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Abstract 
 A general random walk theory for diffusion in the presence of nanoscale confinement is 
developed and applied.  The random walk theory contains two parameters describing 
confinement: a cage size and a cage-to-cage hopping probability.  The theory captures the correct 
non-linear dependence of the mean square displacement (MSD) on observation time for 
intermediate times.  Because of its simplicity, the theory also requires modest computational 
requirements and is thus able to simulate systems with very low diffusivities for sufficiently long 
time to reach the infinite-time limit regime where the Einstein relation can be used to extract the 
self-diffusivity.  The theory is applied to three practical cases in which the degree of order in 
confinement varies.  The three systems include diffusion of (i) polyatomic molecules in metal 
organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron.  
For all three cases, the comparison between theory and the results of molecular dynamics 
simulations indicates that the theory can describe the observed diffusion behavior with a small 
fraction of the computational expense.  The confined random walk theory fit to the MSDs of 
very short MD simulations is capable of accurately reproducing the MSDs of much longer MD 
simulations.  Furthermore, the values of the parameter for cage size correspond to the physical 
dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation 
barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values 
but correspond to real properties of the physical system.   
 
PACS  number(s): 05.40.Fb, 68.43.Jk, 83.10.Rs   
(random walks, diffusion of adsorbates, molecular dynamics) 
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I.  Introduction 
 
 Atomic and molecular diffusion is a fundamental transport process in fluids. In recent years, 
the transport of chemical species through nanoscale pores, tubes and channels has become very 
important in many areas [1] and an increasing number of materials with such configurations are 
being produced and applied [2]. As a result, there has been an increase in experimental and 
theoretical interest to investigate diffusion processes in nanoscale confined geometries [3,4].  
Confinement restricts and complicates molecular motion. Molecular diffusion in bulk fluids 
follows the Einstein relation [5], in which the mean square displacement (MSD), a single particle 
auto-correlation function, is linearly proportional to observation time, in the infinite-time limit. It 
has been shown that in macroscopic pores, this conventional diffusion is maintained [6]. Taken 
to an extreme, confinement can result in MSDs which do not obey the Einstein relation, such as 
those exhibited in one-dimensional hard-rod theory [7] or in small cylindrical pores in which 
particle passing is not observed [4,8]. Even in confined systems that obey Einstein’s relation, 
there are physical phenomena that arise due to confinement, such as percolation [9], in which 
irregular confinement blocks some paths for transport, resulting in a reduction of the diffusion 
coefficient.  In this regime of three-dimensional systems with nanoscale confinement, there is the 
particular challenge of relating the observed diffusivity to the structure of the material.  To date, 
investigations of this structure/property relationship are performed on a case-by-case basis.  It is 
the intention of this work to demonstrate that a straightforward incorporation of confinement into 
random walk theory is capable of quantitatively describing diffusion in systems with nanoscale 
confinement, across a broad range of disparate materials.   
 Molecular-level simulation is an ideal tool for developing a fundamental molecular-level 
understanding of structure/property relationships.  The advantage of molecular simulation lies in 
the fact that one has complete access to every trajectory of every atom at every instant in time, 
which can be analyzed in a broad variety of ways to gain insight into the system.  Molecular 
dynamics (MD) simulations are routinely used to study diffusion in systems with nanoscale 
confinement, such as adsorbates in nanoporous adsorbents like zeolites and metal organic 
frameworks [10], gases in polymeric membranes [11], ions in solid conductors [12] and many 
other applications.  The primary drawback of (MD) simulation is that one is limited to systems 
that are small relative to macroscopic systems (typically on the order of a million atoms or less) 
and for short durations (typically on the order of 10 ns or less).  Thus, diffusion phenomena that 
occur on larger length or time scales remain outside the domain of MD simulations.   
 Integrated multiscale modeling algorithms allow one to describe the physics of transport 
across a range of time scales using multiple techniques, in which the spatial and/or temporal 
resolution varies.  For example, in one of the applications described below, the MD simulation of 
a hydrated proton exchange membrane (PEM) [13] employs a time step of 0.1 fs (10-16 s) in 
order to capture the vibration of chemical bonds in the system.  However, the MD simulations 
extend only for 2 ns, which is insufficient to reach the infinite-time limit of the Einstein relation 
from which self-diffusivities can be extracted.  For the same system, confined random walk 
(CRW) simulations fit to the short time MD results generate MSDs out to 100 ns (10-7 s), which 
does reach the Einstein limit.  Thus we cover 9 orders of magnitude in time with an integrated 
multiscale modeling algorithm that combines MD and CRW simulations.   

