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Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria

run to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Ad-

dressing the role of migration in biodiversity microscopically is fundamental but remains to be a challenging

problem in interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games

of cyclic competitions and find that the interplay between the migrations at the local and global scales can lead

to robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns

in the absence of any external control. The waves can emerge from either mixed populations or isolated species

in different patches, regardless of the size and the location of the migration target. We also find that, even in

a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A

surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed

synchronization, where the latter potentially enables prediction of future evolutionary dynamics. We provide a

physical theory based on the spatiotemporal organization of the target waves to explain the synchronization phe-

nomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity

through migrations. Our results are relevant to issues of general and broader interest such as pattern formation,

control in excitable systems, and the origin of order arising from self-organization in social and natural systems.

PACS numbers: 87.23.Cc, 02.50.Ey

I. INTRODUCTION

Biodiversity is ubiquitous in nature and fundamental to evo-

lution in ecosystems [1–3]. However, a significant challenge

remains in understanding biodiversity since, by the principle

of natural selection, only fitter species are supposed to be ca-

pable of surviving from interactions and competitions with

other species for limited resources. To resolve this dilemma,

evolutionary game theory [4–8] has been used as a paradigm

to address the coexistence of competing species, which is the

key to sustaining biodiversity.

A fundamental type of interactions in ecosystems is cyclic,

non-hierarchical competitions. They have been observed in a

plethora of real ecosystems ranging from microbes to mat-

ing strategies of side-blotched lizards in California [9–12].

A paradigmatic system to study the role of the competitions

in biodiversity is the classical, cyclic game of rock-paper-

scissors. One approach is macroscopic in the sense that the

mathematical models are aimed at describing the evolution

of the populations of competing species, which are assumed

to be well mixed. In this macroscopic approach, any species

is treated as a whole through its population [13–16]. An in-

teresting result from this approach is that cyclic competitions

alone are not sufficient to support species coexistence [14, 17].

The ubiquity of the coexistence phenomenon in nature sug-

gests that additional factors must exist to promote coexistence

and consequently biodiversity. To identify these additional

factors and also to capture the complex interacting dynamics

among individuals of competing species, microscopic game

models incorporating stochastic interactions on spatially ex-

tended scales have been exploited with the remarkable result

that, due to stochasticity and local interactions, coexistence

can arise even in the presence of species dispersal [12]. Since

then, the role of mobility in coexistence in microscopic game

models has been investigated [18–21], where it has been found

that strong local mobility can cause non-local interactions,

which under certain circumstances tend to hamper coexistence

through the formation of moving spiral waves of population

densities in the physical space [20]. The roles of epidemic

spreading [22] and intra-species competition [23] in species

coexistence have also been studied. A seemingly accepted

notion in the field is then that strong mobility is detrimental to

biodiversity.

In this paper, we report a phenomenon that is in sharp con-

trast to the existing notion: species migration across vast spa-

tial scales can in fact promote coexistence. Such movements

are indeed common in ecosystems [24]. To our knowledge,

prior to our work, a microscopic understanding of the effect

of large-scale migration on species coexistence was not avail-

able. Since long-distance migrations can be regarded effec-

tively as an extremely strong type of mobility, according to

the conventional wisdom, coexistence would be disfavored or

even prohibited. However, our studies have revealed, strik-

ingly, that migration favors coexistence and thereby promotes

biodiversity.

To be concrete, we consider species movements on two

distinct spatial scales: intra-patch and inter-patch migration,

and study microscopically stochastic games by focusing on

the formation and the dynamics of self-organized patterns

of species densities. As will be explained, our microscopic

model of inter-patch migration based on stochastic interac-

tions is quite different from the coupled patchy models de-

scribed by deterministic differential equations [25–30]. We

will show that the combination of intra- and inter-patch mi-
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grations can result in a robust type of coexistence character-

ized by the formation of a surprising class of target wave pat-

terns, which have been found previously in different contexts

such as excitable systems [31–35]. We find that, associated

with coexistence, synchronization and time-lagged synchro-

nization among spatial patterns in different patches emerge,

implying the persistence of coexistence. An appealing fea-

ture of time-lagged synchronization is that it can potentially

be used to predict the spatiotemporal evolution of species. We

also find that the interplay between the two types of migration

can result in a spontaneous outbreak of biodiversity in a world

of single species with rare mutations. We establish the ro-

bustness of the biodiversity-sustaining target waves with the

aid of a basic concept in nonlinear dynamics: basins of at-

traction in the phase space. All the results will be demon-

strated using systematic simulations of microscopic game dy-

namics and substantiated by theoretical analysis based on

nonlinear partial differential equations. Our results not only

provide insights into the dynamics of global oscillations in-

duced by long-distance interactions among cyclically compet-

ing species [36], but also have implications to the emergence

and maintenance of order from randomness and disorder in

natural and social systems through self-organization in the ab-

sence of any central control.

