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Abstract

The densest local packings of N three-dimensional identical nonoverlapping spheres within a

radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up

to N = 1054. In the predecessor to this paper [A.B. Hopkins, F.H. Stillinger and S. Torquato,

Phys. Rev. E 81, 041305 (2010)], we described our method for finding the putative densest

packings of N spheres in d-dimensional Euclidean space R
d and presented those packings in R

2

for values of N up to N = 348. We analyze the properties and characteristics of the densest

local packings in R
3 and employ knowledge of the Rmin(N), using methods applicable in any d,

to construct both a realizability condition for pair correlation functions of sphere packings and an

upper bound on the maximal density of infinite sphere packings. In R
3, we find wide variability in

the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral

and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near

a central sphere to minimal-energy configurations of N + 1 points interacting with short-range

repulsive and long-range attractive pair potentials, e.g., 12−6 Lennard-Jones, and find that they

are in general completely different, a result that has possible implications for nucleation theory.

We also compare the densest local packings to finite subsets of stacking variants of the densest

infinite packings in R
3 (the Barlow packings) and find that the densest local packings are almost

always most similar, as measured by a similarity metric, to the subsets of Barlow packings with

the smallest number of coordination shells measured about a single central sphere, e.g., a subset of

the FCC Barlow packing. Additionally, we observe that the densest local packings are dominated

by the dense arrangement of spheres with centers at distance Rmin(N). In particular, we find two

“maracas” packings at N = 77 and N = 93, each consisting of a few unjammed spheres free to

rattle within a “husk” composed of the maximal number of spheres that can be packed with centers

at respective Rmin(N).

PACS numbers: 61.46.Bc, 61.43.-j, 68.08.De, 82.60.Nh
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I. INTRODUCTION

A packing is defined as a set of nonoverlapping objects arranged in a space of given di-

mension d. One packing problem in d-dimensional Euclidean space R
d that has not been

generally addressed is that of finding the maximally dense (optimal) packing(s) of N nonover-

lapping d-dimensional spheres of unit diameter near (local to) an additional fixed central

sphere such that the greatest radius R from any of the surrounding spheres’ centers to the

center of the fixed sphere is minimized. This problem is called the densest local packing

(DLP) problem [1], and the minimized greatest radius associated with number of spheres N

is denoted by Rmin(N). In various limits, the DLP problem encompasses both the kissing

number and (infinite) sphere packing problems [2]. The former is a special case of the DLP

problem in that the kissing number Kd, or number of identical d-dimensional nonoverlapping

spheres that can simultaneously be in contact with (kiss) a central sphere, is equal to the

greatest N for which Rmin(N) = 1, and the latter is equivalent to the DLP problem in the

limit that N → ∞.

The DLP problem for 13 spheres in R
3 dates back to a debate between Newton and

Gregory in 1694. Newton believed that only 12 identical spheres could simultaneously

contact a central same-size sphere, while Gregory believed the correct number to be 13. The

first rigorous proof that Newton was right came in 1953 [3], followed by a more concise proof

in 1956 [4]. However, the question remains: how close can 13 identical spheres come to a

central same-size sphere - how good was Gregory’s guess? In another paper [1], we showed

that for any d, the DLP optimal packings in R
d with Rmin(N) ≤ τ , τ = (1 +

√
5)/2 ≈ 1.618

the golden ratio, include packings where all N sphere centers lie on a spherical surface of

radius Rmin(N). The smallest radius spherical surface onto which the centers of 13 spheres

of unit diameter can be placed is strongly conjectured to be R = Rmin(13) = 1.045573 . . . ,

with the centers arranged in a structure first documented in [5]. It appears that though

Gregory was incorrect in conjecturing K3 to be 13, his guess wasn’t particularly far-off.

For each N in the DLP problem in R
d, there is a single optimal Rmin(N), though generally

for a given N there can be multiple distinct packings that achieve this radius. In the

predecessor to this paper [6], hereafter referred to as paper I, we studied the optimal packings

and corresponding Rmin(N) for the DLP problem in R
2 for N = 1 to N = 109 and for N

corresponding to full shells of the triangular lattice from N = 120 to N = 348. We also
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discussed the general concepts and applications associated with DLP optimal packings for

arbitrary N and d.

In paper I, we reported that a majority of the DLP optimal packings in R
2 contain

rattlers, or spheres (disks) that can be displaced in at least one direction without increasing

Rmin(N) or displacing any other sphere (disk) in the packing (i.e., a rattler is a sphere (disk)

that is not locally jammed [34, 35]). Further, we found that many optimal packings contain

cavities at their centers in which the central disk, were it not fixed, could move freely (as a

rattler, or object in a packing that can be displaced without displacing any other objects or

the packing boundary). The optimal packings in R
2 also exhibit a wide range of rotational

symmetries, particularly for smaller N , and packings of N spheres from certain classes such

as the curved [7] and wedge hexagonal packings were found to be optimal at various N . We

additionally observed that as N grows large, disks in the bulk (as opposed to on the surface)

of DLP optimal packings are largely arranged as subsets of the densest infinite packing in

R
2, i.e., with centers on the sites of the triangular lattice, whereas disks farthest from the

central sphere (centers at distance Rmin(N)) tend to form circular rings.

The DLP problem is related to problems of finding arrangements of N + 1 points

rN+1 ≡ r1, r2, . . . , rN+1 that minimize potential energy. Defining the DLP potential en-

ergy as the negative of the density of N +1 spheres (including the central sphere) contained

completely within the encompassing sphere, a sphere of radius R+1/2 centered on the central

sphere, the DLP problem becomes a minimal-energy problem with the pair potential between

points (sphere centers) exhibiting features of long-range attraction and infinite short-range

repulsion. Comparisons between DLP optimal packings and minimal-energy configurations

for N + 1 points with pair potentials exhibiting similar features of long-range attraction

and short-range repulsion indicate that, though minimal energies for certain values of N are

similar, optimal configurations of points (sphere centers) are in general completely different.

This finding could have implications for nucleation theory, as is discussed in more detail in

Secs. IV and VI.

The DLP problem is relevant to the realizability of functions that are candidates to be the

pair correlation function of a packing of identical spheres. For a statistically homogeneous

and isotropic packing, the pair correlation function is denoted by g2(r); it is proportional

to the probability density of finding a separation r between any two sphere centers and

normalized such that it takes the value of unity when no spatial correlations between cen-
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ters are present. Specifically, no function can be the pair correlation function of a point

process (where a packing of spheres of unit diameter is a point process with a minimum pair

separation distance of unity) unless it meets certain necessary, but generally not sufficient,

conditions known as realizability conditions [8–10]. Two of these conditions that appear to

be particularly strong for the realizability of sphere packings [11] are the nonnegativity of

g2(r) and its corresponding structure factor S(k), where

S(k) = 1 + ρh̃(k) (1)

with number density ρ and h̃(k) the d-dimensional Fourier transform of the total correlation

function h(k) ≡ g2(r) − 1.

Knowledge of the maximal number of sphere centers that may fit within radius R from

an additional fixed sphere’s center, where that maximal number, denoted by Zmax(R), is

equal to the greatest N in the DLP problem for which Rmin(N) ≤ R, may be employed to

construct a third realizability condition, called the Zmax condition [1, 12, 13, 15], on g2(r).

This condition is written

Z(R) ≤ Zmax(R), (2)

where Z(R) is defined for a statistically homogeneous packing as the expected number of

sphere centers within distance R from an arbitrary sphere center. The function Z(R) can

be related to the pair correlation function g2(r), where for a packing of spheres with a pair

correlation function g2(r) that is direction-dependent, g2(r) is the directional average of

g2(r), by

Z(R) = ρs1(1)

∫ R

0

xd−1g2(x)dx. (3)

In Eq. (3), ρ is the constant number density of sphere centers and s1(r) is the surface area

of a sphere of radius r in R
d,

s1(r) =
2πd/2rd−1

Γ(d/2)
. (4)

As was discussed in previous papers [1, 12], the Zmax realizability condition has been shown

to encode information not included in the nonnegativity conditions on pair correlation func-

tions and their corresponding structure factors alone.

The maximal infinite-volume packing fraction φ∞
∗ of identical nonoverlapping spheres in

R
d can be bounded from above by employing knowledge of the optimal Rmin(N) in the DLP
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problem, where a packing fraction is the fraction of a given space covered by nonoverlapping

objects. As was discussed in paper I, an upper bound is constructed by measuring the

packing fraction φ(R+1/2) as the fraction of the volume of the encompassing sphere covered

by the N + 1 spheres of unit diameter,

φ(R + 1/2) =
N + 1

(2R + 1)d
= ρ

πd/2

2dΓ(1 + d/2)
. (5)

In the first equality in (5), R is the greatest radius from any of the N surrounding spheres’

centers to the center of the central sphere, and in the second equality, the number density ρ

is the fraction of a sphere of radius φ(R+1/2) covered by the N +1 spheres of unit diameter

and Γ(x) is the standard gamma function.

For small numbers of spheres (N ≤ 1200) in low dimensions (d ≤ 10), an algorithm

combining a nonlinear programming method with a stochastic search of configuration space

can be employed on a personal computer to find putative solutions to the DLP problem.

The accuracy of the solutions found by such an algorithm is bounded only by a machine’s

precision, and in general higher accuracy only requires more computation time. Using such

an algorithm, the details of which are described in paper I, we find and present putatively-

optimal DLP packings and their corresponding Rmin(N) in R
3 for N = 1 to N = 161

(accuracy of at least 10−8 sphere diameters), and for selected values of N from N = 176

to N = 1054 (accuracy of at least 10−6 sphere diameters). Images and coordinates for

many of the optimal packings that we have found are located on our website [16]. Of

the N ≥ 176 studied, some are randomly chosen and some correspond to the numbers

of contacting spheres of unit diameter near and equal to the number in subsets of face-

centered-cubic (FCC) and hexagonal-close-packed (HCP) packings with a given number of

full coordination shells.

