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The kagome lattice has coordination number 4, and it is mechanically isostatic when nearest neigh-
bor (NN) sites are connected by central force springs. A lattice of N sites has O(

√
N) zero-frequency

floppy modes that convert to finite-frequency anomalous modes when next-nearest-neighbor (NNN)
springs are added. We use the coherent potential approximation (CPA) to study the mode structure
and mechanical properties of the kagome lattice in which NNN springs with spring constant κ are
added with probability P = ∆z/4, where ∆z = z − 4 and z is the average coordination number.
The effective medium static NNN spring constant κm scales as P2 for P ≪ κ and as P for P ≫ κ,
yielding a frequency scale ω∗ ∼ ∆z and a length scale l∗ ∼ (∆z)−1. To a very good approximation
at at small nonzero frequency, κm(P , ω)/κm(P , 0) is a scaling function of ω/ω∗. The Ioffe-Regel
limit beyond which plane-wave states becomes ill-define is reached at a frequency of order ω∗.

PACS numbers: 61.43.-j, 62.20.de, 46.65.+g, 05.70.Jk

I. INTRODUCTION

Understanding the nature of mechanical stability, how
it arises, and how it can be controlled is important to
fields ranging from civil engineering to biology. Materials
and systems that undergo a transition from a floppy state
that cannot support an external load to a rigid state [1]
that can include frames, studied by Maxwell [2], of points
connected by fixed length struts; randomly diluted lat-
tices of springs that undergo a rigidity percolation tran-
sition [3–5] upon dilution; network glasses [3, 6]; granular
media [7, 8]; networks of crosslinked semi-flexible poly-
mers [9–11]; and packed spheres near the jamming tran-
sition [12–14]. The transition state separating the floppy
from the rigid state is either at or near a special “iso-
static” state in which the number of constraints (struts
in the case of the Maxwell frames) is such that there are
no zero-energy modes, other than the trivial ones arising
from rigid translations and rotations, and such that the
removal of one constraint leads to the appearance of an
extra zero-frequency internal floppy mode. For systems
of particles or points in d-dimensions in which neighbor-
ing sites interact via cental-force potentials, the isostatic
point occurs when z, the average number of neighbors per
site is equal to 2d. The square and kagome lattices in two
dimensions and the simple cubic and pyrochlore lattices
in three dimensions are systems whose bulk sites have
exactly 2d nearest neighbor sites, and apart from correc-
tions arising from boundary sites with only 2d−1 or fewer
neighbors, they are isostatic. Because they are fully char-
acterized and because they can be moved off isostatic-
ity in precise and well-controlled ways, they are attrac-
tive platforms for studying what effects the existence of
nearby isostatic point have on elastic response and mode
structure [15, 16] of elastic networks. In this paper, we
use the coherent potential approximation (CPA) [17–20]
to study frequency-dependent mechanical response and
mode structure of a kagome lattice of nearest-neighbor
harmonic springs with spring constant k to which next-
nearest-neighbor springs of spring constant κ are ran-

domly added with probability P .

A. The Maxwell Argument

Maxwell considered a frame of N points in d dimen-
sions connected by struts of fixed length, though his ar-
guments apply equally well to systems in which the struts
are replaced by central-force potentials. Each point in the
frame has dN translational degrees of freedom, and in the
absence of struts, these points have dN zero modes. Thus
the total number of zero modes is N0 = dN −Nc, where
Nc is the number of constraints, provided that dN − Nc

is greater than d(d + 1)/2, the number of trivial modes
of translation and rotation of a rigid body. Since each
strut is shared by two sites, there are zN/2 struts, where
z is the average number of neighbors per site, and if all
struts are independent, then N0 = dN − 1

2zN . In large
systems the trivial modes can be neglected in the total
count, and the critical number of neighbors below which
there are nontrivial zero modes, called floppy modes or
mechanisms [21, 22], is zc = 2d. If z > zc, the system has
no floppy modes, and the system is rigid. The counting
of floppy modes is different if there are bending as well
as stretching forces [3, 23, 24] and if there are redun-
dant struts [25–27] in the network whose addition does
not change N0, but for each realization of the network,
there is a critical value of z separating a floppy state with
N0 > 0 from a rigid one whose macroscopic elastic mod-
uli are nonzero and that can thus support external loads.
Thus z = zc is a kind of mechanical critical point.

B. Examples of Rigidity Transitions

Rigidity percolation [3, 4] is probably the most studied
of the transitions to rigidity. It is analogous to the con-
nectivity percolation problem [28, 29], but its threshold
is different and it is in a different universality class. In
its simplest form, nearest neighbor bonds on a lattice are
populated with central-force springs with probability P .
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At a critical probability, P = Pr, a rigid cluster forms,
and for P > Pr, all elastic moduli grow continuously from
zero. This behavior occurs in randomly diluted random
[30, 31] as well as periodic lattices. The probability that
a site is a member of the infinite rigid cluster also grows
continuously from zero [25, 32] in 2d, but in the fcc and
bcc bond-diluted lattices in 3d [27], it jumps discontin-
uously to a nonzero value. Thus in the latter lattices,
the central-force rigidity transition is first order in terms
of the geometry of the rigid cluster but second order in
terms of the elastic moduli. Effective medium theories
[33–35] provide a remarkably accurate description of the
growth of elastic moduli above Pr and the zero-modes
count below Pr [36]. The addition of bending forces be-
tween neighboring bonds [3, 24, 37] provides an impor-
tant generalization of central force models that provide
realistic descriptions of network glasses [3, 24, 26] and of
networks of semi-flexible polymers [9–11, 38, 39].

The jamming of packed spheres [12, 40] is another ex-
ample of a rigidity transition. Spheres of radius a are
characterized by their volume fraction φ. Below a criti-
cal fraction φc, spheres are on average not constrained by
their neighbors, and above φc, there are a sufficient num-
ber of contacts between them that the system as a whole
supports both compression and shear. At the jamming
point J where φ = φc, the average coordination number
is zc = 2d, making the state at J isostatic in the Maxwell
sense. For ∆φ = (φ − φc) > 0, ∆z = z − zc ∼ (∆φ)1/2,
and the shear modulus scales as G ∼ (∆φ)1/2 ∼ ∆z
[13, 41]. Interestingly, the bulk modulus B is nonzero at
J , and B ∼ (∆φ)0 ∼ (∆z)0 [13, 41]. Thus, in terms of
the bulk modulus, the jamming transition is first order,
whereas in terms of the shear modulus, it is second order.
Associated with this transition is a divergent characteris-
tic length scale l∗ ∼ (∆φ)−1/2 ∼ (∆z)−1 and a vanishing
frequency scale ω∗ ∼ (∆φ)1/2 ∼ (∆z) [42–44], whose
scaling properties can be derived from a simple cutting
argument [45, 46]. ω∗ marks the transition in the den-
sity of states [45] from a Debye regime to a frequency-
independent regime characteristic of a one-dimensional
system, and l∗ can be interpreted as the length scale at
which the longitudinal phonon frequency is equal to ω∗.
There is a second length that diverges as (∆z)−1/2, which
appears to be associated with thermal transport [47, 48],
though it is also the length scale at which the transverse
sound frequency is equal to ω∗.