In Sec. II, we describe the spatial RPS model with both

intra- and inter-patch migrations. In Sec. III, we present re-

sults on synchronization and lag synchronization among tar-

get waves in different patches and introduce an order param-

eter to quantify the synchronization behaviors. In Sec. IV,

we provide analytical results for the observed phenomenon of

pattern synchronization. In Sec. V, we present results of out-

break of biodiversity through rare and random mutations and

explore the coexistence of target and spiral waves. In Sec. VI,

we investigate attraction basins of coexistence and extinction

in the phase space. Conclusions and discussions are presented

in Sec. VII.

II. MODEL

We consider multiple-patch systems of three subpopula-

tions (referred to as a, b and c) under both intra- and inter-

patch migrations. Within each patch, a, b and c interact with

each other according to the following rules:

ab
u−→ a∅, bc

u−→ b∅, ca
u−→ c∅, (1)

a∅
σ−→ aa, b∅

σ−→ bb, c∅
σ−→ cc, (2)

a⊙ ε−→ ⊙a, b⊙ ε−→ ⊙b, c⊙ ε−→ ⊙c, (3)

where ∅ represents empty sites and ⊙ represents any species

or empty sites. Relations (1-3) define competition, reproduc-

tion and intra-patch migration that occur at the rates u, σ and

ε, respectively. The occurrence probabilities are normalized

by (u + σ + ε). Since our focus is on the role of mobility,

we set u = σ = 1 without loss of generality. The individual

mobility is defined as M = ε(2N)−1, which is proportional

to the number of sites explored by one individual per time

step [20]. Initially, individuals are randomly located over all

FIG. 1: (Color online.) Illustration of inter-patch migration in a

two-patch ecosystem with open boundary conditions. There is a

periodic migration between two patches: at each time step nTm

(n = 1, 2, . . .), one randomly selected individual migrates from

patch A to patch B and vice versa. The migration (target) region

can be of any size and at any location in the patch. If the target area

contains several sites, we randomly pick one site. If there are more

than two patches, each migration individual first randomly chooses

a patch and then occupies a target site, regardless of the original in-

dividual at the site. The individual with inter-patch migration leaves

its site empty in the original patch.

patches, each of which is represented by a lattice of L × L
sites with open boundary conditions. At each simulation step,

a random pair of neighboring sites is selected for one type of

interactions from (1-3) according to its probability. Whether

the chosen interaction can actually occur is determined by the

states of both sites. An actual time step t is defined when each

individual has experienced interaction once on average, i.e.,

in one time step N pairwise interactions will have occurred.

Inter-patch migration is a type of long-distance species

movements among different patches. In a certain period, a

mutual migration takes place among patches, where one ran-

domly selected individual migrates from one patch to a ran-

dom location in the target region of another patch and vice

versa (see Fig. 1). To be as general as possible, we assume

that the target region can be either a single site or an area.

The speed of inter-patch migration is determined by the pa-

rameter Tm, the actual time between two successive mutual

migrations. Statistically, for Tm = 1, there are on average N
intra-patch interactions. The mobility M and the inter-patch

migration time Tm thus constitute two key parameters in the

spatial game dynamics. In addition to addressing the role of

these two parameters, we will consider the effects of multi-

ple patches and of the position and area of target region on

coexistence.

III. PATTERN FORMATION AND SYNCHRONIZATION

A. Synchronization of target waves among patches

We first study an ecosystem of two patches, where a single

target region is located at the center of each patch for inter-

patch migration. Without the migration, in each patch two

species will become extinct and only one species can prevail.

When inter-patch migration occurs, a predominant species can

arise due to the difference in the initial densities at t ≈ 2500,

as shown in Fig. 2. After this event, species superior to the

dominant one in the cyclic-competition loop appear around
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FIG. 2: (Color online.) Emergence of target waves and pattern syn-

chronization in a two-patch system with initially mixed populations

for M = 0.7 × 10−4 and Tm = 1. Each patch has size 300 × 300
and the target is at center. The initial densities of species in the first

patch are ρa = 0.6 and ρb = ρc = 0.2, and in the second patch

are ρb = 0.6 and ρa = ρc = 0.2. Red (grey), blue (dark grey)

and yellow (light grey) colors represent the three species a, b and c,

respectively, and empty sites are denoted by gray.

the target points in both patches, inducing target waves that

emanate from their respective target points and propagate out-

ward. For large times, the target waves from the two patches

tend to synchronize with each other for t & 25000. When

synchronization occurs, it can be maintained and there is then

a strong order in the system dynamics. We have examined a

three-patch system, where initially there is a single species in

each patch and a four-patch system where the target locations

deviate from the centers of patches, e.g., at the corner of each

patch (see Fig. 3). We observe synchronized target waves as

well.