In R
3 as in R

2, rigorous and repeated testing of the algorithm indicates that it is robust

in finding DLP optimal packings. The identification of rotation and reflection symmetry,

spatially precise to 10−8 or better sphere diameters, in numerous DLP presumed-optimal

packings in R
3 for N ≤ 114 supports this conclusion, as does our finding that the minimal R

found for N = 56 to N = 58 and for N ≥ 60 are smaller than the (previously) best-known

minimal radii [17] for the less-restrictive problem of finding the minimal radius (larger)

sphere into which N +1 spheres of unit diameter may be packed. However, the algorithm is
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dependent upon initial conditions, and as the number N of spheres increases, an increasing

number of trials have been necessary before we have found a packing and corresponding

Rmin(N) that with a high degree of confidence we consider optimal. For this reason, due

to computing time constraints, though we strongly conjecture that the vast majority of our

packings are optimal for N ≤ 161, as many as 50% or more of packings for N ≥ 176 may

not be strictly optimal (though we hereafter refer to them as optimal). For these packings,

we will present evidence indicating that the smallest radius R found for each N > 161 is

very near to the optimal Rmin(N), if not equal to it.

Over the range of N studied, DLP optimal packings in R
3 differ substantially in terms of

symmetry, contact networks, and spatial positioning from the Barlow packings [18], which

we recall are the maximally dense infinite packings of identical nonoverlapping spheres in

R
3. In general, we find that optimal packings are dominated by the dense arrangement of

spheres on their surface, i.e., those spheres with centers at precisely distance Rmin(N), where

the arrangement of the spheres in the bulk (interior) is of secondary importance. Similarly

in R
2, DLP optimal packings differ substantially from packings of contacting disks arranged

on the points of a triangular lattice, though in both dimensions at sufficiently large N , the

spheres in the bulk of each optimal packing begin to always resemble, respectively, a subset

of a corresponding maximally dense infinite packing in R
2 or R

3.

In R
2, the approximate N and corresponding Rmin(N) at which this change occurs may

be identified visually by perusing the DLP optimal packings at various N . In R
3 however,

it can be difficult to visually compare distinct packings. Consequently, we here introduce

the concept of a similarity metric, defined as a metric designed to quantify the degree of

similarity between one set of points and a reference set. As will be discussed in Sec. III, using

such a metric allows quantitative comparisons of the relative degree of similarity between

the radial spatial positions of spheres configured as DLP optimal packings and of spheres

configured as subsets of a maximally dense infinite packing.

Our key results and findings are summarized in the following list:

• A novel realizability condition on candidate pair correlation functions g2(r) for sphere

packings in R
3 is constructed from knowledge of the Rmin(N) (Sec. II).

• DLP optimal packings for almost every N exhibit the phenomenon of surface-

maximization, i.e., the number of spheres on the surface (with centers at precisely
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radius Rmin(N)) is either the maximal or nearly the maximal number that can be

placed without overlap with centers on a spherical surface of radius R = Rmin(N)

(Sec. IIIA). For two N (N = 77 and N = 93), the DLP optimal packings are termed

“maracas” packings, as packings at these N have the maximal number of spheres on

the surface, while all spheres not on the surface are rattlers (Sec. VE).

• DLP optimal packings for the N studied are almost always most similar to subsets

of FCC Barlow packings, and for sufficiently large N , the bulk (as opposed to the

surface) of optimal packings appear to always be structured similarly to a subset of a

Barlow packing (Sec. III B).

• The set of N for which there are DLP optimal packings that include rattlers is un-

bounded, and the number of rattlers in a packing appears to grow at most as quickly

as the surface area of the packing (Sec. III B).

• The 12−6 Lennard-Jones (LJ) energy of DLP optimal packings for some N are within

a few percent of the minimal LJ energy for N + 1 points, but in general the spatial

configurations of sphere centers in DLP optimal packings are completely different from

the minimal-energy configurations of N + 1 points (Sec. IV).

• Many DLP optimal packings for N ≤ 114 exhibit elements of perfect rotational and/or

reflection symmetry (Secs. VB and VC).

• Imperfect icosahedral symmetry is present in many DLP optimal packings, but perfect

icosahedral symmetry is never present (Sec. VD).

II. REALIZABILITY AND BOUNDS

A function that is a candidate to be the pair correlation function g2(r) of a point process,

where a packing of spheres of unit diameter is a point process in which the minimum pair

distance is unity, must be nonnegative for all r and correspondingly have a structure factor

S(k) that is nonnegative for all k. For a packing of spheres of unit diameter, such a candidate

function must additionally be identically zero on the interval [0, 1) to reflect the nonoverlap

condition between spheres. However, the two nonnegativity conditions and the nonoverlap

condition are only necessary, and generally not sufficient, conditions for a function to be
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the pair correlation function of a sphere packing. The Zmax realizability condition further

constrains candidate pair correlation functions, eliminating a range of functions that obey

the two aforementioned nonnegativity conditions and are identically zero on [0, 1), and yet

violate the Zmax condition [1, 12].

The function Zmax(R) in R
3 can be compared to ZBar(R), where ZBar(R) is the largest

number of spheres of unit diameter whose centers can be placed within distance R from a

central sphere center when packings are constrained to the space of Barlow packings. Both

Zmax(R) and ZBar(R) increase roughly linearly with R3, as the volume of a sphere of radius

R is proportional to R3. The function Zmax(R) is clearly always greater than or equal to

ZBar(R), but we find strict inequality, i.e., Zmax(R) > ZBar(R), for N ≥ 13, as can be seen

in Figure 1, a plot of Zmax(R) and ZBar(R) vs. N for N = 1 to N = 161.
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FIG. 1: (Color online) Zmax(R) vs R3, as determined by optimal and putatively optimal solutions

to the DLP problem for N = 1 to N = 161, and ZBar(R). The radius R of the disk enclosing

the centers of the N identical (smaller) disks and same-size fixed disk is measured in units of the

diameter of the enclosed disks.

We also compare each Rmin(N) that we have found to each minimal radius RBar(N),

where RBar(N) is defined as the smallest R for N spheres surrounding a fixed central sphere

when packings are constrained to the space of Barlow packings. Figure 2 plots Rmin(N)

and RBar(N) vs. N for N = 1 to N = 161 and for the values of N for which we used

the algorithm to seek optimal packings from N = 176 to N = 533. It is clear from the

figure that Rmin(N) rises roughly with RBar(N), and that RBar(N) is an upper bound for

Rmin(N).

It is also true that RBar(N) cannot grow too much larger than Rmin(N); Appendix A
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FIG. 2: (Color online) A plot of Rmin(N) vs. N for N = 1 to N = 161 and for selected values of

N ≥ 176 and RBar(N) vs. N for N = 1 to N = 533.

discusses methods of bounding Rmin(N) in R
3 from below using the Barlow packings. We do

not here explicitly construct a lower bound for Rmin(N) that, along with the upper bound

in Fig. 2, could be used to specify a range of feasible values for each optimal Rmin(N).

However, we can comment on the accuracy of the presumed-optimal Rmin(N) found by the

algorithm for N ≥ 176 by comparing the differences between RBar(N) and the putative

Rmin(N) for N ≥ 176 and over the range N ≤ 161 for which we have confidence in the

optimality of the packings. This comparison of RBar(N) − Rmin(N) over the two ranges

yields values for both the smallest and largest differences that are very near to one another,

as can be visually verified by close inspection of Fig. 2.

In R
3, knowledge of the Barlow packings allows us to bound Rmin(N) and consequently

Zmax(R). However, in R
d with d > 3 where the maximal infinite-volume packing fraction

φ∞
∗ is only known with analytical rigor for d = 8 and d = 24 [19], optimal Rmin(N) can be

employed to provide a rigorous upper bound on φ∞
∗ . As was shown in paper I, φ∞

∗ in R
d

can be bounded from above with knowledge of any Rmin(N∗), where N∗ ∈ N is the set of all

positive integers for which N∗ is the greatest integer N such that Rmin(N) = Rmin(N∗). For

example, in R
3, Rmin(1) = ... = Rmin(12) = 1, where N∗ = 12 is the greatest N for which

Rmin(N) = 1 [20].

The rigorous upper bound on φ∞
∗ , proved in paper I, is

φ∞
∗ ≤ φ̂∗(N∗), N∗ ∈ N, (6)
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where the maximal local packing fraction φ̂∗(N) of a packing of N nonoverlapping spheres of

unit diameter around a same-size fixed central sphere is defined as the ratio of the volumes

of the N + 1 spheres to the volume of a sphere of radius Rmin(N), or

φ̂∗(N) =
N + 1

(2Rmin(N))d
. (7)

Though φ∞
∗ is known rigorously in R

3 [14], it is informative to calculate the bounds

derived from the putative Rmin(N∗) over the range of N tested. As N increases, the bound

becomes sharper (becoming exact as N → ∞), and calculations can give a sense of how

quickly the bound approaches the known value of φ∞
∗ . Figure 3 plots the upper bound

calculated using relations (6) and (7) for the putative Rmin(N∗) found in R
3 versus the

proved maximal infinite-volume packing fraction, φ∞
∗ = π/

√
18.
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FIG. 3: (Color online) An upper bound on φ∞
∗ in R

3 as calculated from the putative Rmin(N)

for N = 34 to N = 161 and for selected values of N ≥ 176, versus the (known) maximal packing

fraction φ∞
∗ of an infinite packing of identical nonoverlapping spheres in R

3, φ∞
∗ = π/

√
18 ≈ 0.7405.