The close-packed spheres at the jamming transition is
isostatic with an average of 2d neighbors per site. The
cutting arguments that determine the dependence of ω∗

and l∗ on ∆z appear to depend only on the existence of
a nearby isostatic state and not on the exact nature of
that state, suggesting that they might apply quite gen-
erally to any system that becomes rigid at an isostatic
point. (To our knowledge, they have not been applied to
the rigidity percolation transition, which has a threshold
slightly below the isostatic limit [5, 25, 27].) To explore
this possibility, it is natural to study the properties of
precisely determined periodic isostatic lattices that can

be moved away from isostaticity as a complement to the
study of random isostatic or nearly isostatic lattices gen-
erated by random dilution or by sphere packing. Periodic
isostatic lattices, like the square and kagome lattices, can
be moved away from isostaticity by adding next-nearest-
neighbor (NNN) springs with spring constant κ either
homogeneously on all NNN bonds or randomly on these
bonds with probability P . In the former case, isostaticity
is approached continuously as κ → 0, and in the latter
case, it approached either by P → 0, by κ → 0 or both.
Exact calculations on the square and kagome lattices [15]
with NNN springs uniformly added reveal a character-
istic frequency ω∗ ∼ κ1/2 and length l∗ ∼ κ−1/2. In
the square lattice, the compression modulus C11 remains
nonzero as κ → 0, but the shear modulus C11 ∼ κ van-
ishes with κ. In the kagome lattice both the bulk and the
shear modulus remain nonzero in this limit. Within the
CPA approximation in the random case [16], the static
spring constant κm(0) is proportional to P ∼ ∆z for
P > κ/k and to P2 ∼ (∆z)2 for P < κ/k, indicat-
ing a crossover from nearly affine behavior at large P
to nonaffine behavior as P → 0. This implies that near

the isostatic limit, ω∗ ∼ ∆z and l∗ ∼ κ
−1/2
m ∼ (∆z)−1

in agreement with the cutting argument. Furthermore,
κm(ω) = κm(0)f(ω/ω∗), where f is a scaling function.
On the other hand, C44 ∼ κm ∼ (∆z)2 vanishes more
rapidly than does the shear modulus at jamming.

C. Review of results

In this paper, we undertake a CPA analysis of the
kagome lattice with added NNN springs. As in the
case of the square lattice, we find nonaffine response with
κm(0) ∼ P2 at small P and nearly affine response with
κm(0) ∼ P at large P , and as a result ω∗ ∼ ∆z and
l∗ ∼ (∆z)−1 again in agreement with the cutting argu-
ment. We also find that κm(P , ω)/κm(P , 0) is a basically
a scaling function of ω/ω∗ at small P , but with small yet
important deviations at small ω that describe Rayleigh
scattering, i.e., a mean-free-path that scales as ω−3 in
2d. Thus, the cutting argument provides a consistent de-
scription of the frequency and length scales for systems
near three isostatic networks with qualitatively different
geometries, with differences reflected in the different be-
haviors as a function of ∆z of their elastic moduli and of
their different mode structures. It would be tempting to
conclude that the cutting argument applies universally to
all systems near isostaticity, but that would perhaps be
a little premature. There are indications [49] that it does
not apply to models, such as one obtained by twisting the
unit cells of the kagome lattice, in which the bulk mod-
ulus, but not the shear modulus vanishes in the isostatic
limit.

The outline of this paper is as follows. In Sec. II we
review the elasticity of the homogeneous nearly isostatic
kagome lattice. In Sec. III we discuss the CPA on random
nearly isotropic kagome lattice with the NNN bonds
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FIG. 1: (Color online) The kagome lattice with random addi-
tional NNN bonds denoted by purple dashed lines. The unit
cell triangle is marked with filled triangles. Particle 1, 2, 3 in
each unit cell are marked in the bottom right unit cell.

FIG. 2: (Color online) The kagome lattice and its floppy
modes, with the reference state in gray and deformed state in
red. Two of its floppy modes are shown in this figure marked
by the yellow ribbons.

randomly occupied with probability P . In Sec. IV we
discuss the results of the CPA calculation, including the
crossover of κm from P2 to P behavior as P increase or
κ decreases, and the rapid increase of scattering at the
characteristic frequency ω∗

D ∼ ∆z.

II. HOMOGENEOUS NEARLY ISOSTATIC

KAGOME LATTICE AND ITS ELASTICITY

A. Expansion of elastic energy in general lattice

models

In this section we briefly review the elastic energy in
central-force network models, in which the elastic energy
U can be written as a sum of the energy of each central-

force bond

U =
∑

b

Ub(Rb), (1)

where Rb is the length of the bond and Ub is the po-
tential energy of the bond as a function of the length.
We consider a displacement field on the network that
maps particle ℓ which is at position Rℓ0 to a new posi-
tion Rℓ = Rℓ0 + uℓ, thus the length of bond b between
particle ℓ and ℓ′ is changed into

Rb = |Rℓ′ − Rℓ|. (2)

We refer to the original space in which particle ℓ is at
Rℓ0 as the reference space, and the space after applying
the displacement field as the target space. We consider
harmonic potentials

Ub =
kb

2
(Rb − RbR)2, (3)

where RbR is the rest length of the bond, and kb is the
spring constant. The length Rb can be expanded for small
displacement u as

Rb = Rb0 + eb0 · ub

+
1

2Rb0
ub ·

(

I − eb0eb0

)

· ub + O(u3
b ), (4)

where Rb0 = |Rℓ′0 − Rℓ0|, ub = uℓ′ − uℓ, and eb0 =
(Rℓ′0−Rℓ0)/|Rℓ′0−Rℓ0| is the unit vector pointing along
the bond in the reference space. Thus we have

Ub =
kb

2
(Rb0 − RbR)2 + fb eb0 · ub

+
1

2
ub ·

[

kbeb0eb0 +
fb

Rb0

(

I − eb0eb0

)

]

· ub, (5)

where fb = U ′
b(R) = kb(Rb0 − RbR) is the magnitude of

the force on the bond in the reference space. In general
we consider the case in which the reference state is in
mechanical equilibrium, which means that the total force
on each particle vanishes

fℓ =
∑

b(ℓ,ℓ′)

fbeb0 = 0 (6)

where the sum
∑

b(ℓ,ℓ′) is over all occupied bonds con-

nected to ℓ. However, to capture the properties of ran-
dom networks, which often carry residual stress, the
length of each bond is not necessarily at its rest length,
i.e., Rb0 − RbR 6= 0 in general.

The change of the elastic energy from the reference
space to the target space of the whole system is then a
quadratic form of the displacement field

∆U =
∑

b

1

2
ub ·

[

kbeb0eb0 +
fb

Rb0

(

I − eb0eb0

)

]

· ub, (7)
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which can also been written as

∆U =
∑

b

1

2

[

kb

(

u
‖
b

)2
+

fb

Rb0

(

u⊥
b

)2
]

, (8)

where u
‖
b is the component of ub parallel to eb0 and u⊥

b
is the component perpendicular to eb0.

By doing a gradient expansion on the displacement
field,

ub = Rb0 eb0k ∂ku(r), (9)

where u(r) is the displacement field at position r, we
recover the elastic energy of the continuum theory

∆U =

∫

drKijkl∂kui∂luj , (10)

with

Kijkl =
∑

b

R2
b0

2v0
eb0keb0l

·
[

kbeb0ieb0j +
fb

Rb0

(

δij − eb0ieb0j

)

]

(11)

where the summation
∑

b is over bonds connecting to
one particle, and we are using a simple lattice with one
particle per unit cell in this illustration. The volume of
a unit cell is denoted by v0.

B. Elastic energy of the kagome lattice

The kagome lattice is a lattice with three particles per
unit cell, and we shall use the following 6-dimensional
displacement vector to describe the deformation of the
lattice

uℓ = (uℓ,1,x, uℓ,1,y, uℓ,2,x, uℓ,2,y, uℓ,3,x, uℓ,3,y), (12)

where ℓ labels the unit cell and (1, 2, 3) label the particles
in the unit cell as in Fig. 1. To leading order in u, the
lattice energy can be expressed as the quadratic form

∆U =
1

2

∑

ℓ,ℓ′

uℓ ·Dℓ,ℓ′ · uℓ′ , (13)

where D is the 6 × 6 dynamical matrix. This elastic
energy in Fourier space is

∆U =
1

2N2

∑

q,q′

uq · D−q,q′ · uq′ , (14)

where the Fourier transforms are define as

uq =
∑

ℓ

uℓe
−iq·Rℓ0

uℓ =
1

N

∑

q

uqeiq·Rℓ0 , (15)

where N is the number of unit cells. The dynamical
matrix for the homogeneous kagome lattice with all NN
bonds occupied with springs of spring constant k and all
NNN bonds with springs of spring constant κ is a 6× 6
matrix given by

Dq,q′ = Nδq,q′Dq(k, κ)

Dq(k, κ) = k
∑

m∈NN

BNN
m,qB

NN
m,−q

+κ
∑

m∈NNN

BNNN
m,q BNNN

m,−q , (16)

where the B vectors and their derivation are given in
App. A.