Random Walk (RW) theory and simulation have been used routinely to model diffusion 
processes. The simple isotropic random walk model (SRW) is, indeed, the basis of most of the 
diffusive processes. A large body of work has accumulated concerning the properties of such 
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processes, and very detailed information is available [14-15]. The traditional SRW considers that 
movements are uncorrelated and unbiased, this is, the location after each step taken in the 
random walk is only dependent on the location in the previous step and the process is Markovian 
with regard to the location [16], and the direction moved at each step is completely random. 
Assuming that movement in any direction is allowed, this process is essentially Brownian motion 
and such models produce the standard diffusion equation.  However, as mentioned before, some 
systems show anomalous dynamical behavior, especially in short and intermediate observation 
times.  Through numerous approaches (fractional Brownian motion [17], generalized diffusion 
equations [18], Langevin equations [19], generalized Langevin equations [20], generalized 
master equations [21], generalized thermostatistics [22], fractional equations [23]), the extension 
of random walk theory has created a very rich tool, rich enough to be able to describe certain 
dynamic features of complex systems.  Regarding diffusion in confined geometries, continuous 
time random walk models provides explanations for a variety of physical phenomena. Montroll 
and Shlesinger [24] give a good review of the general theory of random walks. Random walks 
have also been modified by simply introducing repelling, reflecting or absorbing barriers [25]. 
Nevertheless, to the best of our knowledge, a simple theory of confined diffusion applicable to a 
large number of different materials that does not entail high computational expenses has not been 
reported. 

In this work, we develop a theory of confined diffusion that describes the general features 
observed in the dynamics of atoms and/or molecules diffusing through materials with nanoscale 
confinement using the fewest number of parameters necessary to capture the essential physics. 
We begin with the conventional random walk theory for systems without confinement, which 
depends only on the variance of the Maxwell-Boltzmann distribution, then add two parameters 
that capture confinement: a cage size and a cage-to-cage hopping probability.  As discussed 
below, the CRW theory and simulation generate three regimes of behavior in the short, 
intermediate and long time scales.  Because of its simplicity, the theory has modest 
computational requirements and is thus able to simulate systems with very low diffusivities for 
sufficiently long time to reach the infinite-time regime where the MSD is linearly proportional to 
the observation time.   

The MD/CRW approach is applied to three practical cases in which the degree of order in 
confinement varies.  The three systems include diffusion of (i) polyatomic molecules in metal 
organic frameworks (MOFs), (ii) water in proton exchange membranes, and (iii) liquid and 
glassy iron.  In the first system, the MOF is a rigid, crystalline adsorbent, in which the porous 
network is completely regular.  In the second system, there is a nanoscale aqueous domain that 
interpenetrates the hydrophobic polymer phase.  The aqueous domain through which water 
diffusion occurs is composed of irregularly shaped and irregularly connected water clusters.  In 
the third system, glassy iron, there is no second component; each iron atom finds itself within a 
transient cage composed of neighboring iron atoms.  The purpose in studying three systems is 
twofold.  First, it demonstrates the broad applicability of the MD/CRW simulation approach.  
Second, it underscores the common physics governing confined diffusion in each of these three 
disparate systems. For all three cases, the CRW simulations are parameterized based on the 
short-time MSD of the MD simulations and are capable of quantitatively describing all of the 
observed short-time behavior.  Furthermore, the CRW simulations are run for a sufficiently long 
time to generate MSDs in the linear regime, from which the self-diffusivity can be reliably 
regressed, with a small fraction of the computational expense associated with MD simulations. 
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II.  Theory 
 
 The intent of the theory of confined diffusion developed and applied herein is to describe the 
general features observed in the dynamics of atoms and/or molecules diffusing through materials 
with nanoscale confinement using the fewest number of parameters necessary to capture the 
essential physics.  To this end, we begin with the conventional random walk theory for systems 
without confinement and then add two parameters that capture confinement.  For systems 
without confinement, a three-dimensional Gaussian random walk is described by a series of steps 
in which a direction for each particle is chosen randomly and the velocities are sampled from the 
Maxwell-Boltzmann (MB) distribution [14,26].  For the unconfined system, there is only one 
independent parameter and it is the variance of the MB distribution.  Importantly, diffusing 
particles do not interact; each individual random walk is independent of all others. From an 
analysis of the mean square displacement (MSD), an averaged single-particle auto-correlation 
function can be defined as  
 
 ( ) ( ) ( ) 2ttMSD ii rr −+= ττ           (1)  

 
where ( )tir is the position of particle i at time t and τ is an observation or elapsed time.  The 
angled brackets indicate an average over both particles i and time t.  The Einstein relation relates 
the self-diffusion coefficient of the particles to the MSD in the infinite-time limit, 
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where d is the dimensionality of the system.   
 In a RW simulation, a single step has an average displacement, ۃ∆rۄ, and each step has a time 
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where ݇ is the Boltzmann constant, T is the temperature, m is the mass of the diffusing particle, ۃvۄ is the mean speed.  Thus, in a RW simulation one can generate the MSD as a function of τ 
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and obtain the self-diffusivity in equation (2), specifying only the MB distribution.  Furthermore, 
the diffusivity from an unconfined 3D RW simulation is given by 
 

 Do =
σ v

2Δt
2

          (6) 