The upper bound in R
3 (inequality (6), Fig. 3) with maximal local packing fraction

φ̂∗(N) calculated from Eq. (7) converges to φ∞
∗ more slowly, as a function of Rmin(N), than

does the upper bound in R
2 [6]. This is intuitive. As the spheres in the bulk of each DLP

optimal packing in both R
2 and R

3 at sufficiently large N appear to be packed as the infinite

densest packing in their respective space R
d (this observation is discussed in more detail in

Sec. III B), it would be logical to predict that φ̂∗(N) in the bound (6) converges to φ∞
∗

in dimension d roughly as the ratio of sphere surface area to volume, d/R. Up to a small

corrective factor that is also dependent on dimension, this appears to be the case, as the
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TABLE I: Comparison of φc(N) (8) in R
2 and R

3. The values of φc(N) are compared for Rmin(N)

in R
2 near to (2/

√
3)Rmin(N) in R

3.

Space N Rmin(N) (
√

3/2)Rmin(N) φc(N)

R
2 54−60 3.605551−3.830649 0.8733−0.9094

R
3 530−533 4.286296−4.294254 3.712041−3.718933 0.8785−0.8798

R
2 84−88 4.581556−4.752754 0.9065−0.9312

R
3 980,1013,1054 5.334506−5.479129 4.619818−4.745065 0.9167−0.9236

following simple model demonstrates.

The maximal local packing fraction φ̂∗(N) (7) includes in its numerator the total volume of

spheres of unit diameter with centers at distance Rmin(N), even though the (larger) sphere of

radius Rmin(N) whose volume is employed in the denominator does not enclose roughly half

of these (smaller) spheres’ volume. Approximating the spherical surface of radius Rmin(N)

as a plane, which is a good approximation when the ratio of radii 1/2Rmin(N) is small, a

simple model for the volume of the spheres not enclosed by the sphere of radius Rmin(N)

can be built. In this model under the aforementioned approximation, it follows that the

d-dimensional spheres of unit diameter in a DLP optimal packing in R
d with centers on the

surface at radius Rmin(N) should be packed roughly as densely as possible, i.e., with centers

arranged as the centers of (d−1)-dimensional spheres in the maximally dense packing in

R
d−1.

Making these two approximations, which become exact in the limit N → ∞, the fraction

of the volume of the spheres of unit diameter not enclosed by the sphere of radius Rmin(N)

to the volume of the sphere of radius Rmin(N) is 2/
√

3 ≈ 1.155 times as large in R
3 as in

R
2. At any Rmin(N) for large enough N then, about 15.5% more volume is “added back in”

to the numerator of φ̂∗(N) in R
3 than in R

2, meaning that the convergence fraction,

φc(N) ≡ φ∞
∗ /φ̂∗(N), (8)

at given Rmin(N) in R
3 should be comparable to the same fraction φc(N) at (

√
3/2)Rmin(N)

in R
2. This is indeed the case, as is shown in Table I for two ranges of N .

The implications of this relationship are encouraging. Under the two approximations, if

the relationship between φc(N) in R
3 and R

2 holds between R
d and R

d−1 for arbitrary d,

then a good estimate for φ∞
∗ in R

d can be made. Such an estimate requires knowledge of
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φ∞
∗ in R

d−1 and R
d−2 and at least one value of Rmin(N) for sufficiently large N in R

d. In

general, the larger the value of N , the more precise the estimate.

III. COMPARING DLP OPTIMAL PACKINGS TO OPTIMAL SPHERICAL

CODES AND BARLOW PACKINGS

In the first part of the following section, we compare DLP optimal packings over the N

studied to the densest packings of N nonoverlapping spheres of unit diameter with centers

on a spherical surface of radius R, where a configuration of N sphere centers with minimal

R = RS
min is sometimes called an optimal spherical code. In the second part of the section,

we compare DLP optimal packings to subsets of the densest infinite-volume packings of

identical nonoverlapping spheres in R
3, the Barlow packings.

A. Spherical codes and DLP optimal packings

The spatial configurations of spheres in DLP optimal packings can be said to be influenced

by several empirical rules, but over the range of N studied, they are dominated by only one.

The dominant rule is maximization of the number of spheres on the surface of the packing,

i.e., the spheres with centers at precisely distance Rmin(N) from the center of the central

sphere. In the vast majority of DLP optimal packings over the range of N studied, this

number Nout is either the largest or nearly the largest number of spheres whose centers

can be placed on a spherical surface of radius Rmin(N). As Nout can take on different

values in the general case where there are multiple DLP optimal packings for the same

N , we define Nout(N) as the maximal number of spheres, from the set of all DLP optimal

packings for N spheres, with centers at distance Rmin(N) from the center of the central

sphere. Similarly, we define NBar
out (N) as the maximal number of spheres with centers in the

outermost coordination shell at distance RBar(N) from a central sphere surrounded by a

subset of N spheres chosen from a Barlow packing.

The number Nout(N) for Rmin(N) is bounded from above by the number ZS
max(Rmin(N)),

where the maximal number of spheres of unit diameter that can be packed with centers on a

spherical surface of radius R is termed ZS
max(R). Related to ZS

max(R) is the radius RS
min(N),

which we recall is the radius of the smallest spherical surface onto which the centers of N
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nonoverlapping spheres of unit diameter can be packed. The problem of finding ZS
max(R) at

a given R is a reformulation of the Tammes [21] problem of finding the maximal smallest

separation between pairs of points for N points on a sphere of radius unity. The problem

of finding RS
min(N) is sometimes called the optimal spherical code problem and has received

considerable attention (see, for example, [2]); for N ≤ 130 and d = 3, there are putative

solutions to the optimal spherical code problem that are strongly conjectured to be correct

[22].
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FIG. 4: (Color online) The greatest fraction, number of spheres with centers at distance R over the

maximal number that can be packed with centers on a spherical surface of radius R, as compared

for all DLP optimal packings at a given N for the N studied from N = 13 to N = 216 and for

subsets of N + 1 spheres in any Barlow packing with full coordination shells and the outermost

shell at distance RBar(N). In the figure, a black “X” represents the comparison for DLP optimal

packings and a red “*” the comparison for subsets of Barlow packings.

The quantity Nout(N)/ZS
max(Rmin(N)) is a measure of the degree to which the surface of a

DLP optimal packing is “saturated”, where a saturated surface of spheres in R
d is defined as

any packing of the maximal number ZS
max(R) of identical nonoverlapping spheres that can be

placed with centers at radius R. Using values for ZS
max(R) in R

3 determined from [22] and the

DLP optimal packings found by the algorithm, Fig. 4 compares Nout(N)/ZS
max(Rmin(N))

and NBar
out (N)/ZS

max(Rmin(N)), respectively, for the N studied from N = 13 to N = 216

[23] and for N corresponding to full outermost coordination shells of Barlow packings with

outermost shells at radii RBar(N).

For all of the N studied, Nout(N)/ZS
max(Rmin(N)) ≥ 0.75, and Nout(N) > NBar

out (N).

Additionally, for 32% of the N in Fig. 4, there is a DLP optimal packing with a saturated

surface, i.e., Nout(N) = ZS
max(Rmin(N)). These observations indicate that for the N studied,
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the densest local packings always include packings with a maximal or near-maximal number

of spheres on their surface. Nevertheless, there are also two intervals depicted in Fig. 4 where

Nout(N)/ZS
max(Rmin(N)) is relatively lower; these intervals coincide with the existence at or

near those N of particularly dense DLP optimal packings without saturated surfaces. In

these intervals, the bulk of the packing is of more relevance, and the benefits of maximizing

the number of spheres on the surface are relatively less advantageous to achieving a densest

local packing.

Though the surface-maximization rule is dominant in general, only for N = 77 does

RS
min(Nout(N)) = Rmin(N). The N = 77 DLP optimal packings are therefore the only

packings where the precise positions of the spheres not on the surface are of no consequence.

That is, of N = 77 spheres, all 18 not on the surface are rattlers, which is also true for all 24

spheres not on the surface in the N = 93 DLP optimal packings. Indeed as N grows large, we

have found that the bulk (interior) of each DLP optimal packing begins to resemble a finite

subset of one of the Barlow packings, just as in R
2 the bulk of each optimal packing begins

to resemble a finite subset of spheres configured with centers on the sites of the triangular

lattice.

B. Barlow and DLP optimal packings

As discussed in paper I for large N in R
2, DLP optimal packings can be divided into three

regions; the spheres in the bulk that resemble the triangular lattice, the spheres farthest from

the center that tend to be configured in circular rings, and those in between the bulk and

the surface, which form a sort of “grain boundary.” This also appears to be the case in R
3,

with the spheres in the bulk of the DLP optimal packings for N = 766, 903, 980, 1013 and

1054 closely resembling a subset of the FCC Barlow packing (N = 903, 980, 1013, 1054) or

resembling a packing that near the central sphere is similar to a subset of the HCP Barlow

packing (N = 766).

It is of note that the spheres in the bulk of the aforementioned packings are not all placed

in precisely the same positions as spheres in a subset of a Barlow packing, but instead are

within a few percent of the Barlow packing spheres’ angular and radial positions as described

in spherical coordinates. It is not clear if this continues to be the case for all N > 1054, or

if for some very large N the bulk of DLP optimal packings are precisely spatially equivalent
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to subsets of Barlow packings.

The division of DLP optimal packings at sufficiently large N into three regions is impor-

tant from the perspective of counting rattlers. For the five N studied where the bulk of the

optimal packings closely resemble subsets of Barlow packings, rattlers are present only in

the “grain boundary” and surface regions. This suggests that for sufficiently large N , the

rattlers in DLP optimal packings are restricted to only these two regions. Consequently, as

these regions grow in volume more slowly than the volume of the packing, the ratio of the

number of rattlers to the total number of spheres in DLP optimal packings must tend to zero

at N → ∞. Further, if the grain boundary region for large enough N does not increase in

radial extent with increasing N , then the number of rattlers can grow at most in proportion

to the surface area of optimal packings. This latter condition appears to be the case for the

N studied in both R
2 [6] and R

3.