The target area in each patch can have a significant influ-

ence on pattern formation and synchronization. As shown in

Fig. 4, we observe synchronization of target waves when the

target area is small. In this case, time series of the densities

of a particular species in the three patches exhibit a phase-

synchronized behavior. For a large target area, a strikingly

different type of synchronization occurs: time-delayed syn-

chronization. In this case, the time series exhibit the same

period T but there is a time lag of about T/Np among them,

where Np is the number of patches [Fig. 4(b-d)].

B. Order parameter and phase diagram

We introduce an order parameter defined by the phase dif-

ference between the species densities. Specifically, the aver-

age period can be computed by the time interval between two

neighboring peaks. Since the densities in the three patches

exhibit similar oscillatory behaviors, we can define an aver-

age period 〈T 〉 obtained from, say ρa in three patches. We

can then calculate the order parameter of phase synchroniza-

tion between each pair of patches. For example, for B and C,

FIG. 3: (Color online.) (a) Initial configuration of a four-patch sys-

tem with non-central target and (b) synchronization of target waves.

The lattice sizes of each single patch is 200 × 200. The parameters

are M = 3.2 × 10−4 and Tm = 6. Initially, three species a, b and

c populate patches A, B and C, respectively, and the fourth patch is

empty. To visualize the possible synchronization behavior, the target

is set at the corner of each patch and the target corners of the four

patches are put together. The boundaries among the four patches are

in fact disconnected. Target waves are formed in each patch but as a

quarter of a circle, in contrast to the case of central migration targets.

The target waves among different patch can still synchronize with

identical ring numbers.

the order parameter ηBC is

ηBC = 1 − 〈min(∆tBC , 〈T 〉 − ∆tBC)〉BC

〈T 〉/2
, (4)

where 〈· · · 〉BC stands for the average over all pairs of neigh-

boring peaks in B and C and the value of min(∆tBC , 〈T 〉 −
∆tBC) is less than 〈T 〉/2. If ρa’s from B and C display a

phase coherence, ∆tBC tends to zero and ηBC approaches

unity. If the phases are incoherent, ηBC tends to zero. The

overall order parameter η can be defined by the average of

order parameters from all patches:

η =
ηAB + ηAC + ηBC

3
. (5)

Lag synchronization, however, needs to be characterized by

all pairs of order parameters. Since the time delay for each

pair is T/3, for lag synchronization we have ηAB = ηAC =
ηBC = 1/3.

The order parameter enables us to quantify the dependence

of pattern synchronization on both M and Tm. As shown in

Fig. 5, for M < 2 × 10−5, target waves become unstable

and break into small spiral waves (the three insets in region I).

Once spiral waves have appeared, they are robust, making the

appearance of target waves difficult. For large values of Tm,

because of the low inter-patch migration frequency, species

coexistence in each patch is ruled out. Based on these results,

we have identified three regions in the parameter space: (I)

spiral-wave region, (II) target-wave region, and (III) extinc-

tion region. Of interest is region II, where synchronization

occurs as a result of both intra- and inter-patch migration.
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FIG. 4: (Color online). (a) Phase synchronization and (b) time-

delayed synchronization among target-wave patterns in a three-patch

system for small and large migration-target area, respectively. The

parameters are M = 0.8 × 10−4 and Tm = 1. (c) Time-delayed

synchronization for a two-patch (M = 0.6 × 10−4) and (d) a four-

patch (M = 1.2 × 10−4 and Tm = 1) system, where the evolutions

of densities of species whose distances from the central target site

are less than L/2 are displayed. The target radii for synchronization

and lag synchronization are 15 and 40, respectively, and L = 300.

C. Transition between synchronization and lag

synchronization

We have observed numerically that, as the area of the mi-

gration target region is increased, there is a transition from

pattern synchronization to lag synchronization, with the latter

meaningfully defined by the order parameters calculated from

all distinct pairs of patch combinations. To distinguish the two

types of synchronization from disorder states computationally,

we calculate the mean values of all the order parameters and

their variances, which can be justified, as follows. When syn-

chronization occurs, all order parameters obtained from dif-

ferent realizations should approach unity and their variances

are small. However, for lag synchronization, the values of all

order parameters are 1/3 with small variances as well. For a

disorder state, either the mean values are low or the variances

are large. Note that order parameters obtained from different

realizations should be treated on equal footing.

