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A useful perspective to take when studying anomalous diffusion processes is that of a continuous
time random walk and its associated generalized master equation. We derive the generalized master
equations for continuous time random walks that are restricted to a bounded domain and compare
numerical solutions to kernel density estimates of the probability density function computed from
simulations. The numerical solution of the generalized master equation represents a powerful tool
in the study of continuous time random walks on bounded domains.
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I. INTRODUCTION

Anomalous diffusion processes have been observed in
many applications, for example, contaminant flow in
groundwater [1], dynamic motions in proteins [2], tur-
bulence in fluids [3], and dynamics of financial markets
[4] have all been verified experimentally to exhibit char-
acteristics of anomalous diffusion; see [5] for a review.
A diffusion process is termed anomalous when the mean
square displacement satisfies

(X2(t)) = /R:C%(:v,t) de ~t7, ~y#1, (1)

unlike normal diffusion, where v = 1. In (1), v is the
probability density function of the random variable X (t),
which is the displacement of a diffusing particle at time
t. When 0 < v < 1 such a process is subdiffusive, while
~ > 1 indicates a superdiffusive process. A thorough sur-
vey of theoretical considerations for anomalous diffusion
processes can be found in [6].

One common perspective to take when studying
anomalous diffusion processes is that of a continuous
time random walk (CTRW) and its associated general-
ized master equation [6, 7]. As discussed in [6, 8, 9], this
perspective is especially useful when the diffusion process
lacks finite characteristic scales, e.g., mean square dis-
placement of a particle or the mean wait-time between
collisions. Though the relationship between CTRW in
free space and anomalous diffusion processes has been
well-studied, the same cannot be said for the subsequent
relationship on bounded domains. Of the existing re-
search, much is concerned with graphs and lattices and
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there exists comparatively little work into the general-
ized master equations for CTRW on general bounded do-
mains. Recent efforts, namely [8], however, have made
advances to remedy this by investigating certain Marko-
vian CTRW with absorbing and reflecting boundary con-
ditions. The analysis in [8] is limited in relying on special
cases so that explicit, closed-form, solutions to the gen-
eralized master equations can be found for simple one-
dimensional domains. This analysis becomes difficult
when the Markovian assumption is removed, the domains
in two and three dimensions are not simple, and the step
density is not suitably chosen, e.g., it is approximated
from data.

There is also a well-known relationship between the
generalized master equations for CTRW in free space
and fractional diffusion equations. For bounded domains,
considerably more research exists for fractional diffusion
than for integro-differential equations, such as the afore-
mentioned generalized master equations. For instance,
the paper [10] gives a probabilistic interpretation of the
Lévy-Feller fractional diffusion equation with absorbing
boundaries, where the fraction of the Laplacian is re-
stricted to a € (1,2), i.e., the cases v > 2 in equation
(1) are not considered. Other work, e.g., [11], considers
fractional diffusion equations on bounded domains with
reflecting boundaries. However, even for fractional diffu-
sion, there is little notion of general boundary conditions
outside of specialized domains, e.g., rectangles and par-
allelepipeds in two and three dimensions, respectively.

In this paper, we derive the generalized master equa-
tions for both Markovian and non-Markovian continuous
time bounded random walks (CTBRW) with either ab-
sorbing or insulated boundaries. An insulated boundary
restricts the random walker from taking a step past the
boundary, e.g., a special case of insulated boundaries is
the reflective behavior described in [8]. Boundary con-
ditions such as these appear naturally when a diffusion
process is restricted to a bounded domain, e.g., contami-



nant flow in an underground aquifer. The boundary con-
ditions for a random walker induce volume constraints
on the solution of the generalized master equation and
the resulting equations are then studied via a variational
formulation and conforming finite element method de-
scribed in [12, 13]. This computational approach allows
for the study of a wide-class of problems on nontrivial
bounded domains in two and three dimensions, a capa-
bility currently unavailable.

We demonstrate the numerical solutions to the general-
ized master equations agree with kernel density estimates
of the solution from CTBRW simulations. This renders
the aforementioned finite element formulation a powerful
tool in studying CTBRW as models of anomalous diffu-
sion because computationally intensive CTBRW simula-
tions may be avoided.