In R
2, the extent to which the bulk of a DLP optimal packing resembles a packing of

contacting disks with centers on the sites of the triangular lattice can be determined visually

by perusing an image of the packing. In R
3 however, visual identification is more difficult.

To compare the relative extent to which the bulk of DLP optimal packings in R
3 resemble

subsets of the Barlow packings, we here introduce the concept of a similarity metric, defined

as a metric designed to quantify the degree of similarity between one set of points and a

reference set.

The subsets of N + 1 spheres from a Barlow packing with the smallest distance RBar(N)

from the center of the central sphere to any of the surrounding N spheres are not always

subsets of the FCC and HCP Barlow packings. This observation suggests that we should

compare the DLP optimal packings at various N to reference sets chosen from all Barlow

packings, as opposed to only those chosen from the FCC and HCP packings. Therefore, for

each N , we define the set of reference sets BN as all subsets of N + 1 spheres chosen from

any Barlow packing such that all N + 1 spheres with centers less than or equal to maximal

sphere-distance R from the center of a central sphere are included in the set.

As rigid rotations of DLP optimal packings about the center of the central sphere do

not affect packing optimality, we employ a similarity metric that compares only the radial

positions of the spheres in an optimal packing to the reference sets. To make this comparison

for a DLP optimal packing and a packing from the reference sets at a given N , which we

recall are the Barlow packing subsets BN , R
d is divided fully into a set {δi} of nonoverlapping
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spherical shells centered on the center of the reference set’s central sphere. Each shell

contains within it a number nref
i of points (sphere centers) from the reference set and a

number ni of sphere centers from the set to be compared. The metric can be written,

S = 1 −
∑

i |ni − nref
i |

2(N + 1)
, (9)

where the sum runs over all shells containing at least one point from either set.

For any Barlow packing subset of N +1 spheres within a given set BN , the center of each

sphere lies on a coordination shell, where we define the coordination shells locally from the

center of only the central sphere. For example, the zeroeth shell is the origin and contains

only the center of the central sphere, and the first shell always contains the centers of 12

spheres at distance unity from the origin. To define the radial width of the shells {δi}
by which the ni and nref

i are measured, an average of the radial distances of consecutive

coordination shells in the reference packing is used. For example, for an FCC packing with

coordination shells at r = 0, 1,
√

2, . . . , the zeroeth shell is the sphere of radius (1/2) centered

at the origin, and the first shell δ1 of radial width 1/
√

2 spans from minor radius 1/2 to

major radius (1 +
√

2)/2. The final shell can be taken to have infinite width. More detailed

information on the reference sets and the choice of the similarity metric defined in Eq. (9)

can be found in Appendix B.

Figure 5 plots the greatest similarity metric value from the distinct {δi} for all numbers N

of spheres studied, along with the greatest similarity metric value for DLP optimal packings

for 176 ≤ N ≤ 1054 with all spheres with centers at distance Rmin(N) removed. As is

evident from the bottom half of Fig. 5, there is a gradual upward trend in values of S; this

is primarily due to the bulk of DLP optimal packings beginning to closely resemble subsets

of a Barlow packings for N ≥ 626, Rmin(626) = 4.564905. In particular, all but one or

two of the first 200 spheres in the N = 766, 903, 980, 1013 and 1054 optimal packings are

arranged in precisely the same first 10 shells {δ1 . . . δ10} as are the spheres that compose one

of the N = 200 finite subsets of Barlow packings B200.

However, only a few DLP optimal packings for N ≤ 533, Rmin(533) = 4.294254 bear

close resemblance to any of those in the sets BN . This result is due to the dominance of

the empirical rule of surface-maximization in influencing the spatial arrangements of spheres

in DLP optimal packings. Simply put, the surface-maximization phenomenon disrupts the
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FIG. 5: (Color online) Similarity metric from (9). An “X” represents the maximal similarity

calculated for the comparisons of reference sets BN to a DLP optimal packing for N spheres. A

“*” represents the maximal similarity for the comparisons of reference sets BM to a DLP optimal

packing for N spheres with the N − M spheres with centers at distance Rmin(N) removed.

placement, sufficiently near to the surface, of spheres as subsets of Barlow packings. The

range of Rmin(N) in R
3 over which this disruption is prevalent throughout the entirety of

optimal packings is consistent with the same range of Rmin(N) for DLP optimal packings in

R
2, where we compare, as in Table I, values of (

√
3/2)Rmin(N) in R

3 to values of Rmin(N) in

R
2. In R

2, signs of the bulk of a DLP optimal packing resembling a triangular lattice packing

of contacting disks for consecutive N appear at the earliest around N = 76, Rmin(76) =

4.417162 . . . , and do not appear consistently until at least N ≥ 102, with Rmin(102) =

5.166450 . . . [6].

Included in the subsets of Barlow packings BN are always packings derived from the FCC
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and HCP lattices. The former of these is particularly important, as we have found that the

highest value of the similarity metric for DLP optimal packings from among the distinct

{δi} for 169 out of 184, or 91.8% of the N ≥ 34 that we analyzed, is associated with the

FCC-derived packing and its variants indistinguishable to the similarity metric [24], even

when RBar(N) is found from a different packing. This is important, as the FCC-derived

packing and its variants indistinguishable to the similarity metric are the packings that, for

all N in any set BN , have the fewest coordination shells.

We have verified for the N studied that the DLP optimal packings also consist of shells

(of small radial width) containing sphere centers clustered around a relatively low number

of radial distances from the center of the central sphere. This is the reason that the highest

similarity metric value for all DLP optimal packings chosen from the reference sets in a given

BN is almost always, for the N studied, associated with the packings that are subsets of an

FCC packing: FCC and DLP optimal packings have small numbers of shells.

This characteristic of DLP optimal packings is related to the phenomenon of surface-

maximization. The high density of spheres on the surface, due to nonoverlap, requires that

the radial separation between the surface spheres and contacting spheres with centers at

r < Rmin(N) be, in general, relatively larger than if the surface contained fewer spheres.

Coupled with density-maximization, the rule of surface-maximization drives the spheres for

r < Rmin(N) to cluster around only a few distinct radial positions as well. This observation

is reflected in the fact that S for 48 out of 56, or 85.7% of packings excluding the spheres

with centers at Rmin(N) for N ≥ 176 are also most similar to the FCC-derived Barlow

packing and its variants indistinguishable to the similarity metric. However, the presence of

the N = 766 packing, which exhibits a bulk that is very similar to a Barlow packing that

is not FCC, suggests that this trend may not continue as strongly as N grows larger than

N = 1054.

Despite that DLP optimal packings for the N studied are generally more radially similar

to subsets of FCC than to subsets of other Barlow packings, for N ≤ 533 they are not

angularly similar to any packings in BN . For optimal packings with high values of S, e.g.,

for 34 ≤ N ≤ 55 and 127 ≤ N ≤ 155, the similarity is due entirely to the arrangement of

spheres in small numbers of shells, and the DLP optimal packings are more similar to certain

dense packings exhibiting icosahedral symmetry. Figure 6, a color-coded representation of

the maximal S from among the reference sets BN for 34 ≤ N ≤ 161, represents well these
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FIG. 6: (Color online) Similarity metric from (9), color-coded as indicated in the key above the

diagram, with violet/blue (darker shading) representing the highest values of S and red/orange

(lighter shading) the lowest. The value of S displayed is calculated as the maximum for DLP

optimal packings for a given N compared to the reference sets included in BN . Due to the similarity

between subsets of FCC packings and certain packings with icosahedral symmetry, the ranges of

N with highest S, 34 ≤ N ≤ 55 and 127 ≤ N ≤ 155, are radially and angularly distributed most

similarly to a specific, dense packing of spheres with perfect icosahedral symmetry.

regions of icosahedral symmetry. The dense, perfectly icosahedrally symmetric packings to

which these DLP optimal packings are similar will be discussed in more detail in Sec. VD.

It is very interesting to note that an FCC arrangement of identical nonoverlapping

spheres, in the limit as infinite volume packing fraction φ∞ → φ∞
∗ = π/

√
18, is both the

Barlow packing with highest symmetry (cubic) and lowest free energy [25]. Our results

state that the densest local packings are most frequently those that are most similar to

the maximally dense infinite packing with highest symmetry and lowest free energy even

when other packings in BN are more locally dense than the FCC-derived packing, i.e., have

smaller RBar(N). As the correspondence in similarity is essentially due to the arrangement

of spheres in DLP optimal packings in a relatively small number of shells, this suggests that

there is a connection between high symmetry, lowest free energy, and arrangement in a small

number of shells in the densest local packings, just as there is between high symmetry, lowest

free energy, and arrangement in a small number of shells in the densest infinite packings.

IV. MINIMAL ENERGY AND DLP PROBLEMS

There have been a number of investigations [26–31] into finding arrangements of points

that minimize the 12−6 Lennard-Jones potential with parameters (Eq. 10) σ = 1, ǫ = 1,

a potential possessing features of long-range attraction and strong short range repulsion

between pairs of points. The Lennard-Jones potential energy for N + 1 points can be
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written,

VLJ(rN+1) = 4ǫ
∑

1≤i<j≤N+1

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (10)

with rij ≡ |ri − rj|. The known Lennard-Jones minimal-energy (optimal) configurations

of N + 1 points in R
3 can be compared to DLP optimal packings of N spheres around a

fixed central sphere of the same size. This comparison is accomplished by scaling the DLP

optimal packings such that the minimal distance between sphere centers D is optimized to

minimize the Lennard-Jones potential energy given by (10) with σ = 1, ǫ = 1.

