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Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose

nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the

basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput

on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence

for the former while, for the latter, we find an algebraic power law between the throughput and the communica-

tion range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck

equation to explain these phenomena. Our findings provide insights into complex transportation dynamics aris-

ing commonly in natural and engineering systems.

PACS numbers: 89.75.Hc, 89.40.-a, 02.50.-r, 05.40.Fb

I. INTRODUCTION

Transportation processes are common in complex natural

and engineering systems, examples of which include trans-

mission of data packets on the Internet, public transporta-

tion systems, migration of carbon in biosystems, and virus

propagation in social and ecosystems. In the past decade,

transportation dynamics have been studied extensively in the

framework of complex networks [1–10], where a phenomenon

of main interest is the transition from free flow to traffic con-

gestion. For example, it is of both basic and practical inter-

est to understand the effect of network structure and routing

protocols on the emergence of congestion [11–19]. Despite

these works, relatively little attention has been paid to the role

of individual mobility. The purpose of this paper is to ad-

dress how this mobility affects the emergence of congestion

in transportation dynamics.

The issue of individual mobility has become increasingly

fundamental due to the widespread use of ad-hoc wireless

communication networks. The issue is also important in other

contexts such as the emergence of cooperation among individ-

uals [20] and species coexistence in cyclic competing games

[21]. Recently, some empirical data of human movements

have been collected and analyzed [22, 23]. From the stand-

point of complex networks, when individuals (nodes, agents)

are mobile, the edges in the network are no longer fixed,

requiring different strategies to investigate the dynamics on

such networks than those for networks with fixed topology.

In this paper, we shall introduce an intuitive but physically

reasonable model to deal with transportation dynamics on

such mobile/non-stationary networks. In particular, we as-

sume in our model that communication between two agents

is possible only when their geographical distance is less than

a pre-defined value, such as the case in wireless communica-

tion. Information packets are transmitted from their sources

to destinations through this scheme. To be concrete, we as-

sume the physical region of interest is a square in the plane,

and we focus on how the communication radius and moving

speed may affect the transportation dynamics in terms of the

emergence of congestion. Our main results are the following.

Firstly, we find that congestion can occur for small commu-

nication range, limited forwarding capability and low mobile

velocity of agents. Secondly, the transportation throughput

exhibits a hierarchical structure with respect to the moving

speed and there is in fact an algebraic power law between the

throughput and the communication radius, where the power

exponent tends to assume a smaller value for higher moving

speed. To explain these phenomena in a quantitative man-

ner, we develop a physical theory based on solutions to the

Fokker-Planck equation under initial and boundary conditions

that are specifically suited with the transportation dynamics

on mobile-agent networks. Our results will have direct appli-

cations in systems of tremendous importance such as ad-hoc

communication networks [24–26].

In Sec. II, we describe our model of mobile agents in terms

of the transportation rule and the network structure. In Sec.

III, we present numerical results on the order parameter, the

critical transition point and the average hopping time. In Sec.

IV, a physical theory is presented to explain the numerical

results. A brief conclusion is presented in Sec. V.

II. TRANSPORTATION RULE AND NETWORK

STRUCTURE OF MOBILE AGENTS

In our model, N agents move on a continuously square-

shaped cell of size L with periodic boundary conditions.

Agents change their directions of motion θ as time evolves,

but the moving speed v is the same for all agents. Initially,

agents are randomly distributed on the cell. After each time

step, the position and moving direction of an arbitrary agent i
are updated according to

xi(t + 1) = xi(t) + v cos θi(t), (1)

yi(t + 1) = yi(t) + v sin θi(t), (2)
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FIG. 1: (Color online) Schematic illustration of transportation pro-

cess among mobile agents. The dashed circles denote the communi-

cation range, the arrows denote the moving directions, and each agent

is specified by a number. Agents without data packets are in green

(light gray) and agents holding data packets are in red (dark gray).

The relevant communication networks are shown in the bottom.

θi(t) = Ψi, (3)

where xi(t) and yi(t) are the coordinates of the agent at time

t, and Ψi is an N -independent random variable uniformly dis-

tributed in the interval [−π, π]. Each agent has the same com-

munication radius a. Two agents can communicate with each

other if the distance between them is less than a. a, v and

L share the same units of length. At each time step, there

are R packets generated in the system, with randomly chosen

source and destination agents, and each agent can deliver at

most C packet (we set C = 1 in this paper) toward its desti-

nation. To transport a packet, an agent performs a local search

within a circle of radius a. If the packet’s destination is found

within the searched area, it will be delivered directly to the

destination and the packet will be removed immediately. Oth-

erwise, the packet is forwarded to a randomly chosen agent in

the searched area. The queue length of each agent is assumed

to be unlimited and the first-in-first-out principle holds for the

queue. The transportation process is schematically illustrated

in Fig. 1. In the left panel of Fig. 1, agent 3 and 4 can commu-

nicate with each other, where the former holds a packet. Agent

3 delivers the packet to agent 4 and then all agents move, as

shown in the right panel of Fig. 1. After the movements, all

agents randomly set new directions. There can be more than

one agent in the communication range of any agent.