Figure 6(a) demonstrates the transition from pattern syn-

chronization to lag synchronization as the area of target re-

gion is increased. We see that, when the target is a single site,

synchronization occurs, where the order parameters have high

mean values and low variances. As the radius of the target area

is increased, the target-wave patterns in all patches degrade

and disorder appears, as reflected by the low mean values and

the high variances in the order parameters. When the radius

exceeds a critical value, synchronization returns and persists

(region I). When the radius deviates from that in the synchro-

nization region, the wave patterns become disordered again.

This situation lasts until the target radius reaches a lag syn-

FIG. 5: (Color online.) In a three-patch system, dependence of the

order parameter η on M and Tm. The radius of migration target is 10,

centered at the lattice. Three phases are identified in the parameter

space: (I) spiral waves, (II) target-wave region in which there is a

synchronization subregion, and (III) extinction region defined by the

criterion that in any patch at any time, the number of individuals in

a species is less than three. The size of each patch is 300 × 300 and

initially there is a single species in each patch.
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FIG. 6: (Color online.) For a three-patch (A, B, C) system, (a)

mean value and standard deviation of the order parameter η and (b)

the number of rings nr as a function of the radius of target region.

Parameters are L = 300, M = 0.8×10−4 and Tm = 1. Data points

are obtained from 20 independent realizations, where η = (ηAB +
ηAC +ηBC)/3 and the bars represent the standard deviations. There

are three distinct dynamical behaviors: synchronization in region I,

lag synchronization in region II, and disorder in other regions.

chronization region (region II) characterized by a mean value

of 1/3 in the order parameters with low variances. The lag

synchronization region is relatively wide. For example, even

when the target radius reaches 1/3 of the half length of the

square lattice, lag synchronization still occurs.

We are thus led to explore the dependence of the number of

rings on the radius of migration target for fixed values of intra-

and inter-patch migration parameters. As shown in Fig. 6(b),

there is apparently a correlation between the synchronization

behavior and the number of rings. In particular, in the syn-

chronization region, the number of rings is in the range be-

tween 3 and 6; while for lag synchronization the number is
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FIG. 7: (Color online.) Schematic patterns for two patches in syn-

chronization, where Lr defines the average length of rings.

less than 3. Disorder arises when the number of rings in the

target waves is more than 6.

IV. PHYSICAL THEORY

A. Number of rings associated with synchronization

To gain further insights into pattern synchronization, we

study the number of rings nr associated with the target waves

when synchronization occurs. Without loss of generality, we

consider two patches A and B, as shown in Fig. 7. In each

patch, the central species a is surrounded by b and b is sur-

rounded by c. The average length Lr of an arbitrary species

in A is

Lr = TV =
TmV

〈ρB(c)〉 − 〈ρB(b)〉 , (6)

where V is the front propagation velocity of target waves and

T is the time interval between two successful inter-patch mi-

grations between two patches. Note that, only when species

c moves to the migration target can a new ring be gener-

ated. Because, at each time step, the individual that exe-

cutes actual migration is random, the time interval T for patch

A is determined by the average species densities 〈ρB(c)〉
and 〈ρB(b)〉 in patch B from which individuals migrate, and

vice versa. Given the lengths of the rings, nr is given by

nr = L/(
√

2Lr).
Since V does not depend on the inter-patch migration pa-

rameter Tm, the front propagation velocity V can be obtained

by casting the cyclically competing game in the framework of

complex Ginzburg-Landau equation (CGLE) [20]:

∂tz(r, t) = M∆z(r, t) + (c1 − iω)z(r, t)

− c2(1 − ic3)z(r, t) |z(r, t)|2 , (7)

which is obtained by inserting the spatial diffusion term into

the rate equations. The CGLE describes the dynamical be-

havior of spatial patterns in a single patch in the absence of

inter-patch migration. The spreading velocity of the propa-

gating wave fronts can be determined by linearizing the CGLE

around the unstable point z = 0 [37]:

∂tz(r, t) = M∆z(r, t) + (c1 − iω)z(r, t) + o(z2). (8)

Performing the Fourier transform

z̃(k, Ω) =

∫ ∞

−∞

drdt z(r, t)eik·r+iΩt

and substituting the inverted transform

z(r, t) =

∫ ∞

−∞

dkdΩ z̃(k, Ω)e−ik·r−iΩt (9)

into the linearized CGLE, we obtain, for the left-hand side,

∂tz(r, t) = −iΩz(r, t). (10)