The optimal sphere diameters Dopt(N) for N = 34 to N = 161 lie within a tight range,

between Dopt(160) = 1.07953 and Dopt(44) = 1.09345, and they average about 1.08319.

These diameters may be compared to the Lennard-Jones pair potential minimum, D =

21/6 ≈ 1.12246. The Dopt(N) tend to decrease with increasing N , reflecting a balance

obtained as the packing is scaled between the increase in energy due to spheres in contact at

distance Dopt(N) < 21/6 and the decrease in energy obtained by all other spheres at distances

greater than 21/6. Comparing DLP and Lennard-Jones optimal configurations for the same

number of points (sphere centers), we find that sets of optimal packings only overlap for the

trivial cases N = 1 and N = 2; in general, they are completely different, with the VLJ of

the DLP optimal packings with optimized D for N = 34 to N = 161 about 80%−95% of

the minimal known VLJ for N + 1 points. Figure 7 depicts the minimal VLJ alongside the

VLJ of DLP optimal packings with optimized Dopt(N) for N = 34 to N = 161.
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FIG. 7: (Color online) Plot of the minimum known [31] VLJ(rN+1) (10) for N + 1 points vs the

VLJ of DLP optimal packings with spheres of optimized diameter Dopt(N) for N = 34 to N = 161.

In Fig. 7, there are several N for which VLJ for the DLP optimal packings and the optimal
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configurations of N + 1 points with Lennard-Jones potential (10) are relatively closer [32].

They are particularly close for three ranges of N centered around N = 42, 114, and 134,

points that are local minima in the percent difference between the two VLJ . The proximity

of the VLJ around these N can be attributed to the symmetry of the DLP optimal packings

at these three N , and to the spatial similarities between DLP optimal packings for these

three N and the packings for N in small ranges around these three. It is known [27, 29]

that minimal-energy configurations of points with Lennard-Jones potential tend to favor

icosahedral symmetry, either in part of the configuration or in its entirety. The N = 42 and

N = 134 DLP optimal packings are similarly roughly icosahedrally symmetric, and though

the N = 114 DLP optimal packing exhibits perfect three-fold rotational (chiral) symmetry,

its first and last shells are also roughly icosahedrally symmetric.

Another minimal-energy problem involves finding the minimal-energy (optimal) spatial

configurations of N+1 identical nonoverlapping spheres where potential energy Vsm is defined

in terms of the second moment about the centroid of the N + 1 sphere centers,

Vsm(rN+1) =

N+1
∑

i=1

|ri − C|2, (11)

with C ≡ (N+1)−1
∑N+1

i=i ri the centroid [33]. Comparing DLP and minimal second moment

optimal packings up to N = 32, the largest N for which minimal second moment optimal

packings are available, we find that only for N = 1 to N = 4 do sets of optimal packings

overlap, and as with the Lennard-Jones problem, in general they are completely different.

The wide variance in optimal configurations at the same number of spheres (points) across

minimal-energy problems has implications for nucleation theory. Comparing these three

problems, we see that the functional form of the potential energy has a substantial effect on

the spatial arrangement of optimal configurations, despite that the potentials in all three

problems are isotropic with long-range attractions and strong short-range repulsions. This

suggests that the sizes and shapes of critical nuclei in classical overcompressed liquids (where

dynamics are generally dominated by strong short-range repulsion) may depend heavily on

the precise functional form of the pair potential acting between particles. The potential

effects of the structures of dense nuclei on the probability of freezing in overcompressed

liquids will be discussed in further detail in Sec. VI.
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V. DLP OPTIMAL PACKINGS IN THREE DIMENSIONS

Despite that the DLP optimal packings are almost always most similar, from among the

packings in BN , to a subset of an FCC Barlow packing or one of its variants indistinguishable

to the similarity metric, all optimal packings with N ≥ 13 are significantly more locally dense

than any subset of a Barlow packing including N + 1 spheres. In general, over the range

of N studied in R
3, we find wide variation in the symmetries, contact networks, and other

characteristics of DLP optimal packings, just as in R
2.

For the majority of N , there are an uncountably infinite number (a continuum) of DLP

optimal packings with optimal radius Rmin(N), with the continuum attributable to the

presence of rattlers. Over the 184 DLP optimal packings studied between N = 34 and

N = 1054, not including the central sphere, 170 contain rattlers (identified to the same

precision in spatial coordinates as the coordinates in the packing), with every packing for

N > 114 containing at least one rattler.

In the following figures (Figs. 8-18), only the backbones, or the packings with the rattlers

removed, are depicted, unless otherwise specified. Additionally, each DLP packing is divided

into shells, where a shell in a DLP optimal packing is defined as all spheres with centers at

an equal distance R from the center of the central sphere. Each shell can be visualized in

the plane by employing a mapping to project points on a spherical surface in R
3 (a shell) to

a disk of radius π in R
2. Considering a point in R

3 in spherical coordinates and a point in

R
2 in polar coordinates, the mapping leaves the azimuthal angle unchanged while the angle

of inclination in R
3 becomes the radius in R

2. The zenith direction from which the angle of

inclination is measured is generally selected to preserve angular symmetry. In Figs. 8-18,

points of distance unity (contacting spheres) in R
3 are joined by lines.

A. DLP optimal packings for N ≤ 33

In R
d for any d, all DLP optimal packings with N ≤ Kd the kissing number have

Rmin(N) = 1, with K3 = 12 in R
3. Also for any d, the set of all DLP optimal packings

for a given N with Rmin(N) ≤ τ , τ = (1 +
√

5)/2 the golden ratio, include configurations

where all N sphere centers lie on a spherical surface of radius Rmin(N) = RS
min(N) [1]. We

recall that RS
min(N) is the radius of the smallest spherical surface onto which the centers of
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N spheres of unit diameter can be packed. The greatest N for which Rmin(N) ≤ τ , denoted

by N τ
d , in R

3 is N τ
3 = 33. For 13 ≤ N ≤ 33 in R

3, our findings indicate that there are no

DLP optimal packings with jammed spheres with centers at a radius r < Rmin(N).

(a)

FIG. 8: (Color online) This plot is a projection from the surface of a sphere of radius Rmin(13) =

1.045573 . . . of 13 points (sphere centers) in R
3 to the interval [−π, π] × [−π, π] in R

2. As the

projection to R
2 is most clearly defined in terms of polar coordinates and does not preserve distances

from R
3, we do not provide labels for our axes. This DLP optimal packing contains only a single

shell, the sphere centers of which belong to point group C4. In the projection, the angle of

inclination of a point in R
3 represented in spherical coordinates becomes the distance from the

origin (radius) in R
2, while the azimuthal angle remains unchanged. Contacting spheres, i.e.,

spheres with centers (points) in R
3 separated by unit distance where all spheres are of unit diameter,

are connected by straight lines in the plot in R
2. The zenith direction from which each point’s

(sphere center’s) angle of inclination is measured is chosen to coincide with the packing’s C4 axis;

in this way, the projection to the plane preserves the rotational symmetry of the packing in R
3

about the C4 axis.

Figure 8 is a projection to R
2 of the N = 13 DLP optimal packing found by the algorithm.

This configuration of spheres was first documented in [5], where the authors conjectured

that it was the densest packing of 13 nonoverlapping spheres of unit diameter with centers

restricted to a spherical surface of radius R. According to the principle (proved in Ref. [1])

that for Kd < N ≤ N τ
d , Rmin(N) = RS

min(N), we conjecture that it is also the densest

packing, without restriction, of 13 spheres around a fixed central sphere.

Unlike in R
2, we know of no rigorous proofs indicating for K3 < N ≤ N τ

3 what are the

smallest radii R, equal to Rmin(N), onto which the centers of N identical nonoverlapping

spheres of unit diameter may be placed. However, we have found that the putative Rmin(N)

found by the algorithm for 13 ≤ N ≤ 33 are equal to the strongly conjectured values

for RS
min(N) presented in [22]. This provides further evidence that these smallest-known
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RS
min(N) = Rmin(N) are optimal.

B. Particularly dense, symmetric optimal packings

For four values of N , N = 60, 62, 84 and 114, a highly symmetric arrangement of spheres

yields a packing that is significantly more locally dense than DLP optimal packings of nearby

N . The relatively high densities of these packings appears in Fig. 1 as upturns above the

linear trend and in Fig. 2 as downturns below the one-third power (in N) trend. All N

surrounding spheres in each of these four packings are locally jammed, though in two of

the four cases, the central sphere is not in contact with any of its nearest neighbors (which

would make the central sphere a rattler were it not fixed).

(a)

(b)

FIG. 9: (Color online) As in Fig. 8, except here we show the two shells of the N = 60 DLP

optimal packing, which belongs to point group O. The zenith direction is chosen along one of

the C4 axes shared by both shells. (a) 12 spheres, R = 1, point group Oh. (b) 48 spheres,

R = Rmin(60) = 1.891101 . . . , point group O.
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(a)

(b)

(c)

FIG. 10: (Color online) As in Fig. 8, except here we show the three shells of the N = 62 DLP

optimal packing, which belongs to point group O. The zenith direction is chosen along one of the

C4 axes shared by all three shells. (a) 8 spheres, R = 1.087542 . . . , point group Oh. (b) 6 spheres,

R = 1.087786 . . . , point group Oh. In this projection, as the sphere center furthest from the origin

is at distance π (corresponding in R
3 to an angle of inclination equal to π), its azimuthal angle is

chosen at random. (c) R = Rmin(62) = 1.927716 . . . , point group O.

Figure 9 depicts the two shells of the N = 60 DLP optimal packing, which has rotational
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(a)

(b)

(c)

FIG. 11: (Color online) As in Fig. 8, except here we show the three shells of the N = 84 DLP

optimal packing, which belongs to point group T . The zenith direction is chosen along one of the

C3 axes shared by all three shells. (a) 12 spheres, R = 1.255451 . . . , point group T . (b) 12 spheres,

R = 1.423714 . . . , point group T . (c) 60 spheres, R = Rmin(84) = 2.182390 . . . , point group T .