The communication network among the mobile agents can

be extracted as follows. Every agent is regarded as a node

of the network and a wireless link is established between two

agents if their geographical distance is less than the communi-

cation radius a. Due to the movement of agents, the network’s

structure evolves from time to time. The network evolution as

a result of local mobility of agents is analogous to a locally

rewiring process. As shown in Fig. 1, nodes 1 and 2 are dis-

connected while node 3 and node 4 are connected at time t.
At time t + 1, nodes 1 and 2 depart from each other and be-

come disconnected while nodes 3 and 4 approach each other

and establish a communication link. Note that the mobile pro-
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FIG. 2: (Color online) The proportion of nodes P (k) as a function

of degree k for different communication radius a. The inset shows

that the relative size S of the largest connected component and the

clustering coefficient 〈E〉 as a function of communication radius a.

The number of agents is 1200, the size of the square region is L =
10, and the velocity v is 0.1. We have examined that the topological

properties are independence of v.

cess does not hold the same number of links at different time,

which is different from the standard rewiring process where

the number of links is usually fixed.

We define an agent’s degree at a specific time step as the

number of links at that moment. Figure 2 shows that the de-

gree distribution of networks of mobile agents exhibits the

Poisson distribution:

P (k) =
e−〈k〉〈k〉k

k!
, (4)

where k is the degree, P (k) is the proportion of nodes with de-

gree k and 〈k〉 is the average degree of network. As shown in

Fig. 2, the average degree 〈k〉 increases as the communication

radius a increases and the peak value of P (k) decreases as a
increases. We also investigate the relative size of the largest

connected component and the clustering properties of the net-

work in terms of the clustering coefficient. The relative size S
of the largest connected component is defined as

S =
S1

N
, (5)

where S1 and N is the size of the largest connected component

and the total network respectively. The clustering coefficient

Ei for node i is defined as the ratio between the number of

edges ei among the ki neighbors of node i and its maximum

possible value, ki(ki − 1)/2, i.e.,

Ei =
2ei

ki(ki − 1)
. (6)

The average clustering coefficient 〈E〉 is the average of Ei

over all nodes in the network. The insert of Fig. 2 shows that
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FIG. 3: (Color online) (a) Order parameter η(R) versus R for dif-

ferent values of speed v and (b) dependence of the critical Rc on v

for different communication radius a. The number of agents is 1200

and the size of the square region is L = 10. In (a), a = 1.2 and

η(R) is obtained by averaging over 105 time steps after disregarding

2 × 104 initial steps as transients. The results in both (a) and (b)

are obtained by an ensemble average of 20 independent realizations.

For each curve of a in (b), there are two fit lines. The lower and the

upper lines for each value of a are the theoretical predictions from

Eqs. (26) and (28), respectively.

S and 〈E〉 increase as the communication radius a increases.

In particular, when the value of a exceeds a certain value. e.g.,

0.4, high values of S and 〈E〉 is attained. We also note that the

motion speed does not influence the statistical properties of

the communication network at each time step, but affects the

information transmission among agents, which will be pre-

sented below. In general, the communication network caused

by limited searching area and mobile behavior is of geograph-

ically local connections associated with Poisson distribution

of node degrees and dense clustering structures.

III. NUMERICAL RESULTS

To characterize the throughput of a network, we exploit the

order parameter η introduced in Ref. [1]:

η(R) = lim
t→∞

C

R

〈∆Np〉
∆t

, (7)

where ∆Np = Np(t+∆t)−Np(t), 〈···〉 indicates the average

over a time window of width ∆t, and Np(t) represents the

total number of data packets in the whole network at time t.
As the packet-generation rate R is increased through a critical

value of Rc, a transition occurs from free flow to congestion.

For R ≤ Rc, due to the absence of congestion, there is a

balance between the number of generated and that of removed

packets so that 〈∆Np〉 = 0, leading to η(R) = 0. In contrast,

for R > Rc, congestion occurs and packets will accumulate

at some agents, resulting in a positive value of η(R). The

traffic throughput of the system can thus be characterized by

the critical value Rc which is on average the largest number

of generated packets that can be handled at each time without

congestion.