The right-hand side of CGLE is equal to

M∆z(r, t) + (c1 − iω)z(r, t) = (−Mk2 + c1 − iω)z(r, t).
(11)

Equating the two sides, we obtain

Ω(k) = ω + i(c1 − Mk2). (12)

The spreading velocity can be obtained by applying the

saddle-point approximation (also known as the stationary

phase or steepest descent approximation) [38]. In particular,

for a saddle point k∗, we have

V ≡ dΩ(k)

dk

∣

∣

∣

∣

k∗

=
ImΩ(k∗)

Imk∗
. (13)

The solution to the saddle point k∗ is found to be k∗ =

i
√

c1/M . Thus, the spreading velocity is obtained as

V = 2
√

c1M, (14)

where the coefficients c1 is

c1 =
uσ

2(3u + σ)
. (15)

Due to pattern synchronization, the densities of species in

patch A and patch B are identical:

ρA(b) = ρB(b) and ρA(c) = ρB(c), (16)

we can then estimate the densities of species b and c in patch

A during the propagation of the central ring occupied by a
from zero to the length Lr. The average density of c reads:

〈ρA(c)〉 =

∫ 2Lr

Lr

π(x + Lr)
2 − πx2

L2

1

Lr
dx =

4πL2
r

L2
. (17)

Analogously, the outer boundary of species b to the center

ranges from 0 to Lr, yielding

〈ρA(b)〉 =

∫ Lr

0

π(x + Lr)
2 − πx2

L2

1

Lr
dx =

2πL2
r

L2
. (18)

Inserting 〈ρA(c)〉 and 〈ρA(b)〉 into Eq. (6) yields

nr =
L√
2Lr

=

(

2Tm

πL

√

uσ

3u + σ
M

)−1/3

. (19)

The analytical result agrees reasonably well with numerical

simulations, as shown in Fig. 8(a).
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FIG. 8: (Color online.) For a three-patch ecosystem, (a) the depen-

dence of the number of rings on Tm in the synchronization regime

for M = 10−5 and (b) simulation and theoretical boundary between

the target-wave and extinction regions in the parameter space. The

curve in (a) is the theoretical results from Eq. (19) and the curve in

(b) represent the estimate from Eq. (24).

FIG. 9: (Color online.) For a three-patch ecosystem, schematic illus-

tration of patterns associated with the extinction state. In this route,

there is still lag synchronization.

B. Boundary of between coexistence and extinction region

The number of rings associated with a target-wave pat-

tern turns out to be a useful indicator to understand the co-

evolutionary spatiotemporal dynamics. For example, based

on this number, we can estimate the boundary between target-

wave and extinction regions in the parameter space [Fig. 8(b)].

To demonstrate this, we consider a three-patch system. With-

out loss of generality, we can express the ring length in patch

A as

LA
r =

Tm
1

2
[〈ρB(c) + ρC(c)〉 − 〈ρB(b) + ρC(b)〉]V. (20)

In the lag-synchronization state, we have 〈ρB(c)+ρC(c)〉 = 1
and 〈ρB(b) + ρC(b)〉 = 〈ρB(b)〉 (Fig. 9). For the extinction

state, the length of a ring in patch A satisfies the condition

LA
r (a) >

√
2L

4
, (21)

when a reaches the corners of the lattices. During this process,

the quantity 〈ρB(b)〉 can be approximately calculated by

〈ρB(b)〉 ≈
∫

√
2/2

0

πx2

L2

1
√

2

2
L

dx. (22)

FIG. 10: (Color online.) In a two-patch system, outbreak of bio-

diversity from random, rare mutations in a single species world for

M = 0.7 × 10−4 and Tm = 2. Each lattice size is 200 × 200 with

a central target region, and the mutation probability for each individ-

ual is 10−7 at each time step. The quantity ρmin is defined as the

density of the least frequent species in a patch, averaged over the two

patches. Synchronized target waves are associated with the outbreak

of biodiversity.

The parameter boundary between the target-wave and extinc-

tion regions can then be obtained by inserting Eq. (22) into

Eq. (20) and setting LA
r (a) =

√
2L/4:

√
2L

4
=

Tm
1

2
(1 − 〈ρB(b)〉)2

√

uσ

2(3u + σ)
M, (23)

which yields

Tm ≈ 1

4

(

1 − π

6

) 1√
M

, (24)

for u = σ = 1 and L = 1. This theoretical estimate of

the boundary agrees reasonably well with that from direct

stochastic simulations, as shown in Fig. 8(b).

