij〉 =
∑

j

θ̂iθ̂jω̂gigj
=

ki

κgi

∑

j

kj

κgj

mgigj

=
ki

κgi

∑

j

∑

r

kj

κr
mgi,rδgj ,r

=
ki

κgi

∑

r

mgi,r = ki. (20)

Traditional blockmodels, by contrast, preserve only the
expected value of the matrix mrs and not the expected
degree—every vertex in group r in the traditional block-
model has the same expected degree

∑

j mr,gj
/(nrngj

) =

κr/nr.
Substituting Eq. (18) into Eq. (17), the maximum of

logP (G|θ, ω, g) for the degree-corrected blockmodel is

logP (G|θ, ω, g) = 2
∑

i

ki log
ki

κgi

+
∑

rs

mrs logmrs−2m.

(21)
where as before m is the total number of edges in the net-
work. The first term in this expression can be rewritten
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as

2
∑

i

ki log
ki

κgi

= 2
∑

i

ki log ki − 2
∑

i

∑

r

kiδgi,r log κr

= 2
∑

i

ki log ki −
∑

r

κr log κr −
∑

s

κs log κs

= 2
∑

i

ki log ki −
∑

rs

mrs log κrκs, (22)

where we have again made use of Eq. (12). Substituting
back into Eq. (21) and dropping overall constants then
gives us an unnormalized log-likelihood function of

L(G|g) =
∑

rs

mrs log
mrs

κrκs
. (23)

Notice that the only difference between this degree-
corrected log-likelihood and the uncorrected log-
likelihood of Eq. (6) is the replacement of the number nr

of vertices in each group by the number κr of stubs. Mi-
nor though this replacement may seem, however, it has
a big effect, as we will shortly see.

As before, we can interpret the optimization of the ob-
jective function (23) through the lens of information the-
ory. Adding and multiplying by constant factors allows
us to write the log-likelihood in the form

L(G|g) =
∑

rs

mrs

2m
log

mrs/2m

(κr/2m)(κs/2m)
, (24)

which is the Kullback–Leibler divergence between pK

and pdegree. Alternatively, noting that pdegree is the
product of the marginal distributions

∑

r pK(r, s) and
∑

s pK(r, s), this particular form of divergence can also
be thought of as the mutual information of the random
variables representing the group labels at either end of
a randomly chosen edge. Loosely speaking, the best fit
to the degree-corrected stochastic blockmodel gives the
group assignment that is most surprising compared to the
null model with given expected degree sequence, whereas
the ordinary stochastic blockmodel gives the group as-
signment that is most surprising compared to the Erdős–
Rényi random graph.

Information-theoretic quantities have been proposed
previously as possible objective functions for community
detection or clustering. Dhillon et al. [27], for instance,
used mutual information as an objective function for clus-
tering bipartite graphs, as part of an approach they call
“information-theoretic co-clustering.” Equation (23) is
also somewhat reminiscent of an objective function of
Reichardt et al. [19] which, if translated into our termi-
nology and adapted to undirected networks, is equivalent
to the total variation distance between pK and pdegree,
variation distance being an alternative measure of the
distance between two probability distributions. While
the variation distance and the Kullback–Leibler diver-
gence are related, both falling in the class of so-called f -
divergences, the optimization of variation distance does
not, to our knowledge, correspond to maximizing the like-
lihood of any generative model, and there are significant
benefits to the connection with generative models. In
particular, one can easily create networks from the en-
semble of our model and in addition the connection to
generative processes means that a posteriori blockmodel-
ing fits into standard frameworks for statistical inference,
which are well studied and understood in other contexts.

Equation (23) could also be used as a measure of as-
sortative mixing among discrete vertex characteristics in
networks [28, 29]. In a network such as a social net-
work, where connections between individuals can depend
on characteristics such as nationality, race, or gender, our
objective function could be used, for instance, to quantify
which of several such characteristics is more predictive of
network structure.

