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ABSTRACT:  

The molecular motor gliding assay, in which a microtubule or other filament moves 

across a surface coated with motors, has provided much insight into how molecular motors 

work. The kinesin-microtubule system is also a strong candidate for the job of nanoparticle 

transporter in nanotechnology devices. In most cases, several motors transport each filament. 

Each motor serves both to bind the microtubule to a stationary surface and to propel the 

microtubule along the surface. By applying a uniform transverse force of 4-19 pN to a 

superparamagnetic bead attached to the trailing end of the microtubule, we have measured the 

distance d between binding points (motors). The average value of d was determined as a 

function of motor surface density σ .  The measurements agree well with the scaling model of 

Duke, Holy, and Liebler, which predicts that 
2

5d σ
−

∼  if 20.05 20 mσ μ −≤ ≤  [Physical 

Review Letters 74, 330-333(1995)]. The distribution of d fits an extension of the model. The 

radius of curvature of a microtubule bent at a binding point by the force of the magnetic bead 

was ≈1 µm, 5000-fold smaller than the radius of curvature of microtubules subjected only to 

thermal forces. This is evidence that at these points of high bending stress, generated by the 

force on the magnetic bead, the microtubule is in the more flexible state of a two-state model 

of microtubule bending proposed by Heussinger, Schüller and Frey [Phys. Rev. E 81, 

021904(2010)].   

  

     PACS numbers:  87.16.Nn, 87.80.Nj 
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I. INTRODUCTION 

Gliding assays of motor proteins such as kinesin have provided much insight into how 

molecular motors work[1, 2].  There is also increasing interest in using gliding microtubules 

as molecular shuttles[3-6]. Two key parameters for both these areas are the number of motors 

n pulling the microtubule, and the distance d between the motors. For a microtubule of length 

L, n≈L/d.  The parameter d is expected to affect cooperation between motors. 

 The experimental determination of d or n in gliding assays, in bead assays, and in vivo 

remains problematic. In gliding assays, the presence of only one motor can be established if 

the microtubule is observed to swivel about a single binding point[7].  However, if the 

microtubule does not swivel, the number of active motors is not readily apparent. Microtubule 

velocity can serve as an approximate metric for n provided there is significant load per motor 

[8]. 

In bead assays, beads with 1, 2, or 3 functional motors can be prepared by changing the 

concentration of the kinesin solution in which the beads are incubated[9].  The functional 

number on a particular bead has been inferred from the stall force of the bead in an optical 

trap [10 ]. An alternative approach is to use dynamic light scattering to estimate the average 

number of motors bound to each bead, and then to determine the fraction of this average 

which, from geometric considerations, could bind to a nearby microtubule [11]. The number 
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of motors pulling a cargo in vivo has been estimated from both stall force [12-14] and cargo 

velocity [15-18]. 

In this paper, we directly determine the separation distance d between motors bound to 

a gliding microtubule. Since the length L of a microtubule is easily measured, d provides 

another route to n. It is easy to control the relative number of kinesin motors in a flow 

chamber. If N molecules are injected and all the injected motors bind to the surface of the 

chamber, the nominal surface density of motors is given by nom
N

Aσ = , where A is the surface 

area. Alternatively, the surface density can be measured by reflectometric interference 

spectroscopy[19].  However, of the total number of motors bound to the surface, only a  

fraction, roughly 10%, are functional[20]. The surface densityσ of these functional motors 

can be estimated from the landing rate of microtubules on a kinesin-coated surface[21, 22]. 

However, the scaling relation between σ and n remains untested and is not expected to be 

simply n∼σ, although this is sometimes assumed. 

 As a microtubule glides over a kinesin-coated surface, the number of motors decreases 

by one whenever a bound motor reaches the trailing end of the microtubule. Meanwhile, 

motors add at the leading end of the microtubule. How often will that occur?  In a theoretical 

paper, Duke, Holy and Liebler (DHL) suggest that “As the microtubule moves ahead, its 

leading end fluctuates laterally, so that when it has advanced a distance l from the position of 

the most recently bound motor, it will have explored an area A(l) of the surface.” [23]  

Assuming a diffusion-limited interaction between the microtubule and the kinesin molecules 
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available within area A, they suggest that the dependence of A on l breaks into three scaling 

regimes: 

Regime i arises with high kinesin surface density. The microtubule will encounter 

another kinesin quickly, so the tip length l is short. Like a short cantilever, the tip does not 

bend significantly. However, the heads of each kinesin motor are connected to the glass 

surface through an 80 nm coiled-coil, which gives the heads some lateral freedom of motion. 

so only motors located within a distance w/2 from the center of the path of the advancing 

microtubule can attach to it. Thus A ~ wl. Based on the length of the kinesin stalk, DHL 

suggest that w ≈20 nm.   

Regime ii is defined by values of l for which the microtubule tip is long enough to bend 

significantly. Assuming the tip bends like a cantilever,  A ~ l2θ , where θ  is the angle through 

which it bends due to thermal agitation.  Since θ  ~ (l/p)½, where p is the persistence length of 

the microtubule, one obtains A ~ l5/2p-½.    

Regime iii occurs when l is so long that the motion of the tip is limited by viscous 

damping of its bending motion. In regime iii, ( ) 1
2A vγ∼ , where γ is the friction factor for 

rotational motion of the microtubule and  v is the velocity of the microtubule.   

The mean distance d  between bound motors, which we measure in this paper, is 

specified in the DHL model by the condition, 

     ( ) 1A l dσ = =        ( 1) 

The scaling behavior of  d  with σ  then becomes[23]: 
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Note that d  scales differently with σ  in regimes i and ii.   

A diagram showing how the searched area A increases with l is shown in Fig. 1. Within 

this diagram, it is useful to consider the fate of a tip as it extends with a velocity v from its 

nearest binding point.  First it must pass through regime i. If σ is large, there is a high 

probability that the tip finds a motor in regime i. The value of d  is then small. Once it finds 

a motor, l resets to 0. However, if σ is small, the tip is likely to pass through regime i without 

finding a motor. Upon reaching regime ii, the probability of finding a motor increases since 
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dA/dl increases. If the tip finds a motor in regime ii, d is larger than it would 
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FIG. 1. The three regimes of the DHL model. Although we have set the boundaries 

between the regimes at 1µm and 4µm, these actually depend upon σ.   

 

be for a motor found in regime i.  Finally, if the tip reaches regime iii, even larger values of 

d  will occur. 

  The two values of σ  which define the boundaries between the 3 regimes, designated σ*   

and σ** in Eq. (2), are estimated by DHL to be given by * 220  mσ μ −≈ and ** 20.05 mσ μ −≈ .  

The scaling behavior of <d> with σ is untested.  
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 To test the scaling behavior of the model, we have measured d  over a 5-fold range in 

σ.  Gliding assays were carried out in the presence of a magnetic field which applied 4-19 pN 

force to a superparamagnetic bead attached to the (+) end of the microtubule[24]. If the 

direction of this force was 90° to the long axis of the microtubule, the microtubule 

experienced a bending moment of order 20 pN⋅µm. This exceeded the torques of random 

thermal motions by a factor of approximately 1000. The microtubule was observed to bend 

sharply around an apparent binding point fixed on the surface. If the transverse magnetic force 

remained on, the microtubule detached abruptly from the first binding point after 1-2s, 

revealing the next binding point as a new sharp bend at a different location on the surface. 

This process continued as the microtubule became detached from its initially invisible binding 

points one after another. We take the distance between these binding points as d, the distance 

between motors bound to the microtubule. A recent study of the microtubule bending under 

perpendicular electric forces has measured d from deflections of the front end, rather than the 

trailing end, of the microtubule[25].     

 In addition to testing the scaling behavior of d  predicted by the DHL theory, our 

experiments lend support to the largely untested molecular model of microtubule bending 

developed by Heussinger and coworkers [26, 27].  
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II. EXPERIMENTAL METHODS 

 

Full-length D. melanogaster kinesin-1 was prepared from plasmid pPK113 as described 

by Coy [28].  The concentration of the purified protein was 94µg/mL, based on A280 and ε280 

= 42915 M-1cm-1.  SDS-page analysis showed a single band at 115±5kDa, the expected value.  

The kinesin was flash frozen in liquid nitrogen and stored at -80C.   

Fluorescently labeled microtubules with short biotin labeled tails at their (+) ends were 

prepared in two stages as previously described[8, 29]. In the first step, 14% rhodamine labeled 

bovine tubulin was copolymerized with 86% unlabeled bovine tubulin (Cytoskeleton, Denver 

CO) for 45 minutes at 37C, giving long, fluorescent microtubules. In the second step, biotin 

labeled bovine tubulin (Cytoskeleton) was added and the sample was incubated for an 

additional 15 minutes at 37C. This step added short, biotin-labeled tails to the (+) ends of the 

pre-existing microtubules. Conveniently, the biotin-labeled tails were weakly fluorescent but 

still detectable compared to the more intensely fluorescent main portion of each microtubule.      

Upside down gliding assays were performed in rectangular glass capillaries, 0.5mm x 

0.05mm x 25mm (Vitrocom, Mountain Lakes, NJ ).  A solution consisting of 0.5mg/ml casein 

(Fisher, Atlanta, GA) in BRB80 (80mM PIPES buffer, 1mM EGTA, 1mM MgCl2, pH 6.9) 

(Sigma-Aldrich, St. Louis, M0) was flowed into the capillary to coat its inner surfaces. After 5 

minutes, a solution of BRB80 supplemented with 1mM Mg-ATP and 1.5-8.4µg/ml kinesin 
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was injected into the capillary.  The full-length kinesin molecules became bound to the 

casein-coated surfaces, presumably by their tails[30].  Following this, a solution containing 

BRB80, 1mM Mg-ATP, 30µM taxol, 5mM MgCl2, 40mM D-glucose, 0.02mg/ml catalase, 

0.04mg/ml glucose oxidase, 60mM beta-mercaptoethanol, 0.002% tubulin (as microtubules) 

and 0.0375% streptavidin-coated, 2.8µm diameter polystyrene superparamagnetic beads 

(M270, Invitrogen, Carlsbad, California) was flowed into the capillary. Some of the 

streptavidin-labeled beads became attached to the biotin-labeled tails of the microtubules. In 

most cases only a single bead attached itself. The open ends of the capillary tube were then 

sealed with biologically inert grease (Mobil FM102, Exxon-Mobil, Houston, TX) and the 

capillary was placed into the gap of an electomagnet which fitted into our microscope.   

The microscope used was a Nikon Eclipse 6000FN microscope equipped with a 60X 

water immersion objective, a rhodamine fluorescence cube, and a CCD camera (Hamamatsu 

ORCA 4742-95-12ER, Hamamatsu, Japan). The electromagnet, which replaced the standard 

microscope stage, could apply a 4-19pN force to the beads.  The pole pieces of the 

electromagnet were shaped to provide a uniform magnetic force on the beads over a 6mm 

length of the capillary tube [24].  

The nominal surface density of the motors, σnom, was calculated by assuming that every 

motor injected into the capillary became adsorbed to the casein-coated inside surface of the 

capillary. For a capillary of width W, and height H, [ ]
2( )

A
nom

WH K N
W H M

σ =
+

, where [K] is the 

concentration in g/L of injected kinesin, M is the molecular weight of the kinesin heavy chain 

dimer, 230,000 Da, and NA is Avogadro’s number.  
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III. RESULTS 

A. Detachment of microtubule from anchor points. 

When the magnet current was turned on, the bead felt a force ( )= ⋅F m B∇ , where m is 

the magnetic moment of the bead and B is the magnetic field.  Our experiments were done 

with a superparamagnetic bead in a field exceeding 0.1T. Under these conditions m saturates 

so m=F ∇Β [24]. Our magnet had a wedge-shaped gap. Although B pointed from one pole to 

the other,∇Β  and F  pointed from the wide end of the gap to the narrow end. The gap was 

shaped so that F was constant, greatly simplifying the interpretation of the experiments. The 

long axis of the capillary was aligned parallel to the direction of F. 

Microtubules were observed to glide in all directions. If a microtubule was gliding 

perpendicular to F , we frequently observed that the microtubule bent sharply around a point 

fixed on the coverslip surface, but continued to move around the fixed point like a rope going 

over a pulley attached to a wall. We call this fixed point an “anchor point” (see Figs 2, 3 and 

two supplemental movies available on EPAPS [31]).  As the microtubule continued to glide 

around the anchor point, it abruptly detached from the anchor point after ≈1s, provided the 

transverse force on the bead was greater than 4pN. After detachment, the bead moved rapidly 

in an arc around the next anchor point, pulling the newly released section of the microtubule 

behind it (Figs 2 and 3). The magnetic force detached the microtubule from its anchor points 
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one-after-another until the microtubule swiveled about the anchor point. This signaled that the 

microtubule was attached by only one motor[7].   The detachment process can be is best 

observed in the supplemental movies[31]. The leading tip of the microtubule maintained an 

average velocity of 660nm/s throughout the experiment, although the velocity decreased 

briefly immediately after detachments.  
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FIG 2. Image sequence during a gliding assay showing two anchor points and one 

detachment event. The microtubule was gliding to the right throughout the sequence.  The 

magnetic field was off in frame 1-3.  After frame 3, a 1.4A current was applied to the magnet.  
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The resultant magnetic field applied a 4 pN force to the magnetic bead[24]. The direction of 

the force on the magnetic bead is shown in frame 9. The first anchor point is visible in frame 9 

and is marked with an arrow. Between frames 9 and 27, attached kinesin motors continue to 

pull the microtubule to the right. This pulls the attached bead upward toward the 1st binding 

point. During frame 29 the microtubule detaches from the 1st anchor point and begins to show 

the location of the 2nd second anchor point.  The two arrows in frame 29 mark the locations of 

the 1st and 2nd anchor points.  The distance between the anchor points is d.  The bead 

diameter, 2.8µm, serves as an internal length scale in all frames. The images in this figure are 

part of  Popoff_movie_1.avi which can be seen on EPAPS[31]. 
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FIG. 3.   (a) Overlay of 5 frames from Fig. 2 to show the distance d between two anchor 

points. (b) Schematic of frames 1,9,27 and 31 (color online). The position of the leading end 

of the microtubule is marked by the frame number in the upper right side of the diagram.  

 The distance between anchor points was measured for injected kinesin 

concentrations of 8.3, 3.9, and 1.5µg/mL. The location of each anchor point was determined 

by postprocessing of stored images.  The distance between two anchor points was taken as d, 

the distance between functional motors.  
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B. Dependence of <d> on σnom: experiments and model 
The average values of d for injected kinesin concentrations of 8.3, 3.9 and 1.5 µg/ml 

(σnom = 508, 240, 90 µm-2) were 1.66 ± 0.18, 2.40 ± 0.10 and 3.97 ± 0.50 µm (mean ± SEM). 

The DHL theory proposes that 1~d σ − in regime i and 
2

5~d σ −  in regime ii. We first 

tested whether either prediction was met by plotting log <d>  against log σnom. The slope of 

the best line through our data was of 0.5 ± 0.1 (data not shown). This suggested that our 

experiments correspond to Regime ii. To further test this, we plotted d against σnom and 

superimposed  least-squares best-fit curves corresponding to 1~d σ −   and  2/5~d σ −  (Fig. 

4). The curve 2/5~d σ − fits the data well, indicating that our experiments fall into Regime ii.  
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FIG. 4. The average distance between anchor points plotted against σnom.  Also shown are 

best-fit curves for 1~d σ −  and 2/5~d σ − , corresponding to Regimes i and ii.  

C.  The distribution of d 
To further test how a gliding microtubule tip finds additional motors, we computed 

histograms of the measured values of d and compared them to the distributions predicted by 

an extension of the DHL model (Fig. 5). For [KHC] = 3.9 and 8.3 µg/mL, the histograms 

appear to be right skewed. However, we note that the bin at 0.5 µm may be empty only 

because detachments with  d < 0.75µm could not be observed.  
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FIG. 5. Measured and modeled distributions of the distance d.  The experimental data are 

shown as normalized histogram frequencies f for a bin width of 0.5µm. The curves (red 

online) show the normalized probability distribution R calculated by our extension of the 

DHL model (Eq. 9). The number of experimental observations in the histograms was 33, 154, 

and 20 for [KHC] = 1.5, 3.9, and 8.3 µg/mL respectively. 

   

 Following standard treatments of mean-free path [32], we extended the DHL model for 

regime ii to give distributions in d, as follows.  Let P(x) be the probability that the leading tip 
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of the moving microtubule reaches x without meeting a motor, and let Q(x)dx be the 

probability that the tip finds a motor between x and x + dx. In the spirit of the DHL model,   

 ( ) 2 ( )Q x dx z x dxσ=         (3) 

where z(x) is the half-width of the searchable area (Fig 1). 

 Knowing Q(x), one can obtain P(x): 

  ( ) ( )(1 ( ) )P x dx P x Q x dx+ = − .    (4) 

Since ( ) ( ) ,dPP x dx P x dx
dx

+ = +  this reduces to  

  ( )dP Q x dx
P

= −       (5) 

Integrating and applying the boundary condition (0) 1P = , one obtains 

  
0

( ) exp[ 2 ( ') ']
x

P x z x dxσ= − ∫ .    (6) 

Knowing P(x) and Q(x), we can determine R(x) dx, the probability that the tip meets a motor 

when its length falls between x and x + dx:   

  ( ) ( ) ( )R x dx P x Q x dx= .      (7) 

R(x) is the distribution we will compare to the measured histogram. 

 To determine a numerical value for R(x), we need z(x), the amplitude of the diffusive 

side-to-side fluctuations of the tip in the potential well which is defined by the flexural 

rigidity and the length of the tip. For a round rod of length L with one end fixed and the other 

free in a bath of temperature T with negligible density and viscosity, the mean-square 

amplitude of mode i is given by   
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3

2
4

12
3

B
i

i

k TLz
EIα

=       (8) 

where E is the elastic modulus, 2I y dA= ∫  is the cross-sectional y moment of inertia of a slice 

across the beam with unit mass per unit area, and  kB is Boltzmann’s constant [33, 34]. The 

mode amplitude factor iα  is 1.88 for the lowest-frequency mode which dominates the side-to-

side sweeping of the tip. The product EI, often called the “flexural rigidity”, equals 2.2 x 10-23 

Nm2 for taxol-stabilized microtubules [35].  Setting T = 295K, the square root of Eq. (8) 

yields 1.57.7rmsz L= with z and L expressed in meters. Thus Eqs.3 and 6 give 
3

2( ) 15.4Q x xσ=  

and
5

2( ) exp[ 6.2 ]P x xσ= −  where σ  is in m-2 and x is in m. The distribution R(x) is then given 

by 

  
5 3

2 2( ) exp[ 6.2 ]{15.4 }R x x xσ σ= − .       (9) 

Thusσ is the only variable still to be determined. 

 Our kinesin concentrations were less than 10 µg/mL or 43 nM and our measured values 

of d all exceeded 1 µm or 125 tubulin dimers along a protofilament.  Also, our injected 

concentrations are much less than 200 nM, the KD for the surface binding of a kinesin similar 

to ours [36]. As a consequence of their separation, it is unlikely that the kinesin molecules 

could interact with one another while binding to the casein-coated surface. Thus, we expect σ  

to vary linearly with σnom in our experiments. Then nomfσ σ= , where f is the “functional 

fraction” of kinesin. To find f for our experiments, we computed R(x) and <d> for the model 

with f  between 0.01 and 0.10. For each value of f, we computed the goodness of fit 
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3
2 2

1

( )obs model
i

d dχ
=

= −∑  between the observed values of d  and the values of d  

predicted by the model.  A plot of 2χ against f was parabolic with a well-defined minimum 

at 0.047 0.004f = ± . The resultant values of σ for our three kinesin concentrations 

were 4.5 0.4± , 12 1± , and 25 2± µm-2.  

 Although the value of f may appear to be low, we note that it describes the fraction of 

motors that are functional after binding to the casein surface and within the assumptions of the 

DHL model. Hunt, Gittes and Howard suggest that f is less than 0.1 [20] because many 

molecules may not bind with a favorable orientation.  In addition, our estimate assumes, with 

the DHL model, that all potentially functional motors within the area swept by the 

microtubule tip will in fact bind.   

 The distributions R predicted by the model could then be computed from Eq. (9). These 

distributions are shown as continuous curves in Fig. 5, superposed on the experimental 

histograms. The widths and shapes of the curves for the model are in good accord with the 

measured distributions, especially for the middle kinesin concentration, for which 154 

experimental points were obtained. The values of d, σnom, and σ which we have determined 

for our kinesin concentrations are summarized in Table 1 below:  

 

TABLE 1.  The distance between anchor points, nominal surface density, and 

functional surface density at 3 kinesin concentrations. 
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kinesin 
concentration 

(µg/mL) 

d  

 (µm) 

nominal surface 
density 

σnom  (µm-2) 

functional surface 
density 

σ  (µm-2) 

8.3 1.66 ± 0.18  
(n=20) 

508 25 ± 2 

3.9 2.40 ± 0.10 
(n=154) 

240 12 ± 1 

1.5 3.97 ± 0.50 
(n=30) 

90 4.5 ± 0.4 

 

  

D. The shape of bends around anchor points 

Anchor points were evident in our experiments as localized zones at which the radius of 

curvature of the microtubule was much smaller than one might expect if the microtubule 

behaved like a simple cantilever with a small force applied to its free end [34]. To be 

quantitative about this visual impression, we evaluated the radius of curvature for the 

microtubules at anchor points. The measured values were 1.07 ± 0.10 µm (n=22) for 

microtubules bent 45-135º and 0.77 ± 0.05 µm (n=7) for microtubules bent 180º around an 

anchor point (Fig 4).  For comparison, the radius of curvature of long taxol-stabilized 

microtubules under thermal forces is between 450 and 6000 µm. [35, 37-39] . It is apparent 

that the curvature distribution[40] for the microtubule shown in Figure 6 would be bimodal.  
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FIG. 6.  A microtubule with a 180° bend caused by a 4pN force acting on the bead. This 

force is directed toward the bottom of the image.  The scale bar is 5 microns. 

 

The torque and work done by the magnetic force in our experiments can be estimated 

by consideration of Fig. 7. 

 

FIG. 7.  Diagram of the motion of a bead after detachment.  The force F on the bead 

provides an initial bending moment rF. As the bead moves down, the microtubule sweeps 
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through an angle θ. At 2θ π= , the bending moment goes to zero. The deformation of the 

microtubule is localized near the anchor point, in contrast to the deformation of a simple 

cantilever with a small load applied to its tip.  

 

The work W done by F is: 

  
0

W r Fd
θ

θ ′= ×∫        (13) 

If the integral is evaluated with r=5µm, |F|=4pN and
2
πθ = ,  Eq. (13)  yields W ≈ 2 10-17 J. 

This is about 5000 times kBT at 300K.  

 The large value of W, the large initial bending moment (20 pN⋅µm), and the fact that 

the microtubule bends sharply at the anchor point but appears stiff elsewhere, all suggest that 

microtubule models appropriate for small deflections of homogeneous cantilevers [35, 41, 42] 

are inappropriate here. The sharp local bend of the microtubule is probably better understood 

within a two-state molecular model of microtubule bending proposed by Heussinger et al. [26, 

27] There, the microtubule is modeled as a bundle of cross-linked tubulin protofilaments, with 

each protofilament represented as a wormlike chain[26, 43].  Each protofilament has high 

stiffness relative to the soft crosslinks between protofilaments. Under small loads 

perpendicular to the long axis of the microtubule, the protofilaments remain coupled to one 

another, but at high perpendicular load (our situation) the protofilaments become uncoupled 

and slide past each other. For a 13 protofilament microtubule, the ratio of the bending rigidity 
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for small loads to that at large loads is estimated to be 35[27].  In our experiments, both states 

apparently occur within different regions of the same microtubule (Figure 6).  

The small radius of curvature of microtubules which we observed at anchor points most 

likely arose from the simultaneous presence of a large bending moment and a kinesin 

molecule at the point of highest bending stress.  

III. DISCUSSION 

 The binding points between a microtubule and the kinesin-coated surface over which it 

glides were revealed by a sharp bend in the normally stiff microtubule. The location of the 

bend was fixed on the surface; the microtubule continued to glide past the binding point. This 

showed that the bend was not a consequence of an imperfection in the microtubule structure. 

A microtubule became detached from its binding points if a sustained transverse force of 4-15 

pN was applied to its (+) end. After detaching from one point, the next binding point was 

revealed. We associate each binding point with a functional kinesin motor. 

 Many aspects of the detachment process are still unclear. Do detachments occur at a 

particular point in the biochemical cycles of the heads? Do they depend on ATP 

concentration? Do they depend on the rate of force application? We did determine that, at 

constant kinesin concentration (3.9µg/mL, σ=12 µm-2), the average time interval between 

detachments decreased with increasing force on the bead: 0.81s for 5.9pN, 0.52s for 12pN, 

and 0.49s for 18 pN. 

Several groups have studied the deflection of the path of gliding microtubules by 

transverse electric fields, with the goal of using molecular motors as shuttles in 
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nanotechnology applications.  Kim et al. [3, 44] observe that the leading tip because sharply 

bent under the application of an electric field. They also observe that the deflection increases 

with lower kinesin surface density and suggest that this arises from a longer free tip length 

(cantilever length) at lower kinesin concentration, as in the DHL model. Van den Heuvel et al. 

[6, 25] also studied the deflection of the path of a gliding microtubule subjected to a 

transverse electric field. They estimate that the length of the deflectable tip in their 

experiments is approximately 0.10µm.  Neither group observed detachment of the leading end 

from the nearest binding point. 

 Our measurements of d  immediately provide an approximate value for the number of 

motors n pulling a microtubule of length L: 

   Ln d≈         (14)  

For a microtubule of length 10µm gliding on a surface coated at our middle kinesin 

concentration, d = 2.4µm and thus 4n ≈ . Only 3 detachments would be required to reach 

1n = , which is easily identified by the onset of microtubule swiveling. In an earlier study of 

gliding assays against a viscoelastic load, using the same kinesin preparation used here, we 

found that the number of kinesins per unit length was 0.35 ± 0.03 µm-1 [8]. This corresponds 

to 2.9d mμ≈ . The agreement with values determined here (Table 1) is encouraging. 

 In extending the DHL model to predict the distribution of d (Fig 5), we set the value of 

the product EI of microtubules to 2.2 x 10-23 Nm2 [35]. Some studies suggest that product  

decreases 10-fold to 2 x 10-24 Nm2 for microtubules of length 3µm or less[3, 45-47]. Eq. (8) 
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shows that a 10-fold decrease in the product EI would increase the width of the search area by 

a factor of 10 . Other studies find no length dependence in EI [35, 37, 38].   

 

IV CONCLUSIONS 
  

Using video microscopy of fluorescently labeled microtubules with a magnetic bead 

attached to their (+) ends, we detected binding points of microtubules to a kinesin-coated 

surface by applying a uniform transverse force of 4-19 pN to the bead.  We suggest that each 

binding point marks the location of a motor. Then the distance between binding points 

provides a direct measure of  the distance d between motors. We found that the scaling of d  

with surface density σ fitted the predictions of the Duke, Holy, and Liebler model in regime 

ii,
2 1

5 5d pσ
−

∼ .  The measured distribution of d was also found to fit the predictions of the 

DHL model.  

The radius of curvature for our microtubules was large, as expected, except near the 

anchor point, where it was anomalously small. This is evidence, within a single molecule, for 

the two distinct states described in a molecular theory of microtubule mechanical properties 

recently proposed by Heussinger and co-workers[27].   
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SUPPORTING INFORMATION : Two movies are available on EPAPS [31]. In 

Popoff_movie_1.avi a microtubule is gliding at approximately 90º to the magnetic force.  The 

magnetic force was turned on in frame 5.  Detachments are visible in frames 29, 39, 42 and 

47. The current in the magnet was 1.4A, giving a 4 pN force.  Figs. 2 and 3 of the main text 

were obtained from this movie.  The 2.8µm diameter of the bead provides an internal size 

scale. 

Popoff_movie_2.avi shows a microtubule gliding approximately 45º from the direction 

of the magnetic force.  A current of 2A is turned on at frame 46, applying a 5.5pN force. A 

detachment event can be observed in frame 56. The microtubule swivels after frame 56.  This 

shows that the microtubule is bound by a single kinesin[21]. The 2.8µm bead diameter 

provides an internal length scale. 
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