V. OUTBREAK OF BIODIVERSITY AND COEXISTENCE

OF DIFFERENT WAVE PATTERNS

A. Outbreak of biodiversity through rare and random

mutations

An interesting issue is whether the combination of two

types of migrations can induce a spontaneous outbreak of bio-

diversity from rare mutations in a single species world. To ad-

dress this issue, we consider as an illustrative example a two-

patch ecosystem and assume initially identical single species

in both patches. We randomly reset the state of each indi-

vidual with a small probability p to mimic the effect of ran-

dom mutations that introduce two additional species in each

patch. The three species then interact with each other cycli-

cally, with migration occurring at all time. We then examine

the spatial patterns and the lowest density ρmin of species in

each patch, a near-zero value of which would indicate extinc-

tion. As shown in Fig. 10, after a relatively long transient

time, a sudden change from zero in ρmin occurs, signifying
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FIG. 11: (Color online.) Coexistence of target and spiral waves for

a two- and a four-patch system with central targets. For the two-

patch system, species are mixed initially with the parameters M =
0.6 × 10−4 and Tm = 1. For the four-patch system, three species

populate three patches, respectively, while the fourth patch is empty

initially. The initial configuration except the position of target is the

same as that of Fig. 3. The parameters are M = 1.2 × 10−4 and

Tm = 1. The lattice size of each patch is 300× 300.

FIG. 12: (Color online.) For a three-patch system, multi-target waves

for M = 0.8 × 10−4 and Tm = 1. In each patch, there are two

migration targets with the coordinates (L/2, L/4) and (L/2, 3L/4),

respectively. The lattices size is 300× 300.

coexistence. Accompanying this are target wave patterns in

both patches, ensuring persistence of all three species. This

outbreak of biodiversity is triggered by the occasional appear-

ance of new species in a patch as the result of mutation. Once

there are three species in a patch, with non-zero probability,

inter-patch migration can induce target waves which, in turn,

warrant coexistence of all three species. In contrast, with-

out inter-patch migration (effectively a single-patch environ-

ment), even though three species can occasionally appear si-

multaneously, the large differences among their densities will

lead quickly to a predominant species, excluding the other two

species, as represented by the small fluctuations of ρmin about

zero. Species coexistence can hardly be sustained without

inter-patch migration even in the presence of random muta-

tions.

B. Coexistence of different waves and multi-target waves

We have observed the coexistence of target waves and spi-

ral waves in different patches, which can occur regardless of

the initial distributions of the populations. The coexistence

is stable in the sense that the patterns are formed rapidly and

each wave type cannot assimilate the other, as exemplified in

Fig. 11. For the two-patch case, there is a spiral-wave basin

in the phase space if the initial densities of the three species

are close to each other. The coexistence of spiral and target

waves occurs near the boundary of the spiral-wave basin. For

the four-patch case in Fig. 11, spiral waves can be formed in

the initially empty patch but never in other patches that are ini-

tially occupied by species. For the empty patch (patch D), due

to the inter-patch migrations from other three patches, three

species can be mixed around the migration target. There is

thus a finite probability to form spiral waves centered at the

target, as shown in Fig. 11. However, due to the randomness

in the inter-patch migration, around the target point at patch

D, the density differences among the three species can lead to

a predominant species before the occurrence of spiral waves.

In this scenario, the predominant species will spread fast to

the whole patch and the three species are unable to interact

with each other sufficiently strong at the migration target to

generate spiral waves. We have observed that the spiral waves

in patch D do not affect the synchronization of target waves

among the other patches. It is noteworthy that an empty patch

is a necessary condition for the birth of spiral waves in the

case where other patches are of single species initially.

If there are more than one migration target region in a patch,

multi-target waves can arise, as demonstrated in Fig. 12 for a

three-patch system. There are two migration targets in each

patch that is populated initially by a single species. We ob-

serve two coexisting target waves, each centered at a target

region, forming an “eight” shape. Multiple target waves in

a common patch are always synchronized. These behaviors

have also been observed for three- and four-patch systems.