A useful property of the objective function in Eq. (23)
when used for a posteriori blockmodeling is that it is pos-
sible to quickly compute the change in the log-likelihood
when a single vertex switches groups. When a vertex
changes groups from r to s only κr, κs, mrt, and mst

(for any t) can change (with mrs symmetric). This
means that many terms cancel out of the difference of
log-likelihoods and can be ignored in the computations.

Consider moving vertex i from community r to community s. Let kit be the number of edges from vertex i to
vertices in group t excluding self-edges, and let ui be the number of self-edges for vertex i. These quantities are the
same for all possible moves of vertex i. Define a(x) = 2x log x and b(x) = x log x where a(0) = 0 and b(0) = 0. Then
the change in the log-likelihood can be written:

∆L =
∑

t6=r,s

[

a(mrt + kit) − a(mrt) + a(mst + kit) − a(mst)
]

+ a(mrs + kir − kis) − a(mrs)

+ b(mrr − 2(kir + ui)) − b(mrr) + b(mss + 2(kis + ui)) − b(mss) − a(κr − ki) + a(κr) − a(κs + ki) + a(κs).
(25)

This quantity can be evaluated in time O(K + 〈k〉) on average and finding the s that gives the maximum ∆L for
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given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [30].

Briefly, in this algorithm we divide the network into
some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

Inorm(X,Y ) =
2 I(X,Y )

H(X) +H(Y )
, (26)

where I(X,Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [31].

(a) Without degree correction

(b) With degree-correction

FIG. 1: (Color online) Divisions of the karate club network
found using the (a) uncorrected and (b) corrected block-
models. The size of each vertex is proportional to its de-
gree and the shading reflects inferred group membership. The
dashed line indicates the split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.

The first example, widely studied in the field, is the
“karate club” network of Zachary [32]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.

Applying our inference algorithms to this network, us-
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ing corrected and uncorrected blockmodels with K = 2,
we find the results shown in Fig. 1. As pointed out also
by other authors [12, 33], the non-degree-corrected block-
model fails to split the network into the known factions
(indicated by the dashed line in the figure), instead split-
ting it into a group composed of high-degree vertices and
another of low [34]. The degree-corrected model, on the
other hand, splits the vertices according to the known
communities, except for the misidentification of one ver-
tex on the boundary of the two groups. (The same vertex
is also misplaced by a number of other commonly used
community detection algorithms.)

The failure of the uncorrected model in this context
is precisely because it does not take the degree sequence
into account. The a priori probability of an edge be-
tween two vertices varies as the product of their degrees,
a variation that can be fit by the uncorrected blockmodel
if we divide the network into high- and low-degree groups.
Given that we have only one set of groups to assign, how-
ever, we are obliged to choose between this fit and the
true community structure. In the present case it turns
out that the division into high and low degrees gives the
higher likelihood and so it is this division that the algo-
rithm returns. In the degree-corrected blockmodel, by
contrast, the variation of edge probability with degree is
already included in the functional form of the likelihood,
which frees up the block structure for fitting to the true
communities.

Moreover it is apparent that this behavior is not lim-
ited to the case K = 2. For K = 3, the ordinary
stochastic blockmodel will, for sufficiently heterogeneous
degrees, be biased towards splitting into three groups by
degree—high, medium, and low—and similarly for higher
values of K. It is of course possible that the true com-
munity structure itself corresponds entirely or mainly to
groups of high and low degree, but we only want our
model to find this structure if it is still statistically sur-
prising once we know about the degree sequence, and this
is precisely what the corrected model does.

As a second real-world example we show in Fig. 2 an
application to a network of political blogs assembled by
Adamic and Glance [35]. This network is composed of
blogs (i.e., personal or group web diaries) about US pol-
itics and the web links between them, as captured on
a single day in 2005. The blogs have known political
leanings and were labeled by Adamic and Glance as ei-
ther liberal or conservative in the data set. We consider
the network in undirected form and examine only the
largest connected component, which has 1222 vertices.
Figure 2 shows that, as with the karate club, the uncor-
rected stochastic blockmodel splits the vertices into high-
and low-degree groups, while the degree-corrected model
finds a split more aligned with the political division of
the network. While not matching the known labeling ex-
actly, the split generated by the degree-corrected model
has a normalized mutual information of 0.72 with the la-
beling of Adamic and Glance, compared with 0.0001 for
the uncorrected model.