C. The homogeneous kagome lattice and its low

energy theory

There are six translational degrees of freedom per
unit cell in the kagome lattice giving rise to six phonon
branches. Of these, three are optical branches with fre-
quencies of order

√
k, two are acoustic branches with

sound velocities of order
√

k, and one is the anomalous
branch, whose frequencies along Γ−M (See Fig. 3) in the
Brillouin Zone reduce to the zero-frequency floppy modes
when κ → 0. The latter three branches, which determine
the low-energy elastic theory of the kagome lattice, have
modes in the space spanned by the following three vectors

ν1 = (1/
√

3)(1, 0, 1, 0, 1, 0)

ν2 = (1/
√

3)(0, 1, 0, 1, 0, 1)

ν3 =
(

− 1√
3
, 0,

1

2
√

3
,−1

2
,

1

2
√

3
,
1

2

)

, (17)

which correspond, respectively, to two translations of the
whole unit cell in x and y directions and the rotation of
the unit-cell triangle around its center. The low-energy
theory is governed by the 3×3 reduced dynamical matrix
obtained by integrating out the three high-energy optical
branches, as shown in App. B 1.

For small momentum, |q| < q∗H = 4
√

3κ/k, the re-
duced dynamical matrix is simply diagonalized by longi-
tudinal and transverse acoustic phonons (which are lin-
ear combinations of ν1 and ν2) with speeds of sound

cL =
√

3k/4 and cT =
√

k/4 and the rotational mode

with a characteristic frequency ω∗
O =

√
6κ at q = 0. The

bulk modulus B and the shear modulus G are related,
respectively, to the longitudinal and transverse sound ve-
locities through

c2
L = (B + G)/̺; c2

T = G/̺, (18)

where ̺ is the mass density, which because there are three
atoms per unit cell, is equal to 3 in our units. Thus,
B = 3k/8 and G = 3k/16. There is only weak mixing
between the rotational modes and the acoustic phonons,
and the system is isotropic.
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FIG. 3: (Color online) (a) Phonon dispersion along symmetry
directions. The dotted lines are for κ = 0 and the solid lines
are for κ = 0.02. The floppy and anomalous branches are in
red. (b) shows anomalous and shear modes along ΓM and in-
dicates characteristic frequencies and wavenumbers. Frequen-
cies ω∗

O, ω∗

S and ω∗

M are defined in the text. (From Ref. [15])

For large momentum |q| > q∗H = 4
√

3κ/k, strong mix-
ing between the transverse acoustic modes and the ro-
tational modes occurs, and the strong anisotropy of the
isostatic state is retrieved. The mixing is maximal along
qx = 0 and symmetry equivalent directions, which we re-
fer to as the isostatic directions, and the resulting two
modes are shown in Fig. 3(a). The anomalous branch,
with frequency of order κ, is the lower branch of the two.
In the limit of κ = 0, the lattice becomes isostatic, the
isotropic region is squeezed to the origin, and the anoma-
lous modes reduce to the isostatic floppy modes with zero
frequency along qx = 0 (ΓM line in Fig. 3) and symme-
try equivalent directions as depicted in Fig. 2. The name
“anomalous modes” follows the nomenclature of Ref. [46],
referring to the modes developed from the floppy modes
as the system is moved away from the isostatic point.
For a more detailed discussion of the low energy theory
of the elasticity of the kagome lattice, see App. B1.

Of particular interest is the frequency of the anomalous
modes in the vicinity of qx = 0. The squared frequency
of these modes can be written as

ω2(q) = ω2
A(qy) + c2

xq2
x, (19)

where cx = cL =
√

3k/4. The function ω2
A(qy) is plotted

in Fig. 4. It reaches a maximum value of (ω∗
S)2 at a

2d saddle point at qy = QS and a local minimum value

of (ω∗
M )2 at the zone edge qy = QM = 2π/

√
3. For

small κ, Qs ≃ 4(3κ/2k)1/4, (ω∗
S)2 ≃ 3κ and (ω∗

M )2 ≃
2κ. All of the characteristic frequencies ω∗

O > ωS >
ωM are proportional to

√
κ for small κ. ω2

A(qy) is well
approximated between qy = QS and qy = QM by

ω2
A ≈ 1

QM − QS
[QMω2

S − QSω2
M − qy(ω2

S − ω2
M )], (20)

as is evident from Fig. 4. This relation will prove useful in
our evaluation of integrals in our CPA analysis in Sec. III

Lengths scaling as κ−1/2 can be extracted from the
phonon dispersion relations in various ways. One length
is the hybridization length l∗H obtained from the hy-

æ

æ

æ

æ
ææ
æææææææææææææææææææææææææææææææ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

qy

Ω
A2 Κ

FIG. 4: (Color online) Eigenvalue of the isostatic mode along
isostatic directions, e.g., qx = 0, for κ = 5 × 10−4. The
eigenvalue of the full 6× 6 dynamical matrix, ω2, normalized
by κ, is denoted by the red dots, and the eigenvalue of the
3 × 3 reduced dynamical matrix (B2) is denoted by the red
line. The blue dashed line represent the approximation (20)
we used in the asymptotic calculation in the f in CPA.

bridization wavenumber q∗H = 4
√

3κ/k = l∗−1
H sepa-

rating the domain of predominantly transverse phonon
behavior at low qy from the domain of predominantly
rotation behavior at high qy. Other lengths can be
obtained by comparing the cxq2

x term in ω2(q) to ω2
M

and ω2
S : q∗M = ωM/cx = l∗−1

m = (8/
√

6)
√

κ/k and

q∗S = ωS/cx = l∗−1
S = 4

√

κ/k. An interesting property of
ω2

A(qy) is that the hybridization frequency ω∗
H obtained

by setting qy = q∗H in the transverse phonon frequency is
identical to ω∗

S: cT q∗H ≡ ω∗
H = ω∗

S.

One experimentally relevant quantity is the Fourier
transform of the finite temperature static phonon cor-
relation function Gµ,ν(l, l′):

Gµ,ν(q) = kBT
∑

α

eα
µ(−q)eα

ν (q)

ω2
α(q)

, (21)

where µ and ν label the basis defined in Eq. (12) of the
6−dimensional space of u, α labels the phonon band, and
eα

µ(q) is the 6-dimensional eigenvector associated with
mode (α,q). This correlation function is a static equi-
librium quantity and thus independent of phonon damp-
ing. The quantities ω2

α(q) are merely the eigenvalues
of the dynamical matrix with the zero-frequency value
of the spring constant (the effective medium spring con-
stant can depend on frequency as we discuss below in the
CPA). Thus, from experimentally measured finite tem-
perature static phonon correlation function Gµ,ν(l, l′),
one can obtain ω2

α(q) from the eigenvalues of Gµ,ν(l, l′),
and by fitting ω2

α(q) to Eq. (20), one will arrive at the
diverging length scale l∗ ∼ κ−1/2. [50]
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III. THE COHERENT POTENTIAL

APPROXIMATION ON THE RANDOM NEARLY

ISOSTATIC KAGOME LATTICE

The CPA is a widely used method in the study of dis-
ordered systems [19, 33, 34]. In it, a random system is
mapped into an effective medium with no disorder that
is described by a Green’s function with a suitable self-
energy that can capture the effect of the disorder av-
erage of the randomness. To achieve this, one imposes
a self-consistency constraint that the effective medium
Green’s function perturbed by the presence of single im-
purity in the effective medium reduces to the effective
medium Green’s function when averaged over the proba-
bility distribution of the impurity. More specifically, the
T -matrix of this perturbation vanishes upon averaging
over configurations that contain and do not contain the
impurity.