II. CTRW IN BOUNDED DOMAINS

We consider separable CTRW, i.e., wait-times are in-
dependent of the choice of step. The wait-time density is
denoted with w and the step density with J(y,z). That
is, J(y, x) is the probability density of taking a step from
y to z and, consequently, [, J(y,z)dz = 1. Note, how-
ever, that [, J(y,x)dy # 1 in general. It is well-known,
see for instance [4, 6, 14], that the probability density
function of the CTRW, u(x,t), satisfies the generalized
master equation

t
uy(z,t) = / A(t —t)Lu(z,t') dt’, (2)
0
where the Laplace transform of the memory kernel A is
2 @(Q)
A C = T =</~
=120

and we have introduced the operator
Lutet) = [ (a0 0700) = u(e0 @) an
I

The analogous operator to qu(:v,t) for a CTRW on a
lattice has been studied previously, see, e.g., [15].
For this paper, we consider two choices of A in (2):

At —t) = %5@ — ) (3a)
A(t— 1) = % exp <_%) , (3b)

which are tantamount to specifying that wait-times are
distributed as

Exp(27), i, w(t) = %exp <_%> (4a)
Camma(2,7), ie., w(t) = %exp <_§> (4b)

respectively, both of which imply finite mean wait-times.
In fact, (4a) and (4b) imply the underlying CTRW are
compound Poisson and renewal reward processes, respec-
tively. With (3), (2) reduces to

1 J
us(x,t) = ZLRu(x,t) (5a)
T 1
ug(z,t) + Eutt(:zr, t) = ZLD{u(x,t). (5b)

Since the mean wait-time is finite, (5a) and (5b) are mod-
els for either normal diffusion or anomalous superdiffu-
sion, depending on whether [, (x —y)J(y, x) dz is finite
or infinite, respectively. By selecting a heavy-tailed wait-
time density, we may obtain models for subdiffusion, nor-
mal diffusion, or superdiffusion, depending now upon the
interplay between the characteristic step-length variance
and characteristic mean wait-time. We refer the reader
to [6] for further information.

Boundary conditions for CTBRW manifest themselves
in the definition of the step density J(y,x) and are now
described. We let ¢ be a symmetric probability density
that should be interpreted as the step density in the ab-
sence of boundary conditions.

We first describe the behavior of fully absorbing
boundaries. Once a random walker reaches, or steps be-
yond, the boundary 02, he is banned from 2 for all future
time. This description gives the step density

yeQ,

o) = {qs(x—y), Ve

so that a random walker may step from y € 2 to x € R
via the radial density ¢(x — y). It is convenient then to
set u(x,t) =0 for z ¢ Q and inserting (6) into (2) gives

(6)

t
u(z,t) = / A(t — " Lou(z, t')dt’, z € Q,
0

u(z,t) =0, x ¢ Q

and, thus,
1
ug(x,t) = 2—Lg;u(x,t), reQ, (7a)
T

ug(x, t) + %utt(x,t) = %Lﬂ’éu(x,t}, zeQ.  (7b)
The equation (7a) was studied in the context of Marko-
vian CTRW in [8], while (7b) belongs to a non-Markovian
CTRW.

The case of fully insulated boundaries restricts a ran-
dom walker from reaching, or stepping beyond, 9€2. One
interpretation of this description gives rise to

J(y,z) = xa(x)d(x —y)

+0(z —y) . ¢(z —y)dz,

yeq, (8)

The step density (8) states that a random walker may
step from y € Q to z € Q via the radial density ¢(z —y).



Further, there is a nonzero probability, fR\Q o(z —y)dz,
of the walker at y € Q not taking a step. Together, these
guarantee that the random walker remains in € for all
time and, consequently, defining J(y, x) for y ¢ Q in (8)
is not required. Insertion of (8) into (2) gives

t
ut(x,t):/ At =t Lou(z,t')dt', z€Q
0

and, thus,
1
ut(x,t) = ;Lgu(:v,t), z e, (%)
T 1 )
ug(x,t) + iutt(x,t) = 2—LQu(:v,t), ze  (9b)
T

Now, we relate the equations (7) and (9) to nonlocal
boundary value problems that have been postulated and
studied in various different settings [8, 12, 13, 16, 17]. A
nonlocal boundary value problem augments (5) by con-
straining the solution on a nonzero volume, generalizing
the notion of classical boundary conditions to that of a
volume constraint. Such volume constraints need not be
relegated to the exterior of 2. We specify an initial den-
sity uo(z) on €, satisfying ug > 0 and [, uo(x) dz = 1.

The nonlocal Dirichlet boundary value problems are

1
u(z,t) = Z—Lﬂgu(x,t), x €,
T
u(z,t) =0, x ¢ Q, (10a)
u(z,0) = uo(x), x €N
and
T 1 )
ug(z, t) + §utt($7t) = ZLRu(x,t), x €,
u(z,t) =0, & Q, (10b)
’UJ(.’,E,O) = UO(x)v T e Qa
ue(x,0) =0, z € Q.

The nonlocal Dirichlet boundary condition constrains «

for x ¢ Q, analogous to the classical Dirichlet boundary

condition that does so at the points on the boundary.
The nonlocal Neumann boundary value problems are

1
ug(x,t) = ZLgu(:zr,t), x €, (11a)
u(z,0) = uo(x), x €
and
T ¢

ug(x, t) + §utt(:v,t) 5 LQu(x t), zeqQ,
(e, 0) = ug(), zeq, (11b)

w(z,0) = 0, z e

The integrals in (11), in contrast to those in (10), are
over ) rather than all of R. This implies a constraint
on diffusion so that it occurs strictly inside €2, i.e., den-
sity neither enters nor exits €2, which is analogous to the
classical Neumann boundary condition.