Figure 3(a) exemplifies the transition in the order param-

eter η(R) from free flow to congestion state at some critical
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FIG. 4: (Color online) (a) Critical value Rc as a function of the com-

munication radius a for different values of v. The lines are theoretical

predictions from Eqs. (26) and (28). (b) Average hopping time 〈T 〉
as a function of a for different values of v. The theoretical curves

are obtained from Eqs. (20)-(23). For v = 0.4 and v = 1, f = 1 is

used. Each data point is obtained by averaging over 20 independent

realizations.

value Rc. We find that Rc depends on both the moving speed

v and the communication radius a. Figure 3(b) shows the de-

pendence of Rc on v for different values of a. We observe a

hierarchical structure in the dependence. Specifically, when v
is less or larger than some values, Rc remains unchanged at

a low and a high value, respectively, regardless of the values

of v. The transition between these two values of Rc is contin-

uous. The hierarchical structure can in fact be predicted the-

oretically in a quantitative manner (to be described). Figure

4(a) shows the dependence of Rc on a for different values of

v, which indicates an algebraic power law: Rc ∼ aβ , where β
is the power-law exponent. We find that the power law holds

for a wide range of a and the exponent β is inversely corre-

lated with v. For example, for v = 0, β ≈ 3.5 but for large

values of v, say v = 5, we have β ≈ 2. When a reaches

the size of the square cell, Rc is close to N as every agent al-

ways stays in the searching range of all others and almost all

packets can arrive at their destinations in a single time step.

To develop a theory for the dependence of Rc on the pa-

rameters a and v, we explore another important quantity, the

average hopping time 〈T 〉 in the free flow state, where 〈T 〉
is defined as the average number of hops for all data pack-

ets from their sources to destinations. Although the free-flow

state is determined by R < Rc, where Rc is a function of the

interaction radius a, moving velocity v and delivering capacity

C, we can simply set C to be infinity to satisfy the free-flow

condition, regardless of the values of a, v and R. Because of

the absence of congestion, 〈T 〉 in the free-flow state is deter-

mined only by a and v. We can thus compute the dependence

of 〈T 〉 on a and v in the free-flow state by setting C to be in-

finity (Except the computation for 〈T 〉 in the free flow state,

C is always set to be 1 for other simulations). As we will see,

〈T 〉 can not only be calculated numerically, it is also amenable

to theoretical analysis, providing key insights into the theory

for Rc. Representative numerical results for 〈T 〉 are shown in

Fig. 4(b). We see that for large v, 〈T 〉 scales with a as a−2

and, as both v and a are increased, 〈T 〉 decreases.
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IV. THEORY

We now present a physical theory to explain the power law

behaviors associated with 〈T 〉 and then Rc. A starting point is

to examine the limiting case of v = 0, where 〈T 〉 can be esti-

mated analytically. In particular, assume that a particle walks

randomly on an infinite plane. There are many holes of radius

a on the plane. Holes form a phalanx and the distance between

two nearby holes is L. The particle will stop walking when it

falls in a hole. The underlying Fokker-Planck equation is

∂P (r, t)

∂t
= [A∇2 + U(r)]P (r, t), (8)

where P (r, t) is the probability density function of a particle

at location r at time t, A is the diffusion coefficient, U(r) is

the potential energy, U(r) = −∞ inside holes and U(r) = 0
outside holes, and P (r, t) = 0 inside holes and P (r, t) >
0 outside holes. Making use of solutions to the eigenvalue

problem:

[A∇2 + U(r)]Φn(r) = −λnΦn(r), (9)

where Φn(r) is the normalized eigenfunction and λn is the

corresponding eigenvalue, we can expand P (r, t) as

P (r, t) =
∞
∑

n=1

cne−λntΦn(r), (10)

where cn =
∫

P (r, 0)Φn(r)dr and the initial probability den-

sity P (r, 0) is distributed over a region of a typical size a. The

probability that a particle still walks at time t is:

Q(t) =

∫

P (r, t)dr =

∞
∑

n=1

cndne−λnt, (11)

where dn =
∫

Φn(r)dr. Since the n = 1 term is dominant,

we have

Q(t) ≈ c1d1e
−λ1t, (12)

which gives the average hopping time as

〈T 〉 ≈ 1

λ1

. (13)

Since

Φ1(x, y) = Φ1(x + L, y) = Φ1(x, y + L), (14)

the infinite-plane problem can be transformed into a problem

on torus:

∇2Φ1(r) = −h2Φ1(r), for a < r < b,

Φ1(r = a) = 0, Φ′
1(r = b) = 0, (15)

where b = L/
√

π and

Φ1(r) = B1J0(hr) + B2N0(hr). (16)

J0 and N0 are the first-kind and the second-kind Bessel Func-

tion, respectively, and B2 = −B1J0(ha)/N0(ha). The quan-

tity h can be obtained by

J ′
0(hb)

J0(ha)
=

N ′
0(hb)

N0(ha)
. (17)