For the case of the nearly isostatic kagome lattice, the
effective medium has all NNN bonds occupied with an
effective-medium spring of spring constant κm(P , ω), and
the effective medium Green’s function is identical to that
of a homogeneous system with κ = κm(P , ω). The CPA
procedure consists of replacing one arbitrary NNN bond
with a new bond of spring constant κs, which takes on
the value κ with probability P (bond occupied) and the
value 0 with probability 1 − P (bond unoccupied). This
procedure leads to a modified dynamical matrix

DV = D + V, (22)

where

Vq,q′(k, κ) = (κs − κm)BNNN
1,q BNNN

1,−q′ , (23)

where 1 represents the arbitrary NNN bond we have
chosen to replace into κs. This form of V follows directly
from the calculations leading to Eq. (16). It depends on
the wavenumbers q and q′ because the perturbed system
is not translationally invariant.

The phonon Green’s function for the effective medium
is

Gq(ω) =
[

ω2I − Dq

]−1
. (24)

In the perturbed system with one bond replaced, the
Green’s function becomes

GV
q,q′(ω) =

[

ω2I− DV
]−1

q,q′ (25)

and is no longer translationally invariant. This Green’s
function can be expanded for small V

GV
q,q′ = (I − G · V)−1

q,q′ ·Gq′

≃ Nδq,q′Gq + Gq·Vq,q′·Gq′

+
1

N

∑

q1

Gq·Vq,q1
·Gq1

·Vq1,q′·Gq′ +· · · ,(26)

where we have dropped the frequency ω dependence
which is the same for every G and V. This series can be

written as

GV
q,q′ = Nδq,q′Gq + Gq ·Tq,q′ ·Gq′ , (27)

where

Tq,q′ ≡ Vq,q′ +
1

N

∑

q1

Vq,q1
·Gq1

·Vq1,q′

+
1

N2

∑

q1,q2

Vq,q1
·Gq1

·Vq1,q2
·Gq2

·Vq2,q′

+ · · · , (28)

is the T -matrix expressed in the wavenumber basis.
In the CPA, the effective medium spring constant κm is

determined by requiring that the average value of GV
q,q′

be equal to Nδq,q′Gq or equivalently that the disorder
average of the T -matrix vanish:

PT|κs=κ + (1 − P)T|κs=0 = 0. (29)

The evaluation of the T -matrix is simplified by the fol-
lowing identity,

1

N

∑

q1

Vq,q1
·Gq1

·Vq1,q′ (30)

= (κs − κm)2BNNN
1,q

× 1

N

(

∑

q1

BNNN
1,−q1

· Gq1
·BNNN

1,q1

)

BNNN
1,−q′ (31)

= −(κs − κm)Vq,q′f(κm, ω), (32)

where

f(κm, ω) = −v0

∫

1BZ

d2q

4π2
BNNN

1,−q ·Gq(ω) ·BNNN
1,q , (33)

with v0 =
√

3/2 the area of the unit cell in real space and

4π2/v0 = 8π2/
√

3 is the area of the first Brillouin zone in
reciprocal space. The integral is over the first Brillouin
zone. The Green’s function Gq(ω) is the phonon Green’s
function in the effective medium so it depends on κm.
Using these relations in Eq. (28) gives

Tq,q′ =
Vq,q′

1 + (κs − κm)f(κm, ω)
. (34)

Thus, the self-consistency equation (29) requires that

f(κm, ω)κ2
m − (1 + κf(κm, ω))κm + Pκ = 0, (35)

from which one can solve for the effective medium NNN
spring constant κm for any given P and ω. The form
of this solution at small κm depends on the behavior
of the function f(κm, ω) at small κm, which is in turn
determined by the form of the anomalous mode along
the qx = 0 and other isostatic directions. Details of the
calculation of f(κm, ω) are presented in App. B.

In the following discussion unless otherwise stated, we
use reduced units with k = 1 and lattice constant a = 1,
and thus unitless spring constants, and elastic moduli,
and frequencies: κ/k → κ, Ga2/k → G, and ω/

√
k → ω.
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IV. RESULTS AND DISCUSSION

A. CPA solution at zero frequency: static response

We first consider the case of ω = 0, which characterizes
the static response of the system. For small P , we expect
that the effective medium spring constant κm also to be
small and that we can, therefore, ignore the f(κm, ω)κ2

m

term in the CPA self-consistency equation (35). Using
the asymptotic small κm limit f(κm, 0) = B/

√
κm, where

B = 5(1 −
√

2/3), derived in App. B [Eq. (B13)], we
obtain the equation

κm + Bκ
√

κm − Pκ = 0, (36)

determining κm at small P . The solution to this equa-
tion,

κm(P , 0) =
[−Bκ +

√
B2κ2 + 4Pκ

2

]2

, (37)

has two limits:

κm(P , 0) ≃
{

AP2 if P ≪ (B2/4)κ ,

Pκ if P ≫ (B2/4)κ ,
(38)

where A = 1/B2 = 3(5 + 2
√

6)/25. In the first case,
κ
√

κm ≫ κm, and the solution for κm is obtained by
ignoring the first term in Eq. (36); in the second case,
the opposite is true, and κm is obtained by ignoring the
second term in this equation. In the second case, every
NNN bond distorts in the same way under stress, and
response is affine. In the first case κm = AP2 ≪ Pκ,
indicating that the response is nonaffine with local re-
arrangements in response to stress. Within the CPA,
this result emerges because of the divergent elastic re-
sponse encoded in G (and f(κm, 0)) as κm → 0 (See
App. B). The nonaffine regime arises when NNN springs
are strong enough for the second term in Eq. (36) to
dominate the first. As κ approaches zero at fixed P , dis-
tortions produced by the extra bond decrease and the
nonaffine regime becomes vanishingly small. Numerical
solutions of the CPA self-consistency equation (35) with
the full 6 × 6 dynamical matrix are plotted in Fig. 5,
along with a comparison to the analytical solution (37)
and the two asymptotic forms in Eq. (38).

The effective NNN spring constant κm in both the
square [16] and the kagome lattices exhibit an affine G ∼
P to nonaffine G ∼ P2 crossover with decreasing P . The
effects of this crossover are, however, different in the two
cases. In the square lattice, the shear modulus G ≡ C44

is equal to κm, and as a result, the macroscopic shear
response exhibits this crosser. In the kagome lattice, the
shear modulus is proportional to the NN spring constant
k rather than κ, and the macroscopic elastic response
does not exhibit the affine to non-affine crossover. The
crossover appears instead in the anomalous mode that
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FIG. 5: (Color online) CPA solution at zero frequency. Data
points show the numerical solution κm as a function of P at
ω = 0 of the CPA self-consistency equation (35) with the
full 6 × 6 dynamical matrix. NNN bond spring constant
κ = 10−2, 100, 102 are shown in red dots, purple squares,
and blue diamonds respectively. Also shown are the non-
affine (κm = AP2) and affine (κm = Pκ at κ = 10−2) limits
in green dashed line and red dotted line. At large P the
numerical solution, especially the one for κ = 102 deviate sig-
nificantly from the nonaffine limit form because Eq. (36) is an
approximation at small P by ignoring the highest order term
in Eq. (35).

reduces to the floppy modes shown in Fig. 2 when κm →
0.