 
This expression provides a limiting value of the diffusivity in the absence of confinement and is 
hereafter referred to as the intrinsic diffusivity of the unconfined system.  As a note, in an 
unconfined system, the RW theory is not capable of reproducing the very short time ballistic 
motion of particles, in which the MSD is proportional to τ2, because the ballistic regime is 
limited to time scales before the first collision and the RW theory models Brownian motion that 
occurs after many collisions. 
 Confinement is incorporated in the RW theory through the addition of two parameters:  a 
cage size, Rcage, and a cage-to-cage hopping probability, pcage.  In our confined random walk 
(CRW) theory, the particles themselves have no volume and originate at the center of a cage, 
which is assumed to be spherical.  Each particle engages in a conventional random walk until its 
displacement from its original position is greater than Rcage.  At the end of a step in which a 
particle has stepped beyond a cage, that move is accepted with probability, pcage.  If the move 
was unsuccessful, the particle is reflected back into the original cage, such that the net length of 
its trajectory is maintained.  If the move is successful, the particle now resides in a new spherical 
cage with a center located at a distance Rcage from the edge of the original cage and lying along a 
vector collinear with the particles trajectory.  The successful and unsuccessful cage-to-cage 
moves are shown schematically in Figure 1.  As clearly indicated in the schematic of a successful 
move, overlap of the new cage and the old cage will always occur except when the trajectory of 
the particle is perfectly parallel to the local radial vector.  Once a successful cage-to-cage move 
occurs, the particle is only aware of the position of the center of the current cage.   
 The placement of the new cage was chosen to ensure that any cage-to-cage move results in 
the particle always residing within the confines of the new cage.  While the trajectory of the 
particle is pointed toward the center of the new cage after a successful cage-to-cage move, in the 
next step the direction of the move is once again randomly selected, which mitigates any bias 
introduced by this choice of new cage position. 
 While this model is extraordinarily simple, it is capable of reproducing a range of behavior 
from completely confined to completely unconfined diffusion.  It yields intermediate behavior 
due to confinement and infinite-time diffusivities, if run for a sufficiently long time.  
Furthermore, we show below that after being parameterized to the short-time MSDs obtained 
from MD simulations, it is capable of quantitatively capturing the intermediate and long-time 
dynamic behavior of three diverse applications, in which the degree of order in confinement 
varies.  The three systems include diffusion of (i) polyatomic molecules in metal organic 
frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron.   
 
III.  Simulation Methods 
 
Confined Random Walk Simulations 
 The confined random walk simulations were implemented in a serial code written in 
FORTRAN90.  The variance of the Maxwell-Boltzmann distribution, the time scaling constant, 

tΔ , the cage size, Rcage, and a cage-to-cage hopping probability, pcage, were provided as inputs.  
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Two hundred particles were simulated to demonstrate the general capabilities of the theory 
(Figures 4 and 5) and 1000 particles were simulated when parameterizing the model in the three 
applications.  The number of steps used in the simulations varied from 104 to 107 and depended 
strongly on the parameters input into the simulation.  The goal was to simulate sufficiently long 
to reach the infinite-time limit required by the Einstein relation, so that self-diffusivities could be 
obtained from equation (2).  As pcage decreased, the time required to reach this limit increased. 
The MSDs were generated after the simulation was completed from a file containing positions of 
the particles at periodic intervals.  In all simulations, at least 1000 points along the trajectory 
were saved.  From simulations one could only obtain statistically reliable MSDs of about half of 
the time of the simulation, before the diminishing amount of data in the correlation function 
rendered the rest of the MSD unacceptably noisy [27]. Therefore we calculated the self-
diffusivity coefficients in a range of observation times running from tsim/4 to tsim/2, where tsim is 
the simulation duration.  The non-zero lower limit was needed to omit information prior to the 
infinite time limit.   
 