VI. BASINS OF SPECIES COEXISTENCE AND

EXTINCTION

The basin of a final state is all initial configurations that

lead to the state. In nonlinear dynamics, basins of attrac-

tion and the boundaries among them are a fundamental issue

[39, 40]. Consider again a two-patch ecosystem. A phase

space can be defined by the initial densities of the three pop-

ulations in both patches: [ρA(a), ρA(b), ρA(c)] and [ρB(a),
ρB(b), ρB(c)]. Since the phase space in terms of the popula-

tion densities is six-dimensional, it is necessary to examine a

reduced subspace for visualization and analysis. We choose

the subspace defined by ρA(a) = ρB(b), ρA(b) = ρB(c) and

ρA(c) = ρB(a). In patch A (or B), the densities of the three

species satisfy the constraint ρ(a) + ρ(b) + ρ(c) = 1 − ρ0,

where ρ0 is the fraction of the empty sites. This conserva-

tion relation defines a triangular region in the plane, making

the reduced phase space S2 where the coordinates of a point

represent a group of three initial densities, and we can assign

a color to a point in S2 according to the resulting final state.

Moreover, we also investigate the convergence time tc, which

provides additional information for the basins.

For the two-patch system with both intra- and inter-patch

migration, there are six different evolutionary steady states

defining six distinct basins including three extinction and

three coexistence basins distinguished by the three combina-
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FIG. 13: (Color online.) For a single-patch and a two-patch system, basins of extinction, target waves and spiral waves, where the size of each

patch is 200 × 200. There are six different evolutionary steady states: three extinction states, a double spiral-wave state, one spiral- and one

target-wave state, and a double target-wave state. They are distinguished by different colors. For the single patch (the leftmost column), all the

basins exhibit a rotational symmetry around the center point (M = 10−4). As M is increased, the area of the coexistence basin is reduced,

e.g., M = 3.0× 10−4. The bottom panels for the single patch show the inverse 1/tc of the convergence time tc for different initial densities

of species. For the two-patch system (the 2nd-4th columns), a vast area of target wave basins can arise, promoting biodiversity. Note that the

extinction basins appear clockwise compared to the basins in a single patch.

tions of target and spiral waves. All three coexistence states

are stable and determined by the initial configurations for

fixed M and Tm. It can be argued that the state where two

patches are occupied by two different species, respectively, is

unstable, and identical single species in two patches is the ex-

clusive extinction state, as follows. Without loss of generality,

suppose that patches A and B are full of species a and b, re-

spectively. Due to the cyclic competition and the presence of

inter-patch migration, after individuals from a migrate from

A to B, species b in patch B will begin to die and eventually

become extinct and patch B will be occupied by species a.

Since there exist competitions between any two species, there

can be only one species surviving in two patches as extinction

occurs.

For comparison, we have also mapped out the basins for

a single-patch system in the presence of intra-patch migra-

tion. Basins for one-patch and two-patch systems with dif-

ferent values of M and Tm are shown in Fig. 13. For the

one-patch system (leftmost column), for small values of M ,

e.g., M = 10−4, there is a spiral-wave basin at the center of

the phase space S2, surrounded by three entangled extinction

basins. The areas of the spiral-wave as well as the extinction

basins are determined by the mobility M . The spiral-wave

basin is the sole coexistence basin, which arises when the ini-

tial densities of three species are sufficiently close. As M
is increased, the coexistence basin shrinks, accompanied by

the expansion of the three extinction basins, which is consis-

tent with the previous results that strong local mobility hin-

ders coexistence [18–21]. When M exceeds a critical value

4.5× 10−4, the coexistence basin vanishes and biodiversity is

lost.

In addition to basins characterized by final steady states,

we also exploit the extinction time tc to describe the basins

of singe patch, as shown in the bottom panels. We see that in

the coexistence basin, tc → ∞ and 1/tc → 0. In the vicinity

of the boundary of two extinction basins, 1/tc dramatically

changes in two basins, and in each extinction basin, 1/tc tends

to decrease when rotating toward the center. The quantity 1/tc
thus provides further information about the dynamics inside

basins in addition to the description of final stable states.

For the two-patch system (the 2nd-4th columns), the basins

are characteristically changed as compared with the one-patch

case. For example, for M = 10−4, when the frequency of

inter-patch migration is high, e.g., Tm = 1, a vast area of

double target-wave basin emerges in the phase space, whereas

extinction basins can hardly be observed. At the center, the

double spiral-wave basin is preserved, surrounded by the one

spiral- and one target-wave basin. We see that coexistence

is enhanced considerably by inter-patch migration, as charac-

terized by the presence of a vast area of coexistence basins,

regardless of the heterogeneity in the initial population densi-

ties. This is a surprising feature as population heterogene-

ity has been thought to be disadvantageous for species co-

existence. When the period of inter-patch migration is in-

creased, e.g., Tm = 15, small areas of extinction basins in-

side the vast target-wave basin arise with a rotational sym-

metry. We can expect that, when Tm becomes increasingly

large, the basin structure in the two-patch system tends to the

structures from the one-patch system. For large values of M ,

e.g., M = 3.0 × 10−4, for the single patch, the coexistence
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basin nearly vanishes; while for the two-patch system with

Tm = 1, a double target-wave basin arises in the central area

and along the boundary among different extinction basins. For

low frequency of inter-patch migration, e.g., Tm = 15, the

double target-wave basin only exists at the center. Although

the basin structure can be dramatically changed with respect

to the inter-patch migration, the rotational symmetry is always

preserved.