Using

J0(x) ≈ 1 − x2

4
+

x4

64
, (18)

N0(x) ≈ 2

π
[(ln

x

2
+0.5772)(1−x2

4
+

x4

64
)+

x2

4
−3x4

128
], (19)

and combining Eqs. (9) and (15), we get λ1 = Ah2. For

∆t = 1, 〈(∆r)2〉 = a2/2, we have A = 〈(∆r)2〉/4 = a2/8
and λ1 = Ah2 = a2h2/8. Finally, we obtain 〈T 〉 as

〈T 〉 ≈ 1

λ1

=
8

a2h2
. (20)

For v > 0, P (r, t) becomes zero in the area where a hole

moves and Q(t) decays with time under two mechanisms: dif-

fusion at rate λ1 and motion of holes at the rate λw. Thus, we

have

〈T 〉 ≈ 1

fλ1 + λw

, (21)

where f is the weighting factor (0 ≤ f ≤ 1) that decreases

as v increases. Specifically, f = 1 for small v and f = 0 for

large v. The quantity λw is given by

(i) λw =

∫ vs+a

a
rΦ1(r) arccos(

r2
+v2

s
−a2

2rvs

)dr

π
∫ b

a
rΦ1(r)dr

,

(ii) λw =

∫ vs+a

vs−a
rΦ1(r) arccos(

r2
+v2

s
−a2

2rvs

)dr

π
∫ b

a
rΦ1(r)dr

,

(iii) λw =
a2

b2
=

πa2

L2
, (22)

where vs =
√

〈|v1 − v2|2〉 =
√

2v, (i) is valid for 0 < vs <
2a < b−a or 0 < vs < b−a < 2a, (ii) is valid for 2a < vs <
b−a and (iii) is for vs > b−a. For large values of v, agents are

approximately well-mixed so that we can intuitively expect

the average time 〈T 〉 to be determined by the inverse of the

ratio of the agent’s searching area and the area of the cell:

〈T 〉 ≈ L2

πa2
. (23)

The validity of this equation is supported by the fact that the

ratio of the two areas is equivalent to the ratio of the total

number of agents to the number of agents within the searching

area. The estimation of 〈T 〉 for large v is consistent with the

theoretical prediction from Eqs. (21) and (22)(iii) by inserting

f = 0. The theoretical prediction is in good agreement with

simulation results, as shown in Fig. 4(b).
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With the aid of Eqs. (20) and (23) for 〈T 〉, we can derive

a power law for Rc. In a free-flow state, the number of dis-

posed packets is the same as that of generated packets Rt in a

time interval t. For v = 0, the number of packets ni passing

through an agent is proportional to its degree. This yields

ni =
R〈T 〉tki

Σjkj

=
R〈T 〉tki

N〈k〉 , (24)

where ki is the degree of i, the sum runs over all agents in the

network, and 〈k〉 is the average degree of the network. During

t steps, an agent can deliver at most Cit packets. To avoid

congestion requires ni ≤ Cit. If all agents have the same

delivering capacity C, the transportation dynamics is domi-

nated by the agent with the largest number of neighbors and

the transition point Rc can be estimated by

Rc〈T 〉tkmax

N〈k〉 = Ct, (25)

where kmax is the largest degree of the network. Thus, for

v = 0, we have

Rc =
NC〈k〉
〈T 〉kmax

, (26)

where 〈k〉 = Nπa2/L2. Since the degree distribution follows

the Poisson distribution: P (k) = e−〈k〉〈k〉k/k!, the quantity

kmax can thus be estimated by

e−〈k〉〈k〉kmax

kmax!
≃ 1

N
. (27)

Inserting 〈T 〉, 〈k〉 and kmax into Eqs. (26), we can calculate

Rc for low moving speed v.

For large v, Eq. (26) can also be applied but kmax = 〈k〉
and 〈T 〉 = L2/πa2. Hence, Rc for large v is given by

Rc =
NC

L2
πa2. (28)

Equation (28) indicates that Rc scales with a2, which is in

good agreement with simulation results shown in Fig. 4(a).

V. CONCLUSION

In conclusion, we have introduced a physical model to

study the transportation dynamics on networks of mobile

agents, where communication among agents is confined in

a circular area of radius a and agents move with fix speed

v but in random directions. In general, the critical packet-

generating rate Rc at which a transition in the transportation

dynamics from free flow to congestion occurs depends on both

a and v, and we have provided a theory to explain the de-

pendence. Our results yield physical insights into technologi-

cal systems such as ad-hoc wireless communication networks.

For example, the power laws for the network throughput un-

covered in this paper can guide the design of better routing

protocols for such communication networks. Our findings are

relevant to the dynamics in complex systems consisting of

mobile agents, which is different from many existing works

where no such mobility is assumed.
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