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Motivated by the classification of non-equilibrium steady states suggested by R.K.P. Zia and B.
Schmittmann in J. Stat. Mech. P07012 (2007), we propose to measure the violation of the detailed
balance criterion by the p-norm (||K∗||

p
) of the matrix formed by the probability currents. Its

asymptotic analysis, for the totally asymmetric simple exclusion process (TASEP), motivates the
definition of a ’distance’ from equilibrium K∗ obtained for p = 1. In addition, we show that the
latter quantity and the average activity 〈A∗〉 are both related to the probability distribution of the
entropy production. Finally, considering the open asymmetric simple exclusion process (ASEP) and
open zero range process (ZRP), we show that the current of particles gives an exact measure of the
violation of detailed balance.

PACS numbers: 02.50.Ga, 05.40.-a,05.70.Ln,74.40.Gh

I. INTRODUCTION

In nature, typically every system is governed by
well-known deterministic physical laws. However the
microscopic details are usually unreachable and a full
description of the system is impossible. The enormous
number of degrees of freedom and the apparent chaotic
motion of the microscopic elements leads to rather
complicated phenomenon. To face such situations, the
physics of statistical mechanics has been built over
the last two centuries. Our best approximation is to
assume that the interactions between the microscopic
elements occur according to some probabilistic rules.
It follows that the natural reformulation of many-body
problems takes the form of stochastic processes [1]. In
addition, almost all systems are in interaction with the
environment. It is only in particular limits (for defined
time and spatial scales) that closed systems emerge.
Generally, currents of particles, heat or magnetization
are induced by the environment and testify to the
non-equilibrium activity. If the presence of flux is a
signature of a non-equilibrium steady state (NESS), the
absence of macroscopic currents does not necessarily
imply that the system is at equilibrium. By definition
equilibrium is characterized, on a microscopic level, by
the well-known detailed balance criterion. The latter
balance is breaking for any non-equilibrium state and
imposes non-vanishing currents of probability flowing
between connected states.
If equilibrium systems are well described by the theory
of ensembles, no global formalism exists for systems out
of equilibrium. Recently, general relations for driven
systems have attracted a lot of interest. One should
mention the Kawasaki relation [2], the Jarzynski and
Crooks relations [3–6] and fluctuation relations that
include the fluctuation theorems of Evans-Searles [7, 8]
and Gallavotti-Cohen [9, 10]. While analyzing NESS
case-by-case, research works are traditionally focused on
the probability distribution {P∗} of the micro-states.

This approach is usually relevant since almost all observ-
ables can be extracted from there. However, the analysis
of currents or average production of entropy requires
the knowledge of the transition rates to complete the
characterization of the steady state. Recently, Zia and
Schmittmann [11, 12] suggested a general classification
of NESS, where a complete description of the system
is given by the distribution of the probabilities and
probability currents {P ∗, K∗}. This classification allows
the identification of the transformations of the transition
rates that leave the steady state invariant. Along these
lines, a set of invariant quantities has been derived for a
class of steady states driven by the boundaries dynamics
[13]. From the probability currents a definition of the
’Euclidean distance’ from equilibrium has been proposed
in [11]. In this paper we suggest to measure the violation
of detailed balance and define the ’distance’ from equi-
librium by the p-norm (||K∗||p) of the matrix formed
by the probability currents. We give, for the periodic
totally asymmetric simple exclusion process, the exact
expression of ||K∗||p. We show, in the thermodynamic
limit, that the p-norm vanishes for any p 6= 1. This
result motivates the definition of the ’distance’ from
equilibrium by ||K∗||1 that we prove to be extensive for
the periodic-TASEP, open-ASEP and open-ZRP. One
should mention that the 1-norm was first defined in
[14] and used to measure the violation of the detailed
balance criterion for different reaction-diffusion models.

We start our paper with a presentation of the master
equation which governs the time evolution of Markovian
stochastic systems. Based on the analysis of the asymp-
totic behavior of the p-norm ||K∗||p, for the periodic-
TASEP, we define the ’distance’ from equilibrium. In
section III, we show that the average activity 〈A∗〉 and
the ’distance’ from equilibrium K∗ are both related to
the production of entropy. In section IV, for the open-
ASEP and open-ZRP, we show that the current of par-
ticles gives an exact measure of the violation of detailed
balance. Finally our results are summarized in section
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V.