(a) Without degree-correction

(b) With degree-correction

FIG. 2: (Color online) Divisions of the political blog net-
work found using the (a) uncorrected and (b) corrected block-
models. The size of each vertex is proportional to its degree
and the shading reflects inferred group membership. The divi-
sion in (b) corresponds roughly to the division between liberal
and conservative blogs given in [35].

To make sure that these results were not due to a fail-
ure of the heuristic optimization scheme, we also checked
that the group assignments found by the heuristic have a
higher objective score than the known group assignments,
and that using the known assignments as the initial con-
dition for the optimization recovers the same group as-
signments as found with random initial conditions.

B. Generation of synthetic networks

We turn now to synthetic networks. The networks we
use are themselves generated from the degree-corrected
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stochastic blockmodel, which is ideally designed to play
exactly this role. (Indeed, though it is not the primary
focus of this article, we believe that the blockmodel may
in general be of use as a source of flexible and challeng-
ing benchmark networks for testing the performance of
community detection strategies.)

In order to generate networks we must first choose the
values of g, ω, and θ. The group assignments g can be
chosen in any way we please, and we can also choose
freely the values for the expected degrees of all vertices,
which fixes the θ variables according to Eq. (18). Choos-
ing the values of ωrs involves a little more work. In prin-
ciple, any set of nonnegative values is acceptable provided
it is symmetric in r and s and satisfies

∑

s ωrs = κr, with
κr as in Eq. (12). However, because we wish to be able
to vary the level of community structure in our networks
we choose ωrs in the present case to have the particular
form

ωrs = λωplanted
rs + (1 − λ)ωrandom

rs . (27)

This form allows us to interpolate linearly between the
values ωplanted

rs and ωrandom
rs using the parameter λ. The

ωrandom
rs represents a fully random network with no group

structure; it is defined to be the expected value of ωrs in
a random graph with fixed expected degrees [36], which
is simply ωrandom

rs = κrκs/2m.
The value of ωplanted

rs by contrast is chosen to create
group structure. A simple example with four groups is:

ωplanted =







κ1 0 0 0
0 κ2 0 0
0 0 κ3 0
0 0 0 κ4






. (28)

With this choice, all edges will be placed within com-
munities when λ = 1 and none between communities.
When λ = 0, on the other hand, all edges will be placed
randomly, conditioned on the degree sequence, and for in-
termediate values of λ we interpolate between these two
extremes in a controlled fashion. (This model is similar to
the benchmark network ensemble previously proposed by
Lancichinetti [37]—roughly speaking it is the “canonical
ensemble” version of the “microcanonical” model in [37].)

More complicated choices of ωplanted
rs are also possible.

Examples include the core-periphery structure

ωplanted =

(

κ1 − κ2 κ2

κ2 0

)

, (29)

where κ1 ≥ κ2. In the case where κ1 ≃ κ2 this choice
also generates approximately bipartite networks, where
most edges run between the two groups and few lie inside.
Another possibility is a hierarchical structure of the form

ωplanted =





κ1 −A A 0
A κ2 −A 0
0 0 κ3



 , (30)

where A ≤ min(κ1, κ2).

In mixed models such as these, each edge in effect has a
probability λ of being chosen from the planted structure
and 1−λ of being chosen from the null model. Among the
edges attached to a given vertex, the expected fraction
drawn from the planted structure is λ and the remainder
are drawn randomly.

Once we have chosen our values for g, θ, and ω,
the network generation itself is a straightforward imple-
mentation of the blockmodel: we first draw a Poisson-
distributed number of edges for each pair of groups r, s
with mean ωrs (or 1

2
ωrs when r = s), then we assign each

end of an edge to a vertex in the appropriate group with
probability θi.

C. Performance on synthetic networks

There are two primary considerations in comparing
the degree-corrected and uncorrected blockmodels on our
synthetic benchmark networks. The first is how close
the group assignments found in our calculations are to
the planted group assignments. The second is the per-
formance of the heuristic optimization algorithm. It is
possible that the maximum-likelihood group assignment
may be close to the true group assignment but that our
heuristic is unable to find it. And if the heuristic per-
forms better in general for either the corrected or un-
corrected blockmodel it may make comparisons between
the models unreliable: we want to claim that the degree-
corrected model gives better results than the uncorrected
version because it has a better objective function for het-
erogeneous networks and not because we used a biased
optimization algorithm.

To shed light on these questions we take the following
approach. For both the degree-corrected model and the
uncorrected model we perform tests with random initial
conditions and with initial conditions equal to the known
planted group structure. The latter (planted) initializa-
tions tell us whether the planted group assignment, or
something close to it, is a local optimum of the respec-
tive objective function—if it is, our heuristic should find
that optimum most of the time and return a final assign-
ment similar to the planted one. This should be true for
essentially any reasonable heuristic, even a biased one,
since the heuristic will be making only minimal changes
to the group assignments (or none at all).

For small values of λ we expect that the planted as-
signment is not near a local maximum, but for large λ we
would hope that it is. Thus, if we discover in the process
of running our heuristic that it is not, it strongly sug-
gests we have made a poor choice of objective function
(and this conclusion should hold even if the heuristic is
biased).

The results of such tests on our synthetic networks are
shown in Fig. 3. We plot the normalized mutual infor-
mation as a function of λ for various choices of planted
structure. Each data point represents an average over 30
networks of size n = 1000 for both the degree-corrected
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FIG. 3: (Color online) The average normalized mutual information as a function of λ for the three synthetic tests described
in the text. Filled squares and transparent circles indicate tests initialized with planted and random assignments respectively.
Green (light gray) points denote results for the degree-corrected blockmodel and black (dark) for the ordinary uncorrected
model. The left, middle, and right panels show the results for the two-group two-degree networks, core-periphery networks,
and hierarchical networks, respectively. The error bars indicate the standard error on the mean computed from simulations of
30 networks per data point.

and uncorrected objective functions. In the case of ran-
dom initializations, ten initializations were performed for
each network and we take the best result among the ten.

The left panel in the figure shows results for networks
with two communities and just two possible values of the
expected degree, 10 and 30. Each of the 1000 vertices
was assigned to one of the four possible combinations of
degree and community with equal probability, and the
planted structure was chosen diagonal, as in Eq. (28).

The green points in the figure indicate the perfor-
mance of the degree-corrected blockmodel, while the
black points are for the uncorrected model. Solid squares
and open circles show performance starting from the
planted community structure and random assignments
respectively. Bearing in mind that λ = 0 corresponds to
zero planted structure (in which case neither algorithm
should find any significant result) and that a normal-
ized mutual information approaching 1 indicates success-
ful detection of the planted structure, we can see from
the figure that the degree-corrected blockmodel signifi-
cantly out-performs the uncorrected one in this simple
test. As λ increases from zero, the mutual information
for all algorithms rises, but the corrected model starts to
detect some signatures of the planted structure almost
immediately and for λ = 1

2
returns a normalized mutual

information above 0.7 for both initial conditions. The un-
corrected model, by contrast, finds no planted structure
at λ = 1

2
for either initialization—including when the al-

gorithm is initialized to the known correct answer. The
reason for this poor performance is precisely because of
the variation in degrees: for values of λ up to around 0.6
the uncorrected model fits these networks better if ver-
tices are assigned to groups according to their degree than
if they are assigned according to the planted structure,
and hence the best-fit group structure has no correlation

with the planted structure.
We have also tested our blockmodels against syn-

thetic networks with two other types of structure, one
the core-periphery or approximately bipartite structure
of Eq. (29) and the other the hierarchical structure of
Eq. (30). In these examples we use a more realistic de-
gree distribution that approximately follows a power law
with a minimum expected degree of 10 and an exponent
of −2.5. For the core-periphery networks we randomly
assign vertices to one of the two groups, while for the
hierarchical networks we fix 500 vertices to be in the first
of the three groups, assign the rest randomly, and set
A = 1

4
min(κ1, κ2). (It has been suggested that choosing

non-equal sizes for groups in this way presents a harder
challenge for structure detection algorithms [33, 38].)