In summary, the descriptions of the boundary condi-
tions for the CTBRW determine J in (2) so that (2)
reduces to an appropriate nonlocal boundary value prob-
lem in (10) or (11). Evidently, these nonlocal boundary
value problems describe the time-evolution of the proba-
bility density of the state of the corresponding CTBRW.
The analysis in [12, 13] allows us to analyze (10) and
(11) via a variational formulation and conforming finite
element method so extending the class of problems com-
putationally tractable.

We simulate NV random walkers and a kernel density
estimate of u at various points in time is computed. This
kernel density estimate is compared to the finite element
solution of the associated nonlocal boundary value prob-
lem. We select ¢ to be a Lévy stable density with stability
index «, characterized via

¢(s) = F~" {exp (=€)} (s), (12)

and choose o = 3/2 and ¢ = 0.25. For simulations with
absorbing boundaries, we use ug(z) = 22 and for insu-
lated boundaries, ug(x) = 7 sin(mwz). These choices of uq,
in consideration of the respective boundary conditions,
were opportune and have no effect on our conclusions.
A walker begins at a random location zg € (0,1)
according to the initial density wg(x). For each k, a
wait-time t; is generated from w and the arrival-time
ap = ax_1 + tx is recorded. A step s is generated from
¢, the new location zp = xp_1 + si is recorded, and
then boundary conditions are imposed. For instance, if
xy, ¢ (0,1) for the case of absorbing boundary conditions,
the random walk is stopped. In the case of insulated

Insulated boundaries

apg = 0

simulate xo ~ uo(z)

for k from 1 to T
simulate ¢ ~ w(t)
ax = ax—1 + tg
simulate sy ~ ¢(s)
Tk = Tk—1 + Sk
if z, ¢ (0,1)

Tk = Tk—1

Absorbing boundaries
apg = 0
simulate xo ~ uo(z)
for k from 1 to T
simulate ¢y ~ w(t)
ar = ag—1 + 1k
simulate s ~ ¢(s)
Tk = Tkp—1 + Sk
if z, ¢ (0,1)
break
end end
end end

TABLE I: Pseudo code for simulating CTBRW.

boundary conditions, if x; ¢ (0,1), we set zx = xg_1,
i.e., the walker waits at the current position. Again, this
treatment of an insulated boundary differs from the re-
flective behavior in [8] and is merely one approach for
treating insulated boundaries. Deciding on the appropri-
ate treatment is application specific and depends largely
on the mechanism driving the CTBRW. Note that the po-
sition of the random walker is known for all time, e.g., the
walker is at position zj for the time interval [ag, ag+1)-
Data from the CTBRW simulations are used to esti-
mate the density u(x,t). Let p;(¢t) denote the i-th random
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FIG. 1: (Color Online) Panels (a)—(d) show kernel density estimates of the CTBRW simulations (solid) on ©Q = (0, 1) with
N = 8-10* and numerical solutions (dashed) of the nonlocal boundary value problems (10a)—(11b), respectively. The horizontal
axis is « and the vertical axis is the value of the density. The ten curves represent ten different values of ¢ € [0, 0.5].

walker’s position at time ¢ and partition 2 = (0, 1) into n
subintervals €2;. Then, define the kernel density estimate

n N
(1) = 3 v, (2) (% > xe (pi(t))> )
k=1 =1

Though results exist that give the “optimal” bandwidth,
i.e., h, so not to over-smooth or under-smooth the data,
it is convenient in this case to pick h to be the mesh size
induced by the finite element discretization. We denote
the numerical solutions to (10) and (11) with wup,.

We present simulation results for N = 8 - 10* random
walkers with A = 0.01 and ¢ € [0,0.5]. To produce a, vi-
sually, more pleasing comparison between uy, and py, the
kernel density estimate in (13) is plotted as a continuous
piecewise linear function by connecting the heights of pn
at each of the midpoints of the subintervals €2;. FIG. 1

shows results of the CTBRW simulations on (0, 1).

III. CONCLUSIONS

The results in Section II corroborate that the nonlo-
cal boundary value problems in (10) and (11) are indeed
the generalized master equations for CTBRW with ap-
propriate boundary conditions. Consequently, a rapid
means of investigating statistics of the CTBRW, e.g.,
exit-times, exists via finding numerical solutions to gen-
eralized master equations. and thus renders the recently
developed variational formulation and numerical meth-
ods are powerful tools. Without this capability, estimat-
ing such statistics requires simulations of the CTBRW, a
computationally demanding task.
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