II. GENERAL FRAMEWORK

When describing Markovian stochastic many body sys-
tems, the master equation is the most general equation
that one has at his disposal. Its formalism is used to de-
scribe in and out of equilibrium systems, such as chemical
reactions, enzyme kinetics, biological populations etc...
. In this section, we give a presentation of the master
equation and introduce the matrix formed by the prob-
ability currents. For the periodic-TASEP we discuss, in
the thermodynamic limit, the asymptotic scaling of the
p-norm ||K∗||p that motivates the definition of the ’dis-

tance’ from equilibrium by ||K∗||1.

A. Master Equation

Considering the continuous dynamics of a many-body
system, we note X a particular state of the configuration
space. The probability PX(t), to find the system in the
state X at time t, is governed by the master equation

∂tPX(t) =
∑

Y 6=X

KY
X(t), (1)

with the net probability current

KY
X(t) = wY

XPY (t) − wX
Y PX(t), (2)

where wX
Y is the rate of the transition from the configu-

ration X to Y . We assume the dynamics to be ergodic
which imposes that the system has a unique stationary
state independent of the initial condition. The master
equation (1) expresses the time derivative of the proba-
bility as the balance of the currents flowing in and out
the state X . Defining J+(X) and J−(X) as

J+(X) =
∑

Y 6=X

wY
XPY (t), J−(X) =

∑

Y 6=X

wX
Y PX(t), (3)

the equation (1) simply states the conservation of proba-
bility through the expression ∂tPX(t) = J+(X)−J−(X).
In the steady state, the current appears to be ’globally
balanced’ on each state so that J+(X) = J−(X). By def-
inition, all equilibrium distributions verify the detailed
balance criterion

K∗Y
X = wY

XP ∗
Y − wX

Y P ∗
X = 0. (4)

However, for NESS this criterion is locally violated and
the probability current on each bond K∗X

Y is not zero. In
the network, where nodes are states of the system and
links are possible transitions between states, the viola-
tion of detailed balance imposes the existence of loops of
current. In such a situation the system presents generally
(but not always) macroscopic currents.

B. The p-norm as a ’distance’ from equilibrium

In the stationary state, a natural definition of the ’dis-
tance’ from equilibrium is given by the norm of the ma-
trix defined by the elements K∗Y

X . For any systems evolv-
ing in a finite configuration space, we define the p-norm
by

||K∗||p =





1

2

∑

X,Y

∣

∣K∗Y
X

∣

∣

p





1/p

, p ∈ N
∗ (5)

where the factor 1/2 has been introduced for conve-
nience. This quantity measures the violation of detailed
balance and vanishes at equilibrium only. In references
[11, 12] the authors suggested to define an ’Euclidean
distance’ from equilibrium by ||K∗||2. In addition, they
showed that each quadratic element |K∗X

Y |2 appears in
the expression of the entropy production.

Choosing the periodic-TASEP as an example, we ob-
tain an exact expression of ||K∗||p as a function of the av-

erage current of particles 〈j∗〉. Let us remind the reader
that the latter model is defined on a one-dimensional pe-
riodic lattice, where particles are strictly jumping for-
ward to the next nearest neighboring site. The tran-
sitions are only possible if the target site is empty and
occur with a rate equal to one. Our work is facilitated by
the fact that the stationary probabilities are equiproba-
ble and that the dynamical process is totally asymmetric
(wY

X = 0 if wX
Y = 1). Our calculations give for the p-norm

||K∗||p =

(

L〈j∗〉

Ωp−1

)1/p

, (6)

where Ω is the dimension of the configuration space and
L is the size of the system. As a consequence, while
taking the thermodynamic limit and keeping the density
of particles constant, we can show that ||K∗||p vanishes
for all p 6= 1. Writing ρ the average density of particles,
the asymptotic analysis (L >> 1) gives us

||K∗||p ∝
√

L1+1/p × e−sL(1−1/p), (7)

where

s = −ρ lnρ − (1 − ρ) ln(1 − ρ). (8)

In this particular case, as in many others, the total cur-
rent of particles 〈J ∗〉 appears as the simplest observable
that characterized the non-equilibrium behavior of the
system. This quantity increases with the system size
while its density 〈j∗〉 = 〈J ∗〉/L remain constant. In
our example, and with a natural understanding of the
’distance’ from equilibrium, the limit ||K∗||p → 0 as
L → ∞ is clearly inadequate. The only ’satisfying’ defi-
nition consists of defining the ’distance’ from equilibrium
using the 1-norm. For simplicity, we will note hereafter
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K∗ = ||K∗||1. Exactly derived for the periodic-TASEP,
open-ASEP and open-ZRP, K∗ appears to be extensive.
Its relations to the activity and entropy production are
presented in the following sections.

III. ACTIVITY AND ENTROPY PRODUCTION

If K∗X
Y is well understood as the probability current,

usually little is said about the role of the symmetric part
A∗X

Y = wX
Y P ∗

X +wY
XP ∗

Y and its properties. Introduced in
[15, 16], only recently has this quantity been analyzed,
successively called traffic [17–19], dynamical activity [20–
23] or frenesy. Its central role in the non-equilibrium
linear response theory and out-of-equilibrium dynamical
fluctuation theory has been shown in [24, 25]. Using the
inequality

∣

∣K∗X
Y

∣

∣ ≤ A∗X
Y , we trivially obtain

K∗ ≤ 〈A∗〉, (9)

with 〈A∗〉 = 1
2

∑

X,Y 6=X A∗X
Y which can be expressed as

the average of the observable A(X) defined as

A(X) =
∑

Y 6=X

wX
Y . (10)

The latter quantity corresponds to the escape rate and
tells us how ’nervous’ is the system in a given state. If
one thinks about a system which presents, in its station-
ary state, a macroscopic current 〈J ∗〉, the equation (9)
should be understood as a generalization of the inequal-
ity 〈J ∗〉 = 〈J ∗

+〉 + 〈J ∗
−〉 ≤ |〈J ∗

+〉| + |〈J ∗
−〉|, where 〈J ∗

+〉
and 〈J ∗

−〉 are the averages of the currents flowing in op-
posite directions.
As already noticed in [11, 12], the activity and the prob-
ability currents appear explicitly in the expression of to-
tal entropy production. Defining by 〈δS〉τ the average
production of entropy measured over a time interval τ
(τ ≪ 1), the rate of creation σ = 〈δS〉τ/τ is given by

σ =
∑

X,Y

P ∗
XwX

Y ln

(

P ∗
XwX

Y

P ∗
Y wY

X

)

, (11)

where wX
X is defined by wX

X τ = 1 −A(X)τ . This can be
explicitly written as

σ =
1

2

∑

X,Y

K∗X
Y ln

(

A∗X
Y + K∗X

Y

A∗X
Y − K∗X

Y

)

. (12)

To pursue further we define the probability Pτ (a, k) to
measure, in the stationary state, over a time interval τ
(τ ≪ 1), an activity a and a current of probability k. By
definition, Pτ (a, k) is

Pτ (a, k) =
∑

X,Y

P ∗
XwX

Y τ δ
(

A∗X
Y − a

)

δ
(

K∗X
Y − k

)

.

(13)

Using the relations A∗X
Y = A∗Y

X and K∗X
Y = −K∗Y

X , we
prove easily

(a + k)Pτ (a,−k) = (a − k)Pτ (a, k), (14)

which can be written as

Pτ (a, k)

Pτ (a,−k)
= eδS , with δS = ln

(

a + k

a − k

)

. (15)

The probability Pτ (δS) of a creation of entropy δS, over
a time interval τ (τ ≪ 1), is therefore given by

Pτ (δS) =

∫ +∞

0

da

∫ +∞

−∞

dk Pτ (a, k) δ

[

δS − ln

(

a + k

a − k

)]

,

(16)

and such that equation (15) leads to the well known
ratio Pτ (δS)/Pτ (−δS) = eδS .

Particularly interesting results emerge from the analy-
sis of the probabilities

Pτ (δS < 0) =

∫ 0−

−∞

d(δS) Pτ (δS) (17)

Pτ (δS > 0) =

∫ +∞

0+

d(δS) Pτ (δS), (18)

respectively, probability of a positive and negative cre-
ation of entropy. From equation (13) one easily show

Pτ (δS ≷ 0) =
∑

X,Y

P ∗
XwX

Y τ Θ
(

±K∗X
Y

)

, (19)

where Θ(x) is the Heaviside function defined by Θ(x) =
1 for x > 0 and Θ(x) = 0 otherwise. Expressed as a
function of A∗X

Y and K∗X
Y , equation (19) takes the form

Pτ (δS ≷ 0) =
τ

4

∑

X,Y

A∗X
Y

[

Θ
(

±K∗X
Y

)

+ Θ
(

∓K∗X
Y

)]

+
τ

4

∑

X,Y

K∗X
Y

[

Θ
(

±K∗X
Y

)

− Θ
(

∓K∗X
Y

)]

,

(20)

Restraining ourself to systems for which detailed balance
is violated for every transitions such that K∗X

Y 6= 0 ∀X 6=
Y , one finally obtains

Pτ (δS ≷ 0) =
〈A∗〉 ± K∗

2
τ. (21)

As a consequence, the probability Pτ (δS = 0) is solely
expressed as a function of the activity through the equal-
ity

Pτ (δS = 0) = 1 − 〈A∗〉τ. (22)

In other words, the probability of a non-zero production
of entropy is given by the activity produced over the time
interval τ . This is expressed under the equality

〈A∗〉 =
Pτ (δS 6= 0)

τ
. (23)
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Along the same line, the ’distance’ from equilibrium is
measured by the difference

K∗ =
Pτ (δS > 0) − Pτ (δS < 0)

τ
. (24)

The latter equality can be explicitly expressed as the av-
erage of the function sign

K∗ =
1

τ

∫ +∞

−∞

d(δS) Pτ (δS)sign(δS), (25)

where sign(x) is defined by

sign(x) =







−1 x < 0
0 x = 0

+1 x > 0.
(26)

Since K∗ > 0, we trivially obtain 〈sign(δS)〉 > 0, which
simply states the inequality Pτ (δS > 0) > Pτ (δS < 0).

IV. DRIVEN SYSTEMS

If the calculation of the ’distance’ K∗ can appear
challenging, exact results are reachable for simple
driven systems. In this section, we give the keys of the
derivation which leads to the exact expression of K∗

for the open-ASEP and ZRP. These two systems have
been the favorite toy models of the scientific community.
They are some of the rare exactly solvable models, used
as guides in the zoology of exotic behaviors found in the
field of non-equilibrium many body systems. For these
two cases, it is the particular structure of the stationary
probabilities that allows an exact calculation of K∗.

As a preliminary result, from the inequality (9), one
shows that K∗ has to satisfy

K∗ ≤ |〈J ∗
+〉| + |〈J ∗

−〉|, (27)

where 〈J ∗
±〉 are the average currents defined by

〈J ∗
±〉 =

∑

X,Y

P ∗
XwX

Y δ
(

X
±
→Y

)

, (28)

where δ
(

X
±
→Y

)

= 1 if the transition between the states

X and Y is induced by the jump forward/backward of
a particle. The total current of particles is given by the
sum 〈J ∗〉 = 〈J ∗

+〉 + 〈J ∗
−〉. For such systems that do

not present other reactions than the biased diffusion, the
current of particles in the stationary state is directly re-
sponsible of the production of entropy. Therefore a van-
ishing current would imposes 〈δS〉 = 0 so that we expect
K∗ = K∗(〈J ∗〉) with K∗(0) = 0.

A. Open-ASEP

The ASEP is the simplest one-dimensional driven
model that includes the biased diffusion of hard-core par-
ticles. Traditionally, the left and right diffusion rates are
respectively denoted by q and p. Without loss of gener-
ality, we are considering p > q which imposes 〈j∗〉 > 0.
The exclusion process imposes that the jump of a particle
is only possible if the target site is empty. The system
is driven at its boundaries by the interaction with two
reservoirs of particles. On the left extremity, particles
can be injected or removed with rates α, respectively γ.
Identically, on the right boundary, the rates of injection
and ejection are written δ and β. The open-TASEP is
recovered for p = 1, q = 0 and γ = δ = 0. It is well
known that the exact expression of the stationary state
can be expressed as the product of non-commuting matri-
ces [26, 27]. For a state X defined by the set of occupation
numbers {η1(X), . . . , ηL(X)}, the stationary probability
can be written as P ∗

X = fL(X)/ZL with

fL(X) = 〈W |

L
∏

n=1

[ηn(X)D + {1 − ηn(X)}E] |V 〉, (29)

and ZL =
∑

X fL(X). The matrices D and E satisfy

pDE− qED = D + E = C, (30)

and act on the vectors 〈W | and |V 〉 as

(βD − δE)|V 〉 = |V 〉 (31)

〈W |(αE − γD) = 〈W |. (32)

It is important to note that the ’distance’ from equilib-
rium can be decomposed over the bulk (B∗) and bound-
aries contributions. We note K∗ = L∗ + B∗ + R∗, where
L∗ and R∗ are respectively the left and right boundary
terms. Since for each transition that is induced by the
jump forward of a particle (wX

Y = p) the reversed tran-
sition rate is wY

X = q, the bulk contribution takes the
form

B∗ =
1

ZL

∑

X,Y

|pf(X) − qf(Y )|δ
(

X
+
→Y

)

. (33)

Considering a particle initially localized on the site n, the
function f(X) and f(Y ) can be written as

fL(X) = 〈W |Φn(X)DEΨn(X)|V 〉, (34)

fL(Y ) = 〈W |Φn(X)EDΨn(X)|V 〉, (35)

where Φn(X) =
∏n−1

i=1 [ηi(X)D + {1 − ηi(X)}E] and

Ψn(X) =
∏L

i=n+2 [ηi(X)D + {1 − ηi(X)}E]. Using the
commutation rule (30) the contribution B∗ is given by

B∗ =
1

ZL

∑

n

∑

X

〈W |Φn(X)CΨn(X)|V 〉. (36)
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Since the bracket sandwich expresses a probability, each
term of the sum is positive and the absolute value can be
omitted. This last result leads to B∗ = (L− 1)ZL−1/ZL,
where the ratio ZL−1/ZL corresponds to the average cur-
rent of particles 〈j∗〉. For details on the algebraic method
see [26, 27]. Along the same line, one has for each bound-
ary,

L∗ =
1

ZL

∑

X,Y

|αf(X) − γf(Y )|δ
(

X
α
→Y

)

, (37)

R∗ =
1

ZL

∑

X,Y

|βf(X) − δf(Y )|δ
(

X
β
→Y

)

, (38)

where δ
(

X
α
→Y

)

, respectively δ
(

X
β
→Y

)

, are equal to 1

if the transition is induced by the injection of a particle
on the left and the ejection of a particle on the right.
Using the relations (31) and (32), one simply obtains
L∗ = R∗ = 〈j∗〉, such that

K∗ = (L + 1)〈j∗〉. (39)

For p = q and for any set of parameters {α, β, δ, γ}
such that the stationary current vanishes, the system
appears to be at equilibrium, characterized by the de-
tailed balance criterion. This situation is obtained when
the density of the two reservoirs ρa = α/(α + γ) and
ρb = δ/(δ +β) are equal (ρa = ρb = ρ). In this situation,
the steady state is described by the equilibrium (Gibbs)
state of the lattice gaz at the density ρ [28]. If the impli-
cation K∗ = 0 ⇒ 〈j∗〉 = 0 was obvious the latter relation
states the equivalence K∗ = 0 ⇔ 〈j∗〉 = 0.

B. Open-ZRP

The zero-range process is a one-dimensional lattice
model for which each site may be occupied by an ar-
bitrary number m of particles. In the bulk, particles
jump to the next nearest neighboring sites with rates
θm function of the occupation number of the departure
site. First introduced by Spitzer [29], this model has re-
gained interest since the observation of a condensation
transition analogous to the Bose-Einstein condensation
[30]. See [31–34] for a detailed study of the model. We
are considering the open-ZRP where particles are added
and removed through the boundaries. We note pθn and
qθn the left and right transition rates associated to the
move of a particle, with p > q such that 〈j∗〉 > 0. On
the first and last lattice sites, the injection rates of a
particle from the reservoirs are respectively given by α
and δ. The ejection of a particle in the reservoirs, occur
with rates qθn on the left boundary and pθn on the right
boundary. The probability P ∗

X of the state X , defined by
{η1(X), . . . , ηL(X)}, is factorized under the expression