The performance of our blockmodels on these two
classes of networks is shown in the middle (core-
periphery) and right (hierarchical) panels of Fig. 3.
Again we see that the normalized mutual information in-
creases with increasing λ for all algorithms but that the
degree-corrected blockmodel performs significantly bet-
ter than the uncorrected model. The degree-corrected
model with planted assignments consistently does the
best among the four options as we would expect, and
the degree-corrected model with random initializations
performs respectably in all cases, although it’s entirely
possible that better performance could be obtained with
a better optimization strategy. The performance of
the uncorrected model with random initializations, on
the other hand, is quite poor [39]. But perhaps the
most telling comparison is the one between the degree-
corrected model with random initial assignments and the
uncorrected model with the planted assignment. This
comparison tilts the playing field heavily in favor of the
uncorrected model and yet, as Fig. 3 shows, the degree-
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corrected model still performs about as well as, and in
some cases better than, the uncorrected model.

V. CONCLUSIONS

In this paper, we have studied how one can incorpo-
rate heterogeneous vertex degrees into stochastic block-
models in a simple way, improving the performance of the
models for statistical inference of group structure. The
resulting degree-corrected blockmodels can also be used
as generative models for creating benchmark networks,
retaining the generality and tractability of other block-
models while producing degree sequences closer to those
of real networks.

We have found the performance of the degree-corrected
model for inference of group structure to be quantita-
tively better on both synthetic and real-world test net-
works than the uncorrected model. In networks with
substantial degree heterogeneity, the uncorrected model
prefers to split networks into groups of high and low de-
gree, and this preference can prevent it from finding the
true group memberships. The degree-corrected model
correctly ignores divisions based solely on degree and
hence is more sensitive to underlying structure.

It seems likely that other more sophisticated block-
models, such as the recently proposed overlapping and
mixed membership models, would benefit from incor-
porating degree sequences also. In applications to on-
line social network data, for example, where overlapping
groups are common, there is frequently substantial de-
gree heterogeneity and hence potentially significant ben-
efits to using a degree-corrected model.

The degree-corrected blockmodel is not without its
faults. For instance, the model as described can produce
an unrealistic number of zero-degree vertices, and is also
unable to model some degree sequences, such as those in
which certain values of the degree are entirely forbidden.
As a model of real-world networks, it may also fail to
accurately represent higher-order network structure such
as overrepresented network motifs or degree correlations.
From a statistical point of view, it is also somewhat un-
satisfactory that the number of parameters in the model

scales with the size of the network, which for example
prevents fits to a network of one size being used to gen-
erate synthetic networks of another size.

But perhaps the chief current drawback of the model
is that the number K of blocks or groups in the network
is assumed given. In most structure detection problems
the number of groups is not known and a complete calcu-
lation will therefore require not only the algorithms de-
scribed in this paper but also a method for estimating K.
Some previously suggested approaches to this problem in-
clude cross-validation [15], minimum description length
methods using two-part or universal codes [33], max-
imization of a marginal likelihood [10], and nonpara-
metric Bayesian methods. The marginal likelihood for
our degree-corrected blockmodel can be computed explic-
itly if one assumes conjugate priors on the parameters—
Dirichlet for θ and gamma for ω—but then one must
also choose the parameters of those priors, called hyper-
parameters in the statistical literature. In principle one
wants to choose values of the hyperparameters that pro-
vide asymptotic consistency—the blockmodel should re-
turn the correct number of groups when applied to a
network generated from the same blockmodel, at least
in certain limits. At present, however, it is not known
how to make this choice. An alternative possibility is
to note that the blockmodel used here is equivalent to a
model that generates an ensemble of matrices with inte-
ger entries, implying potential connections to the large
statistical literature on contingency table analysis that
could be helpful in determining the number of groups in
a principled fashion. We leave these questions for future
work.
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