(chiral) octahedral symmetry. The first shell contains 12 spheres (the zeroeth shell is the

central sphere) arranged with full octahedral symmetry and in contact with the central
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sphere. The second shell contains 48 spheres with rotational octahedral symmetry and with

centers at distance Rmin(60) = 1.891101 . . . . It is of note that the N = 60 optimal packing

is such a relatively densely-packed configuration of spheres that Rmin(59) = Rmin(60), and

DLP optimal packings for N = 59 can be formed simply by deleting any one of the 60

surrounding spheres in the N = 60 packing.

(a)

(b)

FIG. 12: (Color online) As in Fig. 8, except here we show the first and tenth shells of the N = 114

DLP optimal packing, which has ten shells and belongs to point group D3. The zenith direction

is chosen along one of the C3 axes shared by all ten shells. (a) 12 spheres, R = 1, point group D3.

(b) 60 spheres, R = Rmin(114) = 2.456227 . . . , point group D3.

Figure 10 depicts the three shells of the N = 62 DLP optimal packing. The shells

contain 8, 6, and 48 spheres, respectively, at distances R = 1.087542 . . . , R = 1.087786 . . .

and Rmin(62) = 1.927716 . . . from the center of the central sphere. The first and second

shell have full octahedral symmetry, while the third and the packing as a whole exhibit only

rotational octahedral symmetry. The first and second layers of the N = 62 packing are

radially less than 2.5 × 10−4 sphere diameters from one another, and together they form a
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cavity within which the central sphere, were it not fixed, could move. This effect also occurs

with disks in R
2, as is discussed in paper I [36]. More detail on this topic is presented in

Sec. VF.

Figure 11 shows the three shells of the N = 84 DLP optimal packing, all of which have

rotational tetrahedral symmetry. The shells contain 12, 12, and 60 spheres, respectively, at

distances R = 1.255451 . . . , R = 1.423714 . . . , and Rmin(84) = 2.182390 . . . from the center

of the central sphere. The N = 84 DLP optimal packing is unique in that it is the only

optimal packing that we have found, in R
2 or R

3, that exhibits perfect tetrahedral symmetry.

The N = 114 DLP optimal packing is composed of ten shells. The first includes 12 spheres

in contact with the central sphere, and the tenth 60 spheres at Rmin(114) = 2.456227 . . . ;

both have chiral three-fold dihedral symmetry. Shells two and six each contain three spheres

with centers arranged as an equilateral triangle (point group D3h), and shells three through

five and seven through nine each contain six spheres arranged with chiral three-fold dihedral

symmetry. Shells two through nine can be grouped into four pairs based on radial distance

from the central sphere. Each pair is no more than 2.22 × 10−3 sphere diameters apart

(shells two and three), but at least 1.24 × 10−6 sphere diameters apart (shells eight and

nine). Figure 12 is an image of shells one and ten.

C. Other optimal packings with high symmetry

Over the N studied, a large number of DLP optimal packings were found, aside from

those discussed in Sec. VB, that exhibit perfect symmetry. A representative selection of

these packings is presented in this section.

Figure 13 depicts the last shells in the optimal packings for N = 45 and N = 57 spheres;

both packings have three-fold cyclic symmetry (point group C3). Also in both packings,

all spheres including the central sphere are jammed. The N = 45 packing has four shells

containing 6, 3, 3, and 33 spheres with centers at radial distance R = 1, R = 1.005960 . . . ,

R = 1.032049 . . . , while Rmin(45) = 1.749670 . . . , respectively. The N = 57 packing has

three shells containing 9, 3, and 45 spheres with centers at radial distance R = 1, R =

1.009196 . . . , and Rmin(57) = 1.877196 . . . , respectively.

Neither the N = 61 nor the N = 74 optimal packings are perfectly symmetric; both

belong to point group C1. However, with one sphere removed, the remaining 61 spheres of
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(a)

(b)

FIG. 13: (Color online) As in Fig. 8, except here we show the last shells of the N = 45 and N = 57

DLP optimal packings, both of which belong to point group C3. For both shells, the zenith

direction is chosen along one of the C3 axes shared by all shells in the packing. (a) 33 spheres,

R = Rmin(45) = 1.749670 . . . , point group C3. (b) 45 spheres, R = Rmin(57) = 1.877196 . . . , point

group C3.

the N = 61 packing have four-fold cyclic symmetry (point group C4), and with two jammed

spheres and four rattlers (from the last shell) removed, the remaining 69 spheres of the

N = 74 packing also have four-fold cyclic symmetry. Figure 14 is an image of the jammed

spheres in the last shells in the N = 61 and N = 74 DLP optimal packings. Neither packing

has a jammed central sphere.

Figure 15 is an image of the eighth and last shell of the N = 50 DLP optimal packing; the

shell contains 35 jammed spheres with centers at radial distance Rmin(50) = 1.814049 . . .

from the center of the central sphere. The first three shells form a cavity around the central

sphere and contain four, two, and two spheres with centers at radial distances R = 1,

R = 1.000608 . . . , and R = 1.037107 . . . , respectively. The fourth through seventh shells are
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(a)

(b)

FIG. 14: (Color online) As in Fig. 8, except here we show the jammed spheres in the last shells of

the N = 61 and N = 74 DLP optimal packings, both of which belong to point group C4. For both

shells, the zenith direction is chosen along one of the C4 axes. (a) 48 spheres, R = Rmin(61) =

1.919927 . . . , point group C4. (b) 52 jammed spheres (of 56 total in the shell), R = Rmin(74) =

2.077792 . . . , point group C4.

single spheres positioned at distances 1.108 < R < 1.151, and the 35 jammed spheres in the

eighth shell are arranged with mirror reflection symmetry (point group Cs). The N = 50

packing is a particularly good example of the complicated structures resulting from many-

bodied interactions in DLP optimal packings, in that it is not symmetric as a whole (point

group C1) but contains shells exhibiting perfect symmetry that does not appear related to

the geometry of a spherical surface. It is also interesting to note that the eighth shell of the

N = 50 DLP optimal packing is the only example for N ≥ 34 in R
3 of an achiral last shell,

i.e., it is the only last shell exhibiting a plane of reflection symmetry.
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FIG. 15: (Color online) As in Fig. 8, except here we show the last shell of the N = 50 DLP optimal

packing, which contains 35 jammed spheres with centers at distance Rmin(50) = 1.814049 . . . and

belongs to point group Cs. The zenith direction in the image is chosen parallel to the mirror plane

and through the contact point of two spheres.

D. Imperfect icosahedral symmetry in DLP optimal packings

Perhaps equally as interesting as the DLP optimal packings in R
3 that are perfectly sym-

metric are those packings that exhibit only rough or imperfect symmetry. For example, no

single shell in a DLP optimal packing over the N studied exhibits perfect five-fold rotational

or higher symmetry; in particular, no shell exhibits perfect icosahedral symmetry. This is

not the case in R
2, where there are three DLP optimal packings (for N = 10, N = 15 and

N = 25) with perfect five-fold rotational symmetry, and a large number with perfect six-fold

rotational symmetry.

In R
2, the kissing number K2 = 6, and there is only one way (up to rotations) to arrange

six identical disks in contact with a same-size central disk: each of the six must contact two of

the remaining five, such that the arrangement enclosed in an encompassing disk is jammed.

It is therefore not particularly surprising that six-fold rotational symmetry is common in

DLP optimal packings in R
2. In R

3, the kissing number K3 = 12, but there is an infinite

number of ways to arrange 12 identical spheres in contact with a same-size central sphere.

The differences between configurations of Kd spheres in contact with the central sphere in

dimensions two and three can serve as an explanation for why perfect icosahedral symmetry

is not found, over the N studied, in the DLP optimal packings in R
3. In R

3, the central

sphere contributes to the disruption of perfect icosahedral symmetry by preventing the

12 surrounding spheres from forming an icosahedron of contacting spheres, as 12 identical
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TABLE II: Details of a dense, perfectly icosahedrally symmetric packing of 134 identical nonover-

lapping spheres around a same-size central sphere.

Side Exact vertex Num. vertex

Shell Spheres Shape length distance distance

1 12 icosahedron 2
(τ+2)1/2

1 1

2 30 icosidodecahedron 2
(τ+2)1/2

2τ
(τ+2)1/2

1.701302 . . .

3 12 icosahedron 4
(τ+2)1/2

2 2

4 80 truncated icosahedron 2
(τ+2)1/2

(

9τ+10
τ+2

)1/2
2.605543 . . .

contacting spheres with centers on the vertices of an icosahedron is the densest packing of

12 spheres around a point.

Supporting this explanation, imperfect icosahedral symmetry is present in a significant

number of the first shells in DLP optimal packings. Specifically, if the tolerance for sphere

center overlap used in calculating symmetry elements is raised from 10−8 to 0.2 sphere

diameters, then the 12 spheres in contact with the central sphere in the first shells of the DLP

optimal packings for the N = 42, N = 114, 116, 117, 118, 133, 135−139, and 530−532 DLP

optimal packings all exhibit icosahedral symmetry. Additionally, the 12 spheres closest to

the central sphere in the N = 269, 320, 533, and 886 packings exhibit icosahedral symmetry

within a tolerance of 0.2 sphere diameters.

Imperfect icosahedral symmetry is present in many DLP optimal packings at radial dis-

tances much greater than unity. In general, for N near N = 42 and N = 134, DLP optimal

packings exhibit imperfect icosahedral symmetry throughout the entire packing. This is

due to the existence of two particularly dense, perfectly icosahedrally symmetric packings

containing two and four shells, respectively, totaling 42 and 134 identical nonoverlapping

spheres surrounding a central same-size sphere. The first 134 spheres in the N = 269, 320,

and 530−533 DLP optimal packings can be described as variations on the 134-sphere pack-

ing, which contains as a subset the 42-sphere packing. Table II provides the details of the

polyhedra composing the perfectly symmetric 134-sphere packing, where the fourth shell

of the packing includes 60 spheres with centers on the vertices of a truncated icosahedron

and an additional 20 spheres with centers arranged along radial vectors from the center of

the packing through the centers of each of the truncated icosahedron’s 20 regular hexagonal

faces.

The numbers of spheres in the outer shells of the two perfectly icosahedrally symmetric
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packings are near to the maximal number ZS
max(Rmin(N)) that can be placed on spherical

surfaces of radii Rmin(42) and Rmin(134), respectively. As a result, DLP optimal packings

at N near 42 and 134 can be packed similarly to these icosahedrally symmetric packings

while roughly adhering to the empirical rule of surface-maximization. However, none of the

spheres in any of the perfectly icosahedrally symmetric packing’s shells are in contact with

any other spheres within that shell, and the spheres in the second icosahedron (third shell)

are not in contact with any of the spheres in the icosidodecahedron (second shell). This

lack of contact allows the spheres to be translated away from their perfectly icosahedrally

symmetric positions in order to obtain a smaller DLP optimal packing radius Rmin(N) for

N near N = 42 and N = 134.

(a)

(b)

FIG. 16: (Color online) As in Fig. 8, except here we show the two shells of the N = 42 DLP

optimal packing; the 12 sphere centers of the first shell roughly form the vertices an icosahedron,

and the 30 sphere centers (including 3 rattlers) of the second shell roughly form the vertices a

icosidodecahedron. The zenith direction in both cases is chosen along one of the rough C5 axes.

(a) 12 spheres, R = 1, point group Ih (to 0.012 sphere diameters). (b) 30 spheres, Rmin(42) =

1.699423 . . . , point group Ih (to 0.195 sphere diameters).
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(a)

FIG. 17: (Color online) As in Fig. 8, except here we show the last shell of the roughly icosahe-

drally symmetric N = 134 DLP optimal packing, including 80 spheres with centers at distance

Rmin(134) = 2.585816 . . . . The centers of 60 of the spheres roughly form the vertices of a truncated

icosahedron, while the remaining 20 spheres are centered in the truncated icosahedron’s hexagonal

faces. The zenith direction is chosen along one of the rough C5 axes.

The two shells of the N = 42 DLP optimal packing are depicted in Fig. 16, where the

shells contain 12 and 30 spheres, respectively, just as do the shells of the dense icosahedrally

symmetric packing described in the first two rows of Table II. The variation on the two

perfectly icosahedrally symmetric polyhedra that form the N = 42 DLP optimal packing

achieves an improvement of 0.001879 sphere diameters in R, with Rmin(42) = 1.699423 . . . .

The last shell of the N = 134 DLP optimal is depicted in Fig. 17. The N = 134 packing

includes; 12 spheres within radial distances 1 and 1.036, 30 within radial distances 1.637 and

1.763, 12 (of which five are rattlers) within radial distances 1.999 and 2.036 (icosahedrally

symmetric to 0.075 sphere diameters), and 80 at exactly Rmin(134) = 2.585816 . . . . The DLP

optimal packing for N = 134 achieves an improvement of 0.0197270 . . . over the perfectly

icosahedrally symmetric packing.

E. Maracas packings

In a spherical region, the most area available to place the centers of nonoverlapping

spheres is on the surface. Consequently, is is perhaps expected that DLP optimal packings

would contain saturated or nearly saturated surfaces. However, it is surprising that the

salient features of certain DLP optimal packings are entirely determined by the distribution

of the spheres with centers at precisely radius Rmin(N).
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The DLP optimal packings for N = 77 and N = 93 are termed “maracas” packings; they

are perfect examples of the phenomenon of surface-maximization, and exhibit some of the

lowest values of the greatest S compared, respectively, to the packings in the sets B77 and

B93. The maracas packings each consist of a few unjammed spheres free to rattle within

a “husk” composed of the maximal number of spheres that can be packed with centers at

Rmin(N). Further, Rmin(77) = RS
min(Nout(77)) and Rmin(93) is only 6.606796 · · · × 10−5

sphere diameters larger than RS
min(Nout(93)). Figure 18 depicts the first and only shells for

the maracas packings.

(a)

(b)

FIG. 18: (Color online) As in Fig. 8, except here we show the first and only shells for the

N = 77 and N = 93 “maracas” packings, including rattlers. The zenith direction in each case

is chosen somewhat arbitrarily to run through the center of one of the surrounding spheres. (a)

59 spheres, one rattler, Rmin(77) = 2.111526 . . . , point group C1. (b) 69 spheres, five rattlers,

R = Rmin(93) = 2.280243 . . . , point group C1.
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F. Optimal packings where the central sphere is not locally jammed

As in R
2, for small enough N , there are many DLP optimal packings in R

3 where a

number of jammed spheres form a cavity around the central sphere such that were the

central sphere not fixed, it would be a rattler. The N = 62 packing already discussed

exhibits this characteristic, containing eight spheres with centers at R = 1.087542 . . . and

six with centers at R = 1.087786 . . . from the center of the central sphere. The N = 61

packing has a similar cavity composed of three layers of four spheres each with centers at

respective distances R = 1.013330 . . . , R = 1.028826 . . . , and R = 1.019676 . . . , configured

as squares. The N = 74 optimal packing exhibits a cavity composed of four layers of four

spheres each with centers configured as squares and at respective distances R = 1.152237 . . . ,

R = 1.156068 . . . , R = 1.167618 . . . , and R = 1.225331 . . . . The cavities around the central

sphere in the N = 73 and N = 78 packings are composed of ten layers and nine layers,

respectively, of two spheres each.

The cavities formed are not, however, always symmetric. For 59 of the 184 N studied,

DLP optimal packings were found containing cavities such that the center of the nearest

sphere to the central sphere was at distance R > 1; for only seven of these is any layer

composed of more than one sphere.

In general, the cavities range in number of spheres from 8 for N = 50 to 26 for N = 99.

The center of the first sphere forming the cavity ranges from distance R = 1.006188 . . . for

N = 154 to R = 1.356622 . . . for N = 99. The farthest of the 26 spheres forming the cavity

in the N = 99 DLP optimal packing has center at distance R = 1.537500 . . . , indicating

that the volume of space available in the cavity to the center of the central sphere is more

than three times the sphere’s volume.

VI. CONCLUSIONS

DLP optimal packings in R
3 are widely spatially diverse and differ, particularly on the

surface, from subsets of the Barlow packings at all N . They sometimes display elements

of perfect symmetry and often display elements of imperfect symmetry, such as imperfect

icosahedral symmetry for sufficiently small N . They are similar in these respects to DLP

optimal packings in R
2, which differ from packings of contacting disks with centers on the
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vertices of the triangular lattice. However, at sufficiently large values of N in any R
d, the

bulk of DLP optimal packings must begin to closely resemble a subset of one of the densest

infinite packings in respective R
d or fail to be a densest local packing.

In R
3, optimal packings tend to have a minimum number of shells and a last shell that is

almost always nearly saturated (or saturated). These features lead to DLP optimal packings

most closely resembling, as measured by a scalar similarity metric (9), subsets of Barlow

packings consisting of N + 1 spheres (a packing in BN) with the same distribution of coor-

dination shells as an FCC packing.

Knowledge of Rmin(N) for certain N = N∗ in R
d makes possible the construction of a

rigorous upper bound (6) on the maximal density of an infinite sphere packing in R
d; this

bound becomes more restrictive as N∗ grows large, and becomes the equality φ̂∗(N∗) = φ∞
∗

as N → ∞. Knowledge of the Rmin(N) also makes possible the construction of a function

Zmax(R) that is an upper bound (2) on the expected number of sphere centers Z(R) within

distance R from any given sphere center, which can be related to a packing’s pair correlation

function g2(r) in R
3 by (3). This upper bound is a realizability condition on a candidate pair

correlation function g2(r) for a packing of spheres, similar to the nonnegativity conditions

on g2(r) and its corresponding structure factor S(k).

The function Zmax(R) is also a significantly more restrictive upper bound on candidate

cross-correlation functions for a packing of a special central sphere and its surrounding

spheres, say, a single spherical solute molecule that attracts same-size spherical solvent

molecules. The critical distinction between a cross-correlation function for a single sphere

and a system-wide pair correlation function g2(r) is that g2(r) is an expected value or average

over all identical spheres in a packing, whereas a cross-correlation function for a single sphere

applies locally, just as the function Zmax(R) is derived locally.

Considering, for example, the spheres forming the cavity wall in DLP optimal packings

in R
3 with cavities around the central sphere, it is clear that not every sphere in a packing

can have the maximal number Zmax(R) of sphere centers within distance R from its center

(except for R such that Zmax(R) = 12, where the Barlow packings realize this criterion).

However, as any single (solute) sphere can have the maximal number of (solvent) sphere

centers within distance R from its center, a Z(R) defined in terms of a cross-correlation

function of a single central sphere can be equal to Zmax(R) at any R. Otherwise expressed,

for gyz
2 (r) any realizable cross-correlation function between nonoverlapping spherical solute
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molecules of unit diameter (of type y) in the dilute limit and same-size spherical solvent

molecules (of type z),

Zmax(R) = sup{ρs1(1)

∫ R

0

xd−1gyz
2 (x)dx}, (12)

where the notation sup{ . . .} indicates the mathematical supremum. The function Zmax(R)

is thus a significantly more restrictive upper bound for candidate cross-correlation functions

of a single solute sphere amongst same-size solvent spheres than for candidate pair correlation

functions of packings of indistinguishable spheres.

The characteristics of DLP optimal packings in each dimension d are heavily dependent

on the underlying differences in packing spheres densely in R
d. For example, in R

2 there is

a unique arrangement of K2 = 6 disks in contact with a central disk, whereas in R
3 there

are a continuum of arrangements of K3 = 12 spheres in contact with a central sphere. In

R
2, there is a unique densest infinite packing of disks and in R

3, there are an uncountably

infinite number of densest infinite packings of spheres.

Differences in characteristics across dimension are also driven by the existence of particu-

larly locally dense dimensionally-unique packings. In R
2, these include the wedge hexagonal

packings described in paper I and the curved hexagonal packings [7], the densest local pack-

ings for N = 3k(k + 1), k = 1, 2, . . . 6. In R
3, they include the two perfectly icosahedrally

symmetric packings for N = 42 and N = 134 (Table II) that contain only two and four

shells, respectively. It is curious to note that both the curved hexagonal packings and the

perfectly icosahedrally symmetric packings for N = 42 and N = 134 are composed of a

relatively small number of densely-packed shells of spheres; however, in the curved hexago-

nal packings, the spheres in any given shell are in contact with one another whereas in the

aforementioned perfectly icosahedrally symmetric packings, they are not.

Dimensions four, eight and twenty-four are similar to dimension two in that in each of

these dimensions there is a unique (uniqueness is conjectured for d = 4 and proved for d = 8

and d = 24[2]) arrangement of spheres with kissing numbers K4 = 24 (recently proved by

Musin in [37]), K8 = 240, and K24 = 196560. The densest known packings in dimensions

four, eight, and twenty-four are also conjectured to be unique, and each is a lattice packing

that is self-dual, i.e., its reciprocal lattice is itself (the dual of the triangular lattice is

similarly a triangular lattice, though resized and rotated 30 degrees). The self-duality of
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the E8 (d = 8) and Leech (d = 24) lattices has been exploited to prove, up to a very small

numerical tolerance, that identical nonoverlapping spheres with centers on the sites of these

lattices are the densest packings of spheres in their respective dimensions [15]. In dimension

five, the densest known packings can be described, similarly to Barlow packings, as stackings

of layers of the densest packings in R
4. Consequently, we might expect to find DLP optimal

packings in R
d, d = 4, 8, and 24 similar to the curved hexagonal packings in R

2, whereas

we would not expect to find such optimal packings in R
5.

These and other dimension-dependent dense packing characteristics could have an effect

on the probability of freezing in a overcompressed liquid of hard spheres in R
d. Recent

work [38–41] suggests that the phase transition from a overcompressed hard-sphere liquid

in R
3 to a crystalline solid with sphere centers near to the sites of the spheres centers in a

Barlow packing may be described as a two-stage process. In the first stage, small clusters of

spheres form that are denser than either the liquid or crystalline solid states. In the second

stage, the dense clusters grow in size and decrease in density while their bulk (interior)

transforms from the center outward into a crystalline solid state [40]. An analogy can be

drawn between DLP optimal packings in R
3 for smaller N and the small clusters, in that

both are locally denser than corresponding subsets of Barlow packings or crystalline solid

states and in that neither are similar (both angularly and radially) to small subsets of Barlow

packings. A similar analogy applies between DLP optimal packings for sufficiently large N

and the larger clusters with crystalline solid interiors, in that both are very similar to Barlow

packings in their bulk and not similar on and near their surfaces.

In general, the probability per unit time of freezing in hard-sphere liquids at comparable

overcompression decreases with increasing dimension, at least for dimensions two through

six [42]. However, with the previously described two-stage process in mind, consideration of

the dimension-dependent characteristics of the densest local packings could lead to a further

increase, beyond what might otherwise be predicted by the general trend, in estimates of

the probability per unit time of freezing in R
2 as compared to in R

3.

For example, unlike in R
3, in R

2 there are several values of N > K2 = 6, specifically,

N = 12, 30 and 54, for which one of the densest local packings is a subset of the densest

infinite packing, and therefore for which the equality in the upper bound (2) can hold. We

might expect to see this occurring in R
4, R

8, or R
24 as well, but not in R

5. The equivalence of

densest local packings at certain N and subsets of the densest infinite packing in R
2 suggests
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that the first stage of the two-stage crystallization process, in which small clusters of spheres

form that are denser than either the liquid or crystalline solid states, may be shortened in

duration for hard-disk liquids in R
2 relative to hard-sphere liquids in R

3. If this is the

case, accounting for the equivalence of densest local packings and subsets of the densest

infinite packings should result in an increase in the probability per unit time of freezing in

R
2 and potentially R

4, R
8, and R

24 as compared to in R
3 and R

5. For hard-sphere liquids

at densities near the freezing point, in R
2 relative to in R

3, the more pronounced “shoulder”

[43] appearing in pair correlation functions between the first and second nearest-neighbor

distances could be evidence indicating such a shortened first stage.

This example and the similarities between DLP optimal packings and the nuclei described

in the two-stage description of crystallization suggest that there may be an explicit connec-

tion between freezing in overcompressed hard-sphere liquids and DLP optimal packings. It

would be interesting, in the context of a revised nucleation theory, to explore the relationship

between nucleation and dense local clusters of spheres configured with centers near the sites

of sphere centers in the densest local packings.
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Appendix A: Lower bounds on Rmin(N)

Knowledge of the densest infinite packings in R
3, the Barlow packings, allows Rmin(N)

to be bounded both from above and below. A lower bound can be obtained through the

observation that it is not possible to remove a finite number N +1 of spheres from an infinite

Barlow packing and replace them by N + 1 spheres packed as an optimal DLP packing. If

this could be accomplished at even one value of N , then the Barlow packings would not be

the only densest infinite packings of identical nonoverlapping spheres in R
3, as this operation

could be repeated ad infinitum to yield an infinite-volume packing fraction φ∞
∗ greater than

or equal to π/
√

18.
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Consider removing all N + 1 spheres (including a central sphere) in a Barlow packing

with centers within distance R(N) = Rmin(N) + ǫ of the center of the central sphere, where

N = N ′ is chosen to include all spheres in the coordination shell at R(N ′). We term the

set of all such subsets of N ′ + 1 spheres chosen from all Barlow packings BN ′ , similar to the

BN defined in Sec. III. Attempting to replace (without overlap) the removed spheres with

a DLP packing of N ′ + 1 spheres with optimal radius Rmin(N ′), we see that ǫ must be in

the range 0 ≤ ǫ ≤ 1. If ǫ were less than 0, then the DLP packing wouldn’t be optimal. If

ǫ were greater than or equal to 1, then the Barlow packings would not be the only densest

packings of identical nonoverlapping spheres in R
3, as for ǫ ≥ 1, the DLP packing with

optimal radius Rmin(N ′) can be always be placed such that none of its spheres overlaps any

of the remaining spheres in the Barlow packing. This range of epsilon results in the lower

bound Rmin(N ′) ≥ R(N ′) − 1, valid for any R(N ′) ≥ Rmin(N ′) chosen as stated above.

In practice, ǫ may be reduced significantly below the value of 1. For example, as for certain

N ′, R(N ′) = Rmin(N ′) + ǫ varies between the packings in the set BN ′ , ǫ is reduced from

unity by the difference between the largest and smallest R(N ′) for these N ′. More generally,

the value of ǫ can be significantly reduced by investigating the geometric considerations of

placing the N + 1 spheres of any DLP optimal packing of radius Rmin(N) into the void

created by removing N spheres from a Barlow packing. Reducing ǫ to a minimum possible

value ǫmin(N) results in the lower bound Rmin(N) ≥ R(N) − ǫmin(N).

Appendix B: Barlow packings and similarity metric reference sets

Any set of N + 1 spheres in a given BN can be used as a reference set in the similarity

metric (9). However, for N > 0, there are always multiple reference sets of N + 1 spheres

that will produce the same {δi} and consequently the same value of S for a given comparison

set. For example, as the metric (9) is insensitive to the angular position of any sphere, for

a furthest coordination shell that is not full, the same {δi} is produced regardless of which

of the spheres in the furthest shell is included in the packing used as a reference set.

When these and all other degeneracies are taken into account, we find that for BN in-

cluding only packings of s = 1, 3, 5, 7, 9, 11, and 13 Barlow stacking layers, where all B1054

packings are constructed from 13 layers, there are 1, 1, 3, 6, 14, 31 and 70 distinct sets {δi}.
For the N studied where the packings in BN do not all have the same number of layers, the
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packings in BN include s, s+1, and sometimes s+2 layers. For these BN , the set of distinct

{δi} is a subset of the set of distinct {δi} for any BN including packings of only s + 2 layers,

and the number of distinct sets {δi} is between the number for BN including only packings

of s layers and for BN including only packings of s + 2 layers.

An intuitive analysis of the determination of the shells {δi} suggests that the presence of

relatively fewer shells in a reference set can generally increase the value of S. An increase

of this sort does occur when shells are of radial width large enough such that the number

of sphere centers within each shell approaches the number density of the packing, i.e., when

radial width is on the order of a sphere’s diameter. However, this is not the case for the {δi}
derived from the sets in each BN . Indeed, direct analysis of the distribution of spheres within

each individual shell δi confirms that spheres in DLP optimal packings for a given N are in

general radially configured in a relatively small number of shells. That is, the radial positions

of the sphere centers in DLP optimal packings are clustered around a smaller number of

distances from the center of the central sphere, relative to the number of coordination shells

in the packings in BN , and the large fraction of DLP optimal packings that are most similar

to FCC-derived packings is not the result of a design-flaw in the similarity metric (9).
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[3] K. Schütte and B. L. van der Waerden, Math. Annalen 125, 325 (1953).

[4] J. Leech, The Mathematical Gazette 40, 22 (1956).
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