Molecular Dynamics Simulations 
 The CRW theory is compared to three systems, for which MSD are available from MD 
simulations. The first system is of an explosive, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, 
CAS# 121-82-4), adsorbed in an IsoReticular Metal Organic Framework, IRMOF-1.  The 
structures of RDX and IRMOF-1 are shown in Figure 2 [28]. The cages are cubic in shape with 
octahedral zinc-carboxylate complexes at the vertices and benzene rings along the edges.  The 
dimension of the cage is 12.92 Å.  IRMOF-1 has been synthesized and characterized [29].  
Xiong et al. have previously simulated RDX in IRMOF-1 [30], IRMOF-10 [31] and other 
IRMOFs [32].  Similar dynamic behavior of RDX is observed for all IRMOFs and for the 
purposes of this demonstration, we use the results from IRMOF-1 [32].  The simulations were 
performed across a temperature range from 300 to 600 K, in order to obtain an activation energy 
for cage-to-cage diffusion.   
 A complete discussion of the interaction potential and simulation method is given in the 
reference above [30].  Here we provide a brief summary.  For RDX, we employ a non-reactive, 
fully flexible, atomistic interaction potential for RDX that takes features from both Wallis and 
Thompson as well as Boyd et al. [33]. The RDX intramolecular force field includes bond 
stretching, angle bending, torsion and non-bonded interactions. The non-bonded interactions 
include Lennard-Jones interactions and Coulombic interactions, due to a permanent charge 
distribution, modeled as point charges at each atom center. It has been pointed out that there is a 
significant variation in the charge distribution of IRMOF-1 depending on the QM calculation 
method applied [34]. Herein we have used the results obtained using the Löwdin Population 
Analysis (LPA) method [35]. The atoms of IRMOF-1 are fixed at their crystallographic 
coordinates and interact with the RDX through Lennard-Jones and Coulombic interactions, with 
parameters from Tafipolsky et al. [36], in which the LJ parameters are taken from Allinger et al. 
[37] , which is the same source for LJ parameters used for RDX. 
 Classical equilibrium MD simulations were performed on an in-house parallel code written in 
FORTRAN90 to obtain configurations and diffusivities of RDX adsorbed in IRMOF-1.  We 
integrated the equations of motion using the two-time step r-RESPA algorithm of Tuckerman 
and co-workers [38].  Intramolecular degrees of freedom were accounted for in the short time 
loop, with a step size of 0.2 fs.  There were 10 short steps per long time step.  The temperature 
was controlled using the Nosé-Hoover thermostat [39].  We equilibrated the system for 2 ns.  
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Following equilibration, we simulated an additional 8 ns for data collection.  During data 
production, positions of the center-of-mass of the RDX molecules were saved every 5 ps and 
were used to calculate the self-diffusivity via the Einstein relation.  Uncertainties in the self-
diffusivity are reported as the standard deviation of the x, y, and z components of the diffusivity.  
 The second system simulated is the hydrated proton exchange membrane (PEM) Nafion.  We 
have previously reported diffusion coefficients for water in PEMs as a function of side chain 
length, molecular weight and equivalent weight (EW) of the polymer [13,40].  Across polymers, 
the same qualitative behavior of water dynamics is observed.  In this work, we therefore, 
examine the diffusion coefficients of water in Nafion with an EW of 1144 and a degree of 
polymerization of 15.  The structure of the hydrated Nafion 1144 is shown in Figure 3 [28].  In 
this figure, all atoms of Nafion have been rendered invisible except the sulfur of the sulfonate 
group, in order to better visualize the shape of the aqueous domain.  Additional interactive 
structures and images are available for viewing and download on an archived site [28].  The 
diffusion coefficient of water in Nafion varies strongly with water content.  Herein, we examine 
water contents ranging from minimally hydrated to saturated, λ = 3, 6, 9, 15 and 22 H2O/SO3H.   
 Here again we provide a brief summary of the MD simulation method and potentials used to 
generate the MSDs employed in this work.  The potential model for Nafion was taken from the 
literature.  It is an explicit atom model with the exception of the CFX groups, which are treated as 
united atoms.  The potential includes bond stretching, bond bending and bond torsion modes.  It 
also includes non-bonded interactions using the Lennard-Jones potential and a Coulombic 
interaction.  The details of the potential model have been published in previous studies by other 
authors [41,42]. Water is simulated using the TIP3P model [43] with a flexible OH bond [42].  
The model for hydronium ions, H3O+ is from Urata et al. [44].  Classical equilibrium MD 
simulations of hydrated Nafion were performed on an in-house parallel code written in 
FORTRAN90.  The integrator, thermostat, and technique for capturing diffusivities are 
analogous to what was done in the MD simulations of RDX in IRMOFs. 
 The third system we compare to is liquid and glassy iron.  We use the Johnson potential for 
interactions [45].  Because these simulations were much less computationally intensive than 
those required for the previous two applications, we used a simpler in-house MD serial code with 
the single-time-step fifth-order Gear-Predictor Corrector as an integrator [46].  The thermostat 
was the same.  The glassy configuration was generated by taking an equilibrium configuration of 
liquid iron at 3000 K and instantly quenching it to 300 K.  After an equilibration period, the 
MSD were recorded and analyzed according to the procedure described above.  In contrast to the 
previous two applications, these MSDs are not previously published. In addition, the CRW 
theory was also applied to liquid iron at 3000 K.  
 
IV.  Results 
  
 We organize the results into four sections.  In the first section, we provide a description of 
the range of capabilities of the Confined Random Walk theory.  In the subsequent three sections, 
we apply it to each of the three test systems. 
 
A.  General Predictions of the Confined Random Walk Theory 
 Before applying the Confined Random Walk theory to the three applications, we first present 
a brief demonstration of the capabilities of the theory.  The purpose of this section is not only to 
show that two parameters, a cage size and a cage-to-cage hopping probability, are indeed capable 
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of capturing the dynamic behavior from fully confined to fully unconfined systems, but also to 
clearly illustrate the effect that changing either parameter has on the system behavior.  An 
understanding of the parametric sensitivity of the model in a generic sense will aid in the 
interpretation of the results when the theory is applied to the three target systems.  
 In Figure 4, we plot the MSD as a function of observation time on linear and logarithmic 
scales for a dimensionless system in which ۃ∆rۄ ൌ 2.87·10-3 , ∆t = 1 , Rcage = 1 , and the 
probability of a successful cage-to-cage hop, pcage , was varied from 0 to 1.  When  pcage = 0 , the 
particles were completely confined within their original cage.  When pcage = 1, all cage-to-cage 
hops were successful and we recovered the unconfined RW theory, regardless of the value of 
Rcage. All of these simulations were carried out to the infinite-time limit, in which the MSD was 
linearly proportional to the observation time.  The CRW theory is able to reproduce the spectrum 
of behaviors within the two asymptotes mentioned above. The expected linear proportionality 
between the MSD and the observation time, which is characteristic of a system without 
confinement, is seen when pcage = 1. This is clearly indicated by the corresponding straight line 
with a slope of unity in the log-log plot. For the completely confined system ሺpcage = 0ሻ no hop 
was successful. The MSD displays an initial period of linear behavior, which is due to diffusion 
within the cage before the particle interacts with the walls.   As particles do not diffuse beyond 
the cage, the self-diffusion coefficient in the infinite time limit region must be, and was indeed 
found to be, zero.  Intermediate behavior was detected when 0 < pcage < 1 . Because of 
confinement, the MSD vs. observation time curves are not linear at intermediate times.  As can 
be seen in the linear plots, the long-time slopes (proportional to the self-diffusivity) decrease as 
pcage  decreases, which is in agreement with the fact that confinement slows diffusion. All 
systems reach the infinite-time limit regime if run long enough, as can be seen in the log-log plot 
from the common slope of unity of for all curves with non-zero pcage. The time required to reach 
this limit however, varies depending on the pcage  value. Systems with very low diffusivities 
(systems with small cage-to-cage probability) reach the infinite-time limit more slowly. This 
dramatic slowing of the diffusion is the primary reason that computationally intensive techniques 
such as molecular dynamics simulations may not alone be able to generate self-diffusivities in 
highly confined systems.  
 Figure 4(b) illustrates that there are three time regimes for the MSD for systems with non-
zero pcage.  At the shortest times, there is a regime in which the confinement has not yet been felt 
and the linear behavior is observed with a slope corresponding to the intrinsic diffusivity of the 
unconfined system.  The second regime is the intermediate time regime, in which confinement is 
influencing the MSD and the relationship between the MSD and the observation time is sublinear.  
The third regime is the infinite time limit, in which the MSD is once again linear with 
observation time, now with a slope that corresponds to the effective diffusivity of the confined 
system. 
 In Figure 5, we plot the MSD as a function of observation time on linear and logarithmic 
scales for a dimensionless system in which ۃ∆rۄ ൌ 2.87·10-3, ∆t = 1, pcage = 0.001, and the size 
of the cage,  Rcage, is varied from 0 to 10.  In the limit that Rcage approaches infinity, we recover 
the unconfined RW theory, regardless of the value of pcage.  We observe that a decrease in the 
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cage size causes a decrease in the self-diffusivity, again in agreement with the general idea that 
confinement slows diffusion. 
 Figure 5(b) also demonstrates that all MSDs exhibit three regimes.  What can be observed 
particularly clearly in Figure 5(b) is the fact that the duration of the short-time regime (linear 
behavior with the unconfined diffusivity) is governed by the cage size.  In Figure 5, for a cage 
size of 10.0, only the short-time regime is visible.  As the cage size decreases, the duration of this 
regime shrinks.  In the inset of the linear plot, Figure 5(a), one can also see that the general point 
where the curve “bends over” increases as the case size increases.   
 Having examined the impact of pcage and Rcage, we can also study the impact of temperature 
on self-diffusion.  A change in temperature, changes the variance of the MB distribution and also 
changes the intrinsic diffusivity of the unconfined system, eqn. (6).  For many confined systems, 
diffusion is surface mediated and there is an activation barrier associated with a cage-to-cage 
move.  Thus the diffusivity obeys an Arrhenius temperature dependence, 
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where c is a normalization constant.  Thus a change in pcage could be caused by a change in 
activation energy (e.g. a different material) or a change in temperature in the same material.  
 
B.  Application to Diffusion of Polyatomic Molecules in Metal Organic Frameworks 
 The CRW theory was applied in the first place to diffusion of an explosive, RDX 
(hexahydro-1,3,5-trinitro-1,3,5-triazine, CAS# 121-82-4), adsorbed in an IsoReticular Metal 
Organic Framework, IRMOF-1.  This system provides a standard by which the capabilities of the 
more coarse-grained CRW theory can be tested.  It is a standard because the MSDs can be 
generated out to the infinite-time limit via MD simulation [30].  Thus we have reliable self-
diffusion coefficients from a more finely resolved technique.  Furthermore, the porous network is 
rigid and uniform, with well-defined cubic cages with a length of 12.92 Å [29].  Thus we can 
judge whether the size parameter, Rcage, correctly captures the real size of the confinement.  
Furthermore, the MD simulations have been performed over a range of temperatures, yielding an 
activation energy for diffusion of 6.0 kcal/mol.  Thus, we can judge whether the cage-to-cage 
hop probability captures the activated energy of the diffusivity, as assumed in eqn. 8. 
 For each one of the seven available sets of MSD data (corresponding to temperatures of 300, 
350, 400, 450, 500, 550 and 600 K) the CRW theory was applied.  We adjusted pcage, Rcage and ∆t 
in order to obtain a first approximate fit to the MSD data from the MD simulations. Then, we 
refined this set of parameters in a subsequent optimization procedure using the L-BFGS-B 
method [47], which performs a nonlinear multivariate optimization on bounded variables. In our 
case, the three variables are bounded: 0 < pcage < 1, 0 < Rcage and 0 < Δt.  
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 Figure 6 shows a comparison between the mean square displacement from MD simulations 
and the mean square displacement obtained with the CRW model for the seven different 
temperatures. With the appropriate parameterization, the agreement between CRW and the MD 
results is excellent. The CRW theory is capable of reproducing the diffusive behavior of RDX in 
IRMOF-1 in all the studied range of temperatures.  The numerical values of the parameters and 
the diffusivities from the MD and CRW simulations are given in Table 1.  The average error 
between the  MD and CRW self-diffusivities is 1.7%.  Uncertainties in the self-diffusivity are 
reported as the standard deviation of the x, y, and z components of the diffusivity. In Table 1, we 
observe that Rcage is approximately constant with an average of 8.46 Å. In our attempt to develop 
the simplest possible theory, all the cages in the model are assumed to be spherical. IRMOF-1 
does not exhibit spherical cages but cubic ones with a length of 12.92 Å. A sphere that encloses 
the same volume as a cube of 12.92 Å has a radius of 8.01 Å. Therefore, it appears that Rcage, the 
parameter that represents the dimension of the confinement space in our theory, shows good 
agreement with the size of the physical cage in the material.   
 In constrast to Rcage, both pcage and Do depend on the temperature, as they should via eqns. 6 
and 8 respectively.  There is a qualitative similarity between the MSDs for RDX in IRMOF-1 
(Figure 6) and the MSDs for the generic system in which pcage is varied (Figure 4(a)), because 
changing the temperature in the physical system changes the cage-to-cage hopping probability, 
because hopping from cage to cage is an activated process with an Arrhenius temperature 
dependence.  In Figure 7, we plot the CRW self-diffusivity as a function of temperature in an 
Arrhenius plot.  We find an activation energy for diffusion of 5.7 kcal/mol, as compared to the 
value of 6.0 kcal/mol reported by Xiong et al. [30] from the MD simulations.  This temperature 
dependence predominately lies in the cage-to-cage hop probability.  The temperature dependence 
of Do is more complicated than what eqn. (6) would predict and is a consequence of activated 
motion between multiple adsorption sites within each cage, a feature present in the MD 
simulations but omitted from the more coarsely grained CRW level of description. 
 
C.  Application to Diffusion of Water in Proton Exchange Membranes 

The CRW theory was also applied to the diffusion of water in the PEM, Nafion (EW = 1144) 
at 300 K as a function of water content.  It has previously been reported that the diffusion 
coefficient of water in Nafion varies strongly with water content both from experiment [48] and 
simulation [13].  Thus, herein we examine different water contents including from minimally 
hydrated to saturated, λ = 3, 6, 9, 15 and 22 H2O/SO3H.  This system is considerably different 
from the one presented above, as it does not present well-defined physical cages, but amorphous 
water clusters whose size and connectivity vary depending on the water content.  

For each one of the studied systems, we had mean square displacement data available from 
two different molecular dynamics simulations. The first set of simulations was only run for short 
observation times (no longer than 0.37 ns), while in the second set, MSDs from 0.5 to 1 ns were 
collected [13]. The infinite-time limit was not reached in any case, due to computational 
limitations.  In the longer MD simulations, the exponent, MSD ן  ߬m, fell in a sub-diffusive 
range of 0.6 to 0.8.  In this application, we fit the CRW theory only to the short time simulations.  
Thus, the comparison of the CRW theory and the MSDs in the range from 0.5 to 1 ns is a 
prediction and explicitly not a fit.   

The CRW parameters and the self-diffusivities of water from CRW and MD simulations are 
reported in Table 2.  Note that the MD simulations did not reach the long-time limit and there is 
some error associated with these self-diffusivities due to this shortcoming.  From Figure 8, we 
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see immediately that we are able to model the short time MSDs from MD very well.  The CRW 
simulations thus parameterized yield MSDs in the 0.5 to 1 ns time range in excellent agreement 
with the longer MD simulations.  Furthermore, the CRW simulations are carried out for much 
longer times, up to 100 ns, where the linear long-time behavior is reached.  We note in Table 2 
that there is not a great difference between the self-diffusivities extracted from the linear 
behavior of the CRW simulations and the sublinear regime of the longer MD simulations.  
Regardless, there is a great deal of additional confidence in the CRW diffusivities now that it has 
been shown that they have been obtained in a limit rigorously corresponding to the Einstein 
relation. 
 There is great interest in characterizing the size and connectivity of the aqueous domain in 
PEMs.  Various models have been proposed to describe this network [49].  Here, the CRW 
theory provides a characteristic dimension of the aqueous cluster size based on a dynamic 
property, the self-diffusivity of water, Rcage.  The cage size increases with increasing water 
content, which is completely reasonable on a physical basis.  Fourier transform of the water-
water pair correlation function in hydrated Nafion generate characteristic periodicity with a 
characteristic dimension of 20-30 Å [13] for λ = 3 to 6, which includes the dimension of both the 
hydrophobic and hydrophilic phases.  Whether the volume of these cages corresponds 
quantitatively to average volumes of water clusters in the PEM, as was the case for diffusion in 
the MOFs, is a subject requiring further analysis of the morphology of the aqueous domain from 
experiment and simulation.  However, at this point, it remains a promising possibility.  The 
CRW simulations also provide a probability of cage-to-cage hopping as a function of water 
content.  Again, we believe that this may provide a crucial piece of evidence in understanding the 
fundamental mechanisms for the dependency of water diffusion in PEMs.  Further analysis, 
while not the subject of this manuscript, is underway. 
 Through-out this work, we have attempted to minimize the number of parameters used in the 
CRW theory.  Fixing the pore shape to spherical and having a single pore size resulted in one 
parameter to characterize pore size.  Were we to allow a distribution of pore sizes and shapes, we 
would require additional parameters.  Since we were able to capture the dynamic behavior of 
water in Nafion—a system where there clearly is a distribution of pore sizes and pore shapes in 
the real material—with a single parameter model, we felt there was no justification for the 
needless introduction of additional parameters.  That a single size parameter can describe the 
MSD behavior in this application also indicates that capturing the polydispersity in the pore size 
and shape is not a critical element in understanding and modeling the system. 
 
D.  Application to the Diffusion of Liquid and Glassy Iron 
 Finally, we applied the CRW model to diffusion of liquid iron at 3000 K and glassy iron at 
300 K. In contrast to the previous two applications, these MSDs are not previously published.  
The MSD from MD and CRW simulations at 300 K are shown in Figure 9.  The CRW 
parameters and the self-diffusivities of Fe from CRW and MD simulations are reported in Table 
3.  The MSD for the MD and CRW simulations at 3000 K are linear and consequently are not 
shown.  There is no evidence of confinement present in liquid iron at 3000 K.  However, the 
glassy iron does show significant confinement.  Dense random packing of hard spheres is 
commonly used as first-order structural models [50] of glassy metals. Atoms vibrate within a 
cage of tightly packed neighbors and only certain circumstances generate a momentary change in 
the structure that allows some of them to move and diffuse. A  collective molecular 
rearrangement (a chain reaction flow event) occurs due to thermal fluctuations [51]. The 
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diffusivities of these systems are typically very small, which severely hinder obtaining the self-
diffusivity coefficients using MD simulations.  Analyses of the MSD by simulations and by 
various theories yield a family of curves qualitatively similar to those shown in Figure 4(b), 
where the variation of pcage has been replaced directly with temperature [52]. 
 We note that the MSDs from MD simulation end at 0.1ns.  In order to reach the linear regime, 
the CRW simulations were run for 18 ns, where the slope of the double logarithmic plot of the 
MSD vs. observation time was 0.95 ± 0.2. In this long time regime, a value of ሺ4.0 േ 0.1ሻ ·
10-13  m2/s was obtained for the self-diffusivity coefficient of Fe in the glassy state at 300 K. It is 
worth nothing that MD simulations describe a glass formed by an instantaneous quench and are 
too short to capture key relaxation processes in the glass, therefore, the glass structure within 
which we calculate MSD is not fully relaxed. This leads to a greatly over-predicted diffusivity in 
the glassy state by MD simulations (and faithfully reproduced by the CRW simulations) relative 
to experiment [53]. Thus, in contrast to the other two applications, the prediction of the 
diffusivity of glassy iron is not quantitative. However, the qualitative similarity in confined 
diffusion remains valid.  The cage size at 300 K is 0.22 Å.  It is important to realize that this is 
the radius of a cage in which the point particle moves in the CRW simulation.  A cage size for a 
finite volume system would require adding the radius of the particle to this cage size.  For Fe, 
this would correspond to a cage radius of 1.53 Å.  We note that in network-forming glasses like 
silica, one observes a maximum in the MSD at intermediate times [54].  The simplest CRW 
theory as formulated in this paper is not capable of non-monotonic behavior in the MSD as a 
function of observation time. 
 
V.  Conclusions 
 
 In the present work, we have developed and implemented a general theory for diffusion in 
the presence of nanoscale confinement.  It is based on a traditional random walk theory to which 
two parameters that capture confinement have been added, a cage size and cage-to-cage hopping 
probability. The model is extraordinarily simple, however, we have shown that it is capable of 
reproducing a range of behavior from completely confined to completely unconfined diffusion 
and it yields intermediate behavior due to confinement. The CRW theory captures the correct 
non-linear dependence of the mean square displacement on observation time for intermediate 
times.  It requires modest computational requirements and is thus able to simulate systems with 
very low diffusivities for sufficiently long time to reach the infinite-time limit regime where the 
MSD is linearly proportional to the observation time.   
 The CRW theory was applied to three systems.  The application to the diffusion of RDX in 
IRMOF-1 demonstrated that the CRW is capable of quantitatively reproducing self-diffusivities 
obtained from MD simulation.  Furthermore it demonstrated that the cage size parameter has a 
physical correspondence to the actual cage size in the IRMOF-1 material.  Second, it 
demonstrated that temperature-dependent properties, such as the activation energy for diffusion, 
can also be accurately reproduced by the CRW simulations.   
 The application of the CRW theory to the diffusion of water in Nafion demonstrated that the 
CRW theory fit to short time MSD data is capable of faithfully reproducing longer time MSD 
data.  This feature is useful for systems where the dynamics are sufficiently slow that reaching 
the Einstein limit for the diffusivity is not feasible via MD simulation alone.  The CRW also 
generated cage size and cage-to-cage hop probabilities for water in Nafion as a function of the 
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degree of hydration.  These parameters may provide insight into the morphology of the hydrated 
membrane. 
 The application of CRW theory to the diffusion of glassy Fe demonstrated the breadth of 
potential applications and the ability to estimate very small diffusivities. 
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Tables and Table Captions 
 
 

 CRW  Theory  MD Simulations 

T (K) D0 (10-8) 
(m2/s) 

Rcage 
(Å) 

pcage 
D (10-9) 
(m2/s)  D (10-9) 

(m2/s) 
300 0.037 8.10 1.20⋅10-3 0.06 ± 0.01  0.056 ± 0.005 
350 0.12 8.50 5.40⋅10-3 0.28 ± 0.03  0.276 ± 0.006 
400 0.35 8.07 1.89⋅10-2 0.89 ± 0.08  0.94 ± 0.03 
450 0.61 8.60 3.72⋅10-2 2.0 ± 0.3  2.0 ± 0.1 
500 0.91 9.35 6.00⋅10-2 3.4 ± 0.3  3.5 ± 0.3 
550 1.35 8.60 8.20⋅10-2 5.2 ± 0.5  5.12 ± 0.08 
600 1.94 8.03 1.04⋅10-1 6.4 ± 0.4  6.5 ± 0.2 
 
Table 1.  Properties of the MD and CRW simulations applied to the diffusion of RDX in 
IRMOF-1 as a function of temperature.  In this case, the MD simulations were run to the long-
time limit and should agree with the diffusivity of the CRW simulations. 
 
 
 CRW  Theory  MD Simulations 

λ D0 (10-9) 
(m2/s) 

Rcage 
(Å) 

pcage 
D (10-9) 
(m2/s)  D (10-9) 

(m2/s) 
3 0.32 2.7 8⋅10-4 0.044 ± 0.003  0.041 ± 0.007 
6 0.910 6.9 3⋅10-3 0.31 ± 0.01  0.26 ± 0.05  
9 1.75 12.5 3⋅10-3 0.64 ± 0.01  0.58 ± 0.06 
15 2.66 17.5 6⋅10-3 1.3 ± 0.1  1.2 ± 0.2 
22 3.24 22.5 7⋅10-3 1.73 ± 0.07  1.7 ± 0.2 
 
Table 2.  Properties of the MD and CRW simulations applied to the diffusion of water in Nafion 
as a function of water content.  In this case, the MD simulations were not run to the long-time 
limit. 
 
 

System D0 (m2/s) Rcage (Å) pcage  DCRW (m2/s) 
Liquid Iron  5.9⋅10-9 - 1.0 (5.8 ± 0.3)⋅10-9 
Glassy Iron 7.6⋅10-11 0.22 1.35⋅10-4   (4.0 ± 0.1)⋅10-13 

 

Table 3.  Properties of the MD and CRW simulations applied to the diffusion of iron at 3000 K 
(liquid) and 300 K (glass). 
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Figure Captions 
 
Figure 1.  Schematic of unsuccessful and successful cage-to-cage moves.  On the left, an 
unsuccessful move is reflected back into the original cage, maintaining the length of the 
trajectory.  On the right, a successful move puts the particle in a new cage with center located a 
distance Rcage along the vector of the trajectory. 
 
Figure 2.  (Color online) Structures of RDX (on the left) and IRMOF-1 (on the right). Color 
legend:  blue, N; red, O; gray, C; white, H; maroon, Zn. 
 
Figure 3.  (Color online) Cross-section from a snapshot of a molecular dynamics simulation of 
Nafion (EW = 1144) at 300 K and a water content of λ = 6.  In this snapshot, all atoms except the 
sulfur of Nafion have been rendered invisible.  Color legend:  white: H; red:  O of water; green: 
O of hydronium ion; orange: S. 
 
Figure 4. Impact of cage-to-cage hopping probability,  . Plot of the mean square 
displacement as a function of observation time on linear (a) and logarithmic (b) scales for a 
dimensionless system in which ۃ∆rۄ ൌ 2.87·10-3, ∆t = 1, Rcage = 1, and pcage is varied from 0 to 1.  
 
Figure 5. Impact of cage radius, Rcage. Plot of the mean square displacement as a function of 
observation time on linear (a) and logarithmic (b) scales for a dimensionless system in which ۃ∆rۄ ൌ 2.87·10-3, ∆t = 1, pcage = 0.001, and Rcage is varied from 0 to 10. 
 
Figure 6. Comparison of the mean square displacement from MD (symbols) and CRW 
simulation (lines) for diffusion of RDX in IRMOF-1 at different temperatures. From the bottom 
to the top: 300 K, 350 K, 400 K, 450 K, 500 K, 550 K and 600 K. 
 
Figure 7. Arrhenius plot showing the diffusivities (obtained from CRW model) from the 
RDX/IRMOF-1 system as a function of temperature.  
 
Figure 8. Comparison of the mean square displacement from MD (symbols) and CRW 
simulation (lines) for diffusion of water in Nafion 1144 with different levels of hydration. From 
the bottom to the top λ = 3, 6, 9, 15 and 22 H2O/SOଷH.  
 
Figure 9. Comparison of the mean square displacement from MD (symbols) and CRW 
simulation (lines) for diffusion of glassy iron at 300 K. 
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