Length and frequency scales can be extracted in the
static limit much as they were extracted in the homoge-
neous case discussed in Sec. II. The finite temperature
static phonon correlation function G is the inverse of the
dynamical matrix evaluated at ω = 0, whose eigenval-
ues and eigenvectors are identical to those of the homo-
geneous case with κ replaced by κm ≡ κm(P , 0). The
eigenvalues allow us to identify frequencies by taking the
square roots of the appropriate eigenvalues of D:

ω∗
O =

√
6κm > ω∗

S =
√

3κm > ω∗
M =

√
2κm. (39)

Unlike the situation in homogeneous lattices, these fre-
quencies are not equal to any physical dynamical-mode
frequency of the system. They do, however, provide in-
formation about the static properties of the phonon cor-
relation function G that could in principle be measured
at finite temperature via scattering or particle tracking
experiment. They also lead to diverging lengths just as
they do in the homogeneous case:

l∗ ≡ l∗H =
1√
3

l∗S =
√

2 l∗M =
1

4
√

3κm
=

1√
3A

1

∆z
(40)

B. CPA solution at finite frequency: dynamic

response and damping

For finite frequency ω, the effective medium spring
constant is complex, κm(P , ω) = κ′

m(P , ω) − iκ′′
m(P , ω),
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where the imaginary part κ′′
m(P , ω), which describes

damping of phonons in this random network, is odd in
ω and positive for ω > 0. From the analysis for the
static limit ω = 0, we see that the interesting case is
the nonaffine regime with P ≪ (B2/4)κ, in which the
self-consistency equation (36) simplifies to

f(κm, ω)κm = P . (41)

In the static limit, f(κm, 0) ∼ κ
−1/2
m is singular in the

κm → 0 limit. As we show in App. B, at finite frequency,
f(κm, ω) ∼ [

√

(3κm − ω2)/κm −
√

(2κm − ω2)/κm]/κm,
which leads to

κm(P , ω) =
3P2

25

(

5 + 2
√

6

√

1 − 25ω2

18P2

)

, (42)

as depicted in Fig. 6. Taking ω = 0, this solution re-
duces to the zero-frequency solution [Eq. (38)] in the
nonaffine limit. Equation (42) develops an imaginary

part when |ω| > 2
√

3P/5, which, as we discussed above
must be negative for ω > 0. It is straightforward to see
that this solution satisfies the scaling form κm(P , ω) =
κm(P , 0)h(ω/ω∗), as does the CPA effective NNN spring
constant in the square lattice Ref. [16]. This solution
shows a rapid increase of damping beyond a characteris-
tic frequency

ω∗
D =

2
√

3P
5

, (43)

marking another characteristic frequency that scales also
as P .

Numerical solution of the CPA self-consistency equa-
tion (35) using the full 6 × 6 dynamical matrix is also
shown in Fig. 6. We see that the asymptotic form (42)
captures the solution fairly well.

This special behavior of the imaginary part of the effec-
tive medium spring constant κm is related to the phonon
spectrum of the kagome lattice. As we have discussed in
Sec II, at low frequencies, there is only very weak mixing
between the rotational branch which is strongly affected
by the NNN bonds and the acoustic phonon branches
which are only very weakly affected by the NNN bonds,
As a result the damping to the acoustic phonons is very
weak. On the other hand, at frequencies greater that ω∗

D,
the transverse phonons scatter strongly from the anoma-
lous modes, and there is a rapid increase in their damp-
ing. The weak scattering below ω∗

D is not captured by the
asymptotic form (42) for small κm because the function
κm(P , ω) in Eq. (42) was obtained using the dominant
small κm limit of the integral f(κm, ω). There are, how-
ever, contributions to this integral that do not diverge
and that contribute a subdominant imaginary part to
κm, even when ω < ω∗

D, that is of order P3ω2 at small ω
corresponding to Rayleigh scattering. More discussion is
included in App. B.

In the homogeneous case, the eigenvalues of the dy-
namical matrix lead naturally to the identification of
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FIG. 6: (Color online) CPA solution at finite frequency for
P = 0.01 and P = 0.05. The numerical solution to Eq. (35)
with the full 6 × 6 dynamical matrix is shown as the data
points. Blue circles and red squares represent real and (neg-
ative of) imaginary parts of κm at P = 0.01, and green dia-
monds and brown triangles represent the real and (negative
of) imaginary parts of κm at P = 0.05. The asymptotic
form (42) is shown as the blue (real) and red (negative of
imaginary) lines. In this plot frequency is rescaled by P , and
the effective medium spring constant κm is rescaled by its
value at zero frequency which is real.

characteristic frequencies ω∗
S , and ω∗

M that vanish as
√

κ
in the limit of κ → 0. In the random case, we have
to deal with both the frequency-dependence of κm(P , ω)
and the fact that it is a complex number, and we must
ask whether these frequencies have any real meaning. As
discussed earlier in Sec. II C, we can extract frequencies
from the static dynamical matrix in exactly the same way
that we did for the homogeneous case, and they satisfy

ω∗
O = 3.85ω∗

D > ω∗
S = 2.72ω∗

D > ω∗
M = 2.22ω∗

D > ω∗
D.
(44)

Thus all of these frequencies are greater than the fre-
quency ωD. As a result, the signatures in the phonon
dispersion relation including hybridization and the saddle
point giving rize to the logarithmic van Hove singularity
in the density of states of the uniform NNN kagome lat-
tice are washed out by the strong scattering, as is shown
in Fig. 8.

C. Phonon density of states

The phonon density of states (DOS) can be calculated
from the retarded Green’s function through

ρ(ω) = − 1

π
Tr ImG(q, ω) (45)

where the trace is over both momentum q and the phonon
branches. Using this we obtain the phonon DOS of the
effective medium plotted in Fig. 7. For comparison, we
also show the phonon DOS of a periodic kagome lattice
with the NNN spring constant equal to κm(P , 0), which
is real valued.
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For small frequencies, at which the imaginary part of
the CPA solution κm(P , ω) is very small, the two DOS
are very close, and can be fitted nicely by the Debye-like
total DOS of the transverse and the longitudinal phonons

ρs(ω) =
ω

(4π/
√

3)c2
L

+
ω

(4π/
√

3)c2
T

(46)

where c2
L = 3k/16 and c2

T = k/16 are respectively the
longitudinal and transverse speed of sound (we have
taken k = 1 as stated earlier).

At the critical frequency ω∗
D, the imaginary part of

κm(P , ω) increases rapidly, inducing a rapid increase of
the phonon DOS. On the other hand, the periodic lattice
exhibit a jump in DOS at ω∗

M =
√

2κm(P , 0) correspond-
ing to the minimum of the phonon dispersion relations
at the edge of the 1BZ. At ω∗

S =
√

3κm(P , 0) the DOS
of the periodic lattice has a logarithmic singularity, cor-
responding to the saddle point of the phonon dispersion
at QS ≃ 4(3κm/2k)1/4 on the isostatic directions [15].
For the CPA effective medium, this singularity is totally
washed out due to the strong damping beyond ω∗

D, which
is similar to the case of the square lattice [16].

D. Phonon scattering and the Ioffe-Regel limit

¿From the CPA solution at finite frequency, we identi-
fied a frequency scale ω∗

D beyond which phonon scatter-
ing rapidly increase. In this subsection we examine the
scattering of phonons in more detail.