P ∗
X =

L
∏

n=1

gn(ηn(X)), (40)

with

gn(m) =
zm

n

Zn

m
∏

k=1

θ−1
k , (41)

where Zn is the analogue of the grand-canonical partition
function

Zn =
∑

m

zm
n

m
∏

k=1

θ−1
k . (42)

It was shown in [34] that the fugacities zn have to satisfy
the equality

pzn − qzn+1 = α − γz1 = βzL − δ = 〈j∗〉. (43)

As done previously, we separate the bulk contribution
(B∗) to the boundary terms (L∗ and R∗). Considering
that the transition X → Y consists of the jump forward
of a particle initially localized in n, we note m = ηn(X)
and m′ = ηn+1(X). The probabilities P ∗

X and P ∗
Y take

the form

P ∗
X = gn(m)gn+1(m

′) ×
∏

k 6=n,n+1

gk(ηk(X)) (44)

P ∗
Y = gn(m − 1)gn+1(m

′ + 1) ×
∏

k 6=n,n+1

gk(ηk(X)).

(45)

In the expression of B∗ one has to evaluate the difference

pθmgn(m)gn+1(m
′) − qθm′gn(m − 1)gn+1(m

′ + 1). (46)

With the help of the relation (43) we derive the
equality pθmgn(m) = (〈j∗〉 + qzn+1)gn(m − 1) and
qθm′+1gn+1(m

′ + 1) = −(〈j∗〉 − pzn−)gn+1(m
′). This fi-

nally leads to B∗ = (L−1)〈j∗〉 and, along the same lines,
one shows that the contribution of the two boundaries
are both exactly equal to the current L∗ = R∗ = 〈j∗〉.
As for the open-ASEP, the measure of the ’distance’
from equilibrium appears to be given by expression (39).
One should mentioned that the periodic ZRP can be
mapped to a periodic 1D asymmetric exclusion process
[31, 32]. However, the new process under consideration
is not as simple as the ASEP but defined by transition
rates depending of the number of empty sites between
particles and interpreted as long range interactions. For
the periodic ZRP and ASEP one can prove K∗ = L〈j∗〉.
Finally the factor L, for periodic systems, or L + 1, for
open systems, simply corresponds to the number of possi-
ble transitions (between bonds and in/out of the system).

Intuitively, for such one-dimensional systems, that do
not present other reactions than the biased diffusion, we
would conclude that a measure of the ’distance’ from
equilibrium and violation of detailed balance is given by
the calculation of the average macroscopic current. How-
ever, a general derivation to any one-dimensional model
remain a challenging problem since most of the time the
stationary probabilities are unknown.
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V. OUTLOOK AND DISCUSSION

Using the set {P ∗, K∗} to classify the NESS, we pro-
pose a definition of the violation of detailed balance based
on the p-norm of the matrix formed by the probability
currents. If, for finite system sizes, all norms are equiv-
alent, we show, in the particular case of the periodic-
TASEP, that only ||K∗||1 appears to be a satisfying defi-
nition of the ’distance’ from equilibrium (K∗). Contrary
to the entropy production, this quantity is invariant un-
der the transformations proposed in [11, 12] that leave
the NESS unchanged. In addition, we show that an up-
per bound of the ’distance’ is given by the average ac-
tivity 〈A∗〉. Moreover, we show that both quantities are
related to the probabilities of a positive (Pτ (δS > 0)) and
negative (Pτ (δS < 0)) creation of entropy measured over
a time interval τ << 1. This result leads explicitly to the
expression of 〈A∗〉 and K∗ as a function of Pτ (δS = 0)
and 〈sign(δS)〉. For the open-ASEP and open-ZRP, the
particular structure of the stationary state allows an an-

alytical calculation which leads to the exact expression
K∗ = (L + 1)〈j∗〉. Along the same line, more general
results on the violation of detailed balance should be ob-
tained in the near future, applying the matrix product
technique to other systems that include charged parti-
cles or impurities.
Even though the case-by-case analysis reveals K∗ as
an extensive quantity, at this time, there is no general
derivation of this result. We hope that this work will
motivate future studies on the ’distance’ K∗ and its di-
rect relation with the ’activity’ 〈A∗〉 and the probability
of entropy production Pτ (δS).
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