VII. CONCLUSIONS AND DISCUSSIONS

Our results demonstrate that the interplay between intra-

and inter-patch migrations in multi-patch ecosystems under

cyclic competition can lead to remarkable target-wave pat-

terns originated from stochastic interactions. These self-

organized waves can emerge either from mixed populations or

from single species in individual patch in the absence of exter-

nal control. Target waves can form regardless of the area and

the position of the migration target and the number of patches.

Moreover, multi-target waves can be induced by multiple mi-

gration targets in a single patch and, target waves and spiral

waves can coexist stably. Strikingly, for proper combination

of intra- and inter-patch migration rates, synchronization and

lag synchronization of target-wave patterns among different

patches can occur, depending on the area of the migration tar-

get. Analytic insights into the synchronization dynamics has

been obtained through the dependence of the number of rings

associated with target waves on the migration parameters. Our

computations have also revealed the phenomenon of outbreak

of biodiversity from single species through rare mutations.

The mapping of the basin structure in a proper phase space

provides further support for the robustness of target waves in

sustaining species coexistence, where both biodiversity and

extinction basins typically exhibit rotational symmetry in the

simplex S2.

It is noteworthy that the synchronization phenomena re-

sulting from stochastic interactions at the microscopic level

can have important applications. On the one hand, pattern

synchronization stabilizes species persistence in a remarkable

order, in contrast to viewing population synchronization as a

cause of global population extinctions. On the other hand, the

lag synchronization enables possible prediction for the future

spatiotemporal evolution of species based on current dynami-

cal behavior in an arbitrary patch. In particular, due to the na-

ture of lag synchronization, the spatiotemporal feature at the

present in one patch will be experienced by others in a future

time. This can be extremely useful for anticipating evolution-

ary dynamics in ecosystems and developing effective control

strategy in advance to protect species diversity.

The outbreak of biodiversity via target-wave pattern from

single species with rare mutations demonstrates the robustness

of target waves in facilitating species coexistence. This phe-

nomenon also provides a possible approach to the exploration

of species in history. The combination of simple migration

behaviors and natural selection, two typical mechanisms for

self-organization, can successfully support species balances

in nature.

Our results are also relevant to the origin of order [41], a

significant issue in nature and society, which has been discov-

ered in Boolean dynamics for modeling regulatory networks.

There exist periodic attractors in the phase space that lead to a

number of periodic dynamical behaviors. In our study, both

spatial and temporal orders emerge from disordered states,

even from single species in a noisy world, as the result of two

types of migrations and stochastic interactions. When syn-

chronization occurs, time evolutions of species densities be-

come approximately periodic and, spatially, the target waves

in different patches exhibit identical length of rings. Migra-

tions over distant space provide an alternative route to the

emergence of spatiotemporal order in addition to Boolean dy-

namics.

Acknowledgement

This work was supported by AFOSR under Grant No.

FA9550-10-1-0083, by NSF under Grants No. BECS-

1023101 and No. CDI-1026710, by a seed grant from the Na-

tional Academies Keck Futures Initiative (NAKFI) on Com-

plex Systems, by BBSRC under Grants No. BB-F00513X

and No. BB-G010722, and by the Scottish Northern Research

Partnership.

[1] R. M. May, Stability and Complexity in Model Ecosystems

(Princeton University Press, Princeton, N.J., 1973).

[2] D. Tilman and S. Pacala, pp. 13-25 in Species Diversity in Eco-

logical Communities, eds. R. E. Ricklefs and D. Schluter (Univ.

Chicago Press, Chicago, 1993).

[3] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-

tion Dynamics (Cambridge University Press, Cambridge, Eng-

land, 1998).

[4] J. Maynard Smith, Evolution and the Theory of Games (Cam-

bridge Univ. Press, Cambridge, 1982).

[5] K. Sigmund, Games of Life (Oxford Univ. Press, Oxford, 1993).

[6] A. M. Colman, Game Theory and its Applications in the So-

cial and Biological Sciences (Butterworth-Heinemann, Oxford,

1995).

[7] M. A. Nowak, Evolutionary Dynamics (Belknap Press, Cam-

bridge, Massachusetts, 2006).
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