The scattering of the transverse phonons is character-
ized by the imaginary part of the phonon response func-
tion projected to the transverse direction ImχTT (q, ω).
The phonon response function is defined as

χµ,ν(ℓ, t; ℓ′, t′) ≡ δuµ(ℓ, t)

δFν(ℓ′, t′)
, (47)

where t and t′ label time, µ and ν label the basis de-
fined in Eq. (12) of the 6−dimensional space of u. This
response function is related to the phonon Green’s func-
tion through χ = −G. The imaginary part of the trans-
verse component of this response function ImχTT (q, ω)
characterizes the scattering of the transverse phonon by
disorder. ImχTT (q, ω) is calculated for small momentum
and frequency using the asymptotic CPA solution (42),
and shown in Fig. 8. Also shown in the figure is the
frequency at which the phonon Green’s function of the
anomalous branch has a complex pole, which is solved
from the equation ω2 − ωA(q, κm(P , ω))2 = 0, which
characterizes the dynamic dispersion relation. We use
the form of ωA as defined in App. B 1 for this calculation.
Below ω∗

D, the response function has Dirac-delta peaks
at the frequencies determined by the transverse phonon
dispersion relation ω = cT qy. Above ω∗

D the imaginary
part ω′′ increases rapidly, and the phonon peaks progres-
sively broaden, showing that the transverse phonon is
no longer a good eigenstate of the system. Furthermore,
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FIG. 7: (Color online) (a) The phonon DOS at P = 0.01
(blue circles) and P = 0.05 (green squares) of the CPA ef-
fective medium and the pure kagome lattice with the NNN
spring constant equal to the zero frequency effective medium
value κm(P , ω) for P = 0.01 (purple line). The frequency
is rescaled by P . (b) The phonon DOS at small frequency
for CPA effective medium (color scheme the same as in (a)).
The Debye DOS defined in Eq. (46) is also shown as the red
dashed line.

the characteristic frequencies for the hybridization of the
transverse phonon and the rotational phonon into the
anomalous mode and of the van Hove singularities in the
density of states are greater than ω∗

D, and as a result,
these phenomena are washed out by the strong scatter-
ing. As a result, ω∗

O, ω∗
S , ω∗

M no longer play meaningful
role in the dynamic response function.

The strength of the scattering can be characterized by
the Ioffe-Regel (IR) limit, which states that the plane-
wave states are no longer well defined if the mean-free-
path lmfp is comparable to or less than the phonon wave-
length λ. An equivalent condition is that the relaxation
time becomes comparable to the period of the wave, i.e.,
ω′′ ∼ ω′. The solution for the positions of the complex
poles of the Green’s function of the anomalous branch
ω2 − ωA(q, κm(P , ω))2 = 0 shows that the imaginary
part ω′′ becomes comparable to the real part ω′ not far
beyond ω∗

D and that ω∗
IR ∼ ω∗

D ∼ ∆z. The associated
IR length scale can be derived from ω∗

D and cT to be of

order lIR ∼
√

k/κm ∼ ∆z−1.
This IR length scale differs from that in jammed solids,

ld ∼ ∆z−1/2 as derived in Refs. [47, 48] (called ls in
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FIG. 8: (Color online) Scattering of phonons character-
ized using the imaginary part of the transverse compo-
nent of the phonon response function divided by frequency
ImχTT (q, ω)/ω as a function of ω for various values of qy

(we took qx = 0 to follow the isostatic ΓM direction). The
green line (b) in the bottom plane marks ω∗

D, the blue (c)
and red (a) lines marks the solution ω′ and ω′′ of the equa-
tion ω2 − ωA(q, κm(P , ω))2 = 0, which solves for the pole of
the Green’s function for the anomalous branch. The deriva-
tion of ωA is shown in App. B 1.

Ref. [31]). This discrepancy can be attributed to the dif-
ferent scaling of the shear modulus G. In the kagome
lattice, the shear modulus G is proportional to k and
thus scales as ∆z0, whereas in jammed solids G ∼ ∆z.
Thus, the transverse speeds of sound scales as (∆z)0

and (∆z)1/2 in these two cases respectively. In both
cases, the frequency beyond which plane wave states are
strongly scattered is ω∗ ∼ ∆z. Therefore, the scatter-
ing length scale, cT /ω∗ are respectively l∗ ∼ (∆z)−1 and
ld ∼ (∆z)−1/2 in the kagome lattice and jammed solids.

E. Comparison between different random nearly

isostatic systems

Up to now, three examples of random nearly iso-
static systems have been studied, including the random
nearly isostatic square lattice, the random nearly iso-
static kagome lattice discussed in this Paper, and jammed
solids near point J. In all cases, the characteristic fre-
quency for the onset of the anomalous mode plateau
ω∗ ∼ ∆z and the isostatic length scale l∗ ∼ (∆z)−1.
On the other hand, the scaling of elastic moduli in the
three cases are different because of different network ar-
chitecture: in the square lattice G ∼ κm ∼ (∆z)2 and
B ∼ k ∼ (∆z)0, in kagome lattice G, B ∼ k ∼ (∆z)0,
and in jammed solids G ∼ ∆z and B ∼ k ∼ (∆z)0 (a
jump from zero to finite value at point J). As a result,
the scattering length scales are also different. The square
lattice is anisotropic, and we studied the scattering of the
ux vibrations along qy direction and found that the scat-

tering length corresponded to the point M in the first
Brillouin zone, qy = π, or lx,IR = a. In kagome lattice
lIR ∼ cT /ω∗ ∼ (∆z)−1. In jammed solids, the IR length
scale ld ∼ cT /ω∗ ∼ (∆z)−1/2.

In Ref. [31], Wyart studied transport properties of
amorphous solids modeled by an isostropic random net-
work near its percolative rigidity threshold. In this sys-
tem, both B and G vanish as ∆z, and the crossover
frequency between plane-wave and strongly scattered
states is ω∗ ∼ ∆z. Both the longitudinal and trans-
verse sound velocities scale as (∆z)1/2, and the IR length
lIR ∼ cL,T /ω∗ scales as (∆z)−1/2 for both modes. By ig-
noring the iω3 term, which is a reflection of Rayleigh scat-
tering in 3-dimensions, the CPA self-consistency equation
for low frequency in Ref. [31], Eq. (7), can be rewritten
in the form

k2
M − (∆z)kM + ω2 = 0. (48)

The solution to this equation

kM =
∆z

2

(

1 +

√

1 − 4ω2

∆z2

)

, (49)

has a form very similar to the that of the effective medium
NNN spring constant κm in the kagome lattice as shown
in Eq. (42). Although kM (ω = 0) ∼ ∆z in the amor-
phous solid and κm(ω = 0) ∼ (∆z)2 in the kagome lat-
tice scale differently with ∆z, the frequency dependence
of kM (ω)/kM (ω = 0) and κm(ω)/κm(ω = 0) are almost

identical: they are both of the form a + b
√

1 − (ω/ω∗
D)2

where a and b are constants and ωD ∼ ∆z. The ω3 term
ignored in the above analysis leads to Rayleigh scatter-
ing, ld ∼ ω−4 at small ω. In the case of the kagome
lattice, the subdominant terms in f (as discussed in Sec.
IVB) contribute ω2 in κ′′

m, and lead to Rayleigh scatter-
ing ld ∼ ω−3. The difference in the exponent in these
two cases is due to different spatial dimension.

To summarize, we examined the random nearly iso-
static kagome lattice via the CPA, we obtained effective-
medium NNN spring constant κm that scales with the
occupancy probability P ∼ ∆z of the NNN bonds as P2

at small P . Below the characteristic frequency ω∗
D ∼ P ,

there is only weak damping of acoustic phonons arising
from Rayleigh scattering, whereas above ω∗

D scattering
increases rapidly and the system shows proximity to the
IR limit. We compare the kagome lattice to other nearly
isostatic systems including the square lattice, jammed
solids near point J, and a model random isotropic net-
work [31]. The characteristic frequency scale ω∗ ∼ ∆z,
marking both the onset of the plateau of the anomalous
modes and the strong scattering of plain wave states, is
found to be a universal property of all of these systems.
The elastic modulus G, B and thus the transport length
scale depends on the network architecture and are not
universal.

Acknowledgments—This work was supported in part by
NSF-DMR-0804900.
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Appendix A: The dynamical matrix of the kagome

lattice

To construct the dynamical matrix of the kagome lat-
tice, we use the form of the elastic energy given in Eq. (7).
Because we consider the reference state of all bonds at
their rest length, we have fb = 0, thus there is only pro-
jection of u onto the direction along the bond. We first
consider the case of simple lattice with one particle in
each unit cell and rewrite Eq. (7) as

∆U =
∑

b

kb

2

[

(uℓ1 − uℓ2) · eℓ1ℓ2

]2

=
∑

ℓ,ℓ′

∑

b

kb

2
uℓ · eℓ1ℓ2(δℓ,ℓ1 − δℓ,ℓ2)

×(δℓ′,ℓ1 − δℓ′,ℓ2)eℓ1ℓ2 · uℓ′ , (A1)

where ℓ1, ℓ2 labels the two particles connected by the
bond b. Thus the dynamical matrix D, as defined in
Eq. (13), is given by

Dℓ,ℓ′ =
∑

b

kbeℓ1ℓ2(δℓ,ℓ1 − δℓ,ℓ2)

×(δℓ′,ℓ1 − δℓ′,ℓ2)eℓ1ℓ2 . (A2)

It is convenient to express the dynamical matrix in
momentum space via the Fourier transform defined in
Eq. (15)

Dq,q′ =
∑

ℓ,ℓ′

e−iq·rℓ+iq′·rℓ′Dℓ,ℓ′

=
∑

ℓ,ℓ′

e−iq·rℓ+iq′·rℓ′
∑

ℓ1

′
∑

ℓ2

kbeℓ1ℓ2

×(δℓ,ℓ1 − δℓ,ℓ2)(δℓ′,ℓ1 − δℓ′,ℓ2)eℓ1ℓ2

= Nδq,q′
∑

b

kb(1 − e−iq·b)

×(1 − eiq·b)ebeb (A3)

where the ′ above the summation of ℓ2 denote a summa-
tion over particles connected to ℓ1, and b = rℓ′ − rℓ rep-
resent the bonds connected to an arbitrary particle (note
the difference from b in the previous equation, which rep-
resent all bonds in the system). One can define the dy-
namical matrix for translational invariant system as

Dq,q′ = Nδq,q′Dq

Dq =
∑

b

kb(1 − e−iq·b)(1 − eiq·b)ebeb

=
∑

m

kmBm,qBm,−q, (A4)

where the summation m is over bonds connected to an
arbitrary particle, and the vector

Bm,q = (1 − e−iq·bm)ebm
(A5)

is a convenient way to express the dynamical matrix.

For the kagome lattice, which has three particles per
unit cell, one need to modify the above construction of
the dynamical matrix, and in the basis of

uℓ = (uℓ,1,x, uℓ,1,y, uℓ,2,x, uℓ,2,y, uℓ,3,x, uℓ,3,y), (A6)

with particles 1, 2, 3 labeled as in Fig. 1, the dynamical
matrix can be expressed as

Dq,q′ = Nδq,q′Dq(k, κ)

Dq(k, κ) = k
∑

m∈NN

BNN
m,qB

NN
m,−q

+κ
∑

m∈NNN

BNNN
m,q BNNN

m,−q , (A7)

with the B vectors for NN bonds for each unit cell (each
bond is counted once)

BNN
1,q =

(

− 1

2
,−

√
3

2
,
1

2
,

√
3

2
, 0, 0

)

BNN
2,q =

(

0, 0, 1, 0,−1, 0
)

BNN
3,q =

(1

2
,−

√
3

2
, 0, 0,−1

2
,

√
3

2

)

BNN
4,q =

(

− 1

2
,−

√
3

2
,
1

2
e−i
(

1

2
qx+

√
3

2
qy

)

,
√

3

2
e−i
(

1

2
qx+

√
3

2
qy

)

, 0, 0
)

BNN
5,q =

(

0, 0,−e−iqx , 0, 1, 0
)

BNN
6,q =

(1

2
,−

√
3

2
, 0, 0,−1

2
e−i
(

− 1

2
qx+

√
3

2
qy

)

,
√

3

2
e−i
(

− 1

2
qx+

√
3

2
qy

)

)

, (A8)

and the B vectors for NNN bonds for each unit cell

BNNN
1,q =

(

√
3

2
e−iqx ,

1

2
e−iqx , 0, 0,−

√
3

2
,−1

2

)

BNNN
2,q =

(

0, 0, 0, e−i
(

1

2
qx+

√
3

2
qy

)

, 0,−1
)

BNNN
3,q =

(

√
3

2
,
1

2
, 0, 0,−

√
3

2
e−i
(

1

2
qx+

√
3

2
qy

)

,

−1

2
e−i
(

1

2
qx+

√
3

2
qy

)

)

BNNN
4,q =

(

−
√

3

2
,
1

2
,

√
3

2
e−i
(

− 1

2
qx+

√
3

2
qy

)

,

−1

2
e−i
(

− 1

2
qx+

√
3

2
qy

)

, 0, 0
)

BNNN
5,q =

(

0, 0, 0, 1, 0,−e−i
(

− 1

2
qx+

√
3

2
qy

)

)

BNNN
6,q =

(

−
√

3

2
eiqx ,

1

2
eiqx ,

√
3

2
,−1

2
, 0, 0

)

. (A9)
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Appendix B: Calculation of the asymptotic form of

the f(κm, ω) function at small κm

1. The reduced dynamical matrix

To calculate the asymptotic form of f(κm, ω) we first
simplify the problem by reduce the dynamical matrix into
the space of its three low energy modes by integrating
out its three high energy modes [15]. The resulting low-
energy dynamical matrix is conveniently represented in
the basis of longitudinal and transverse phonons and the
rotational mode (mode ν3)

(ν′
1, ν

′
2, ν

′
3) = (

qxν1 + qyν2

|q| ,
−qyν1 + qxν2

|q| , ν3), (B1)

in which the dynamical matrix takes the form

D̃(R) = k







3q2

16 0 q2

16 cos 3θ

0 q2

16 − q2

16 sin 3θ
q2

16 cos 3θ − q2

16 sin 3θ q2

16 + 6κm

k






, (B2)

in leading order of small κ and quadratic order in q (the
cross term of order κmq2 is considered higher order and

has been dropped).

Eigenmodes of the dynamical matrix are identified by
diagonalizing D̃(R). Strong mixing between the trans-
verse mode and the rotational mode occurs along qx = 0
(i.e., θ = 0) and symmetry equivalent isostatic directions.
The resulting two eigenvalues (by diagonalizing the lower
right 2 × 2 block) are

ω̃2
A(q) =

q2

16
+ 3κm −

√

( q2

16

)2

+ (3κm)2

ω̃2
B(q) =

q2

16
+ 3κm +

√

( q2

16

)2

+ (3κm)2, (B3)

obtained from the quadratic order of the renormalized
3 × 3 matrix D̃(R). The lower eigenvalue ω̃2

A correspond
to the anomalous mode, which is close to the trans-
verse mode ν′

2 (which is simply ν1 for qx = 0 direc-

tion) for qy ≪ q∗H = 4
√

3κm/k . For qy ≫ q∗H this
anomalous mode corresponds to the linear combination
of (ν′

2 − ν′
3)/2, which is actually the floppy mode of the

kagome lattice in the κm → 0 limit, in which ω̃A → 0.

2. Leading order divergence of f(κm, ω)

The function f(κm, ω), as given in Eq. (33), can be analyzed using the simplified dynamical matrix (B2), which is
the leading order form in small κm and q. Thus we can obtain an asymptotic analytical calculation of the integral f
by projecting from the 6-dimensional basis in Eq. (12) onto the 3-dimensional basis in Eq. (B1) built from the three
low energy modes of the system

f(κm, ω) = −
∫

1BZ

d2q

8π2/
√

3
BNNN

1,−q · Gq(ω) · BNNN
1,q

≃ −
∫

1BZ

d2q

8π2/
√

3
BNNN

1,−q · ΘTΘ ·Gq(ω) · ΘTΘ ·BNNN
1,q , (B4)

where

Θ =







qx√
3q

qy√
3q

qx√
3q

qy√
3q

qx√
3q

qy√
3q

− qy√
3q

qx√
3q

− qy√
3q

qx√
3q

− qy√
3q

qx√
3q

− 1√
3

0 1
2
√

3
− 1

2
1

2
√

3
1
2






, (B5)

is the orthogonal transformation from the basis of uℓ = (uℓ,1,x, uℓ,1,y, uℓ,2,x, uℓ,2,y, uℓ,3,x, uℓ,3,y) to the basis (ν′
1, ν

′
2, ν

′
3)

in Eq. (B1) with the longitudinal, transverse, and the rotational mode. In these new basis, the dynamical matrix is
modified by integrating out the high energy modes and keeping to leading order in small κm and q, which lead to
the simple form of Eq. (B2) [15], and thus the Green’s function can be analyzed correspondingly. Note that we use

the Green’s function G̃q(ω) calculated from the renormalized dynamical matrix (B2), so it is different from the bare
value Θ · Gq(ω) · ΘT. The transformed the BNNN

1,q vector in the basis of (ν′
1, ν

′
2, ν

′
3) takes the form

( (e−iqx − 1)(3qx +
√

3qy)

6|q| ,
(e−iqx − 1)(

√
3qx − 3qy)

6|q| ,−1

2
(1 + e−iqx)

)

. (B6)

The leading order term of this integral in small κm is from ν′
3, the anomalous mode, which has a small frequency of

order
√

κm over the whole range of momentum from qH to the edge of the Brillouin zone along the isostatic directions,
and thus correspond to diverging contributions to the f integral in small κm.
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For an approximation of the f integral at small κm, we use the dynamical matrix of the form (B2), which kept to
leading order in κm and quadratic order in q. At small momentum, the dynamical matrix (B2) is diagonalized by the
basis (ν′

1, ν
′
2, ν

′
3), and the Green’s function Gq(ω) takes the form of a diagonal matrix

G̃q(ω) = Diag
( 1

ω2 − 3q2

16

,
1

ω2 − q2

16

,
1

ω2 − 6κm − q2

16

)

, (B7)

which is isotropic and valid for small momentum |q| < q∗H . Thus, the small momentum region contribute to f the
following terms

f<(κm, ω) =−
∫

|q|<q∗
H

dqxdqy

8π2/
√

3

{ (1 − cos qx)(3qx +
√

3qy)2

18(q2
x + q2

y)(ω2 − 3(q2
x+q2

y)

16 )
+

(1 − cos qx)(
√

3qx − 3qy)
2

18(q2
x + q2

y)(ω2 − q2
x+q2

y

16 )
+

1 + cos qx

2(ω2− 6κ− q2
x+q2

y

16 )

}

.(B8)

At large momentum, the dynamical matrix can be diagonalized to leading order in κm in the basis (ν′
1,

ν′
2
+ν′

3√
2

,
ν′
2
−ν′

3√
2

),

in which B1,q takes the form

((e−iqx − 1)(3qx +
√

3qy)

6|q| ,
(e−iqx − 1)(

√
3qx − 3qy)

6
√

2|q|
− 1

2
√

2
(1 + e−iqx),

(e−iqx − 1)(
√

3qx − 3qy)

6
√

2|q|
+

1

2
√

2
(1 + e−iqx)

)

, (B9)

and the Green’s function Gq(ω) takes the form of a diagonal matrix

G̃q(ω) = Diag
( 1

ω2 − 3(q2
x+q2

y)

16

,
1

ω2 − 6κm − q2
x+q2

y

16

,
1

ω2 − 1
QM−QS

[QMω2
S − QSω2

M − qy(ω2
S − ω2

M )] − 3q2
x

16

)

, (B10)

which is for the direction of qx = 0, and we have used the approximated form 20 of ω2
A, that represent the dispersion

relation of the anomalous mode at large frequency, as depicted in Fig. 4. For this calculation we use the small κm

values (ω∗
S)2 = 3κm and (ω∗

M )2 = 3κm.
For the other two directions one should change the third term above from q2

x into the perpendicular direction of
the two isostatic directions accordingly. Thus we need to divide the first Brillouin zone into 3 parts: |θ − π/2| < π/6,
|θ − π/6| < π/6, and |θ − 5π/6| < π/6, and integrate each of them out separately and then calculate the sum. Here
we just do the |θ − π/2| < π/6 part as an example, which uses the form of the Green’s function in Eq. (B10). This
part of the integral is

f>, π
2
(κm, ω) = − 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫

|qy|√
3

− |qy|√
3

dqx

{ (1 − cos qx)(3qx +
√

3qy)2

18(q2
x + q2

y)(ω2 − 3(q2
x+q2

y)

16 )

+
(2 + cos qx)q2

x +
√

3(1 − cos qx)qxqy + 3q2
y

6(q2
x + q2

y)(ω2 − 6κm − q2
x+q2

y

16 )

+
(2 + cos qx)q2

x +
√

3(1 − cos qx)qxqy + 3q2
y

6(q2
x + q2

y)(ω2 − QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS
− 3q2

x

16 )

}

, (B11)

and the integral for the other two directions can be calculated similarly.
The leading order contribution to f(κm, ω) in small κm is from the third term in Eq. (B11), which represent the

isostatic mode. We first consider the ω = 0 case, for which the leading order term of f(κm, ω) is

fπ
2

,l.o.(κm, 0) =
2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫

|qy|√
3

− |qy|√
3

dqx

(2 + cos qx)q2
x +

√
3(1 − cos qx)qxqy + 3q2

y

6(q2
x + q2

y)
(QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS
+

3q2
x

16

)

≃ 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

(2 + cos qx)q2
x +

√
3(1 − cos qx)qxqy + 3q2

y

6(q2
x + q2

y)

π
√

QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS

4√
3
δ(qx)

≃ 2(1 −
√

2/3)√
κm

, (B12)
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where we took the limit of κm → 0 and make use of the identity lima→0
1

a2+x2 = (π/a)δ(x). Adding up the contribution

from θ = π/6 and θ = 5π/6 part we have

fl.o.(κm, 0) ≃ 5(1 −
√

2/3)√
κm

. (B13)

Other terms in Eq. (B8) and (B11) contribute higher order terms in small κm, and is discussed in Sec. B 3.
In the case of ω > 0, the leading order term can be calculated in a similar way

fπ
2

,l.o.(κm, 0) = − 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy

∫

|qy |√
3

− |qy |√
3

dqx

(2 + cos qx)q2
x +

√
3(1 − cos qx)qxqy + 3q2

y

6(q2
x + q2

y)(ω2 − QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS
− 3q2

x

16 )

≃ 2

8π2/
√

3

∫ 2π√
3

q∗
H

dqy
1

2

2πi(16/3)

2(4/
√

3)
√

ω2 − QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS

≃ 2√
3κm

(

√

3 − ω2

κm
−
√

2 − ω2

κm

)

. (B14)

The qx integral can either be evaluated using the δ function trick by assuming an infinitesimal imaginary part of ω
(ω → ω + iδ), or by extending the integral limit of qx to (−∞,∞) (because the integrand decays fast when qx is large)

and using contour integral. We also assumed that |
√

QM ω2

S
−QSω2

M
−qy(ω2

S
−ω2

M
)

QM−QS
− ω2| ≪ 1 to make the simplification

that cos qx ≃ 1. Adding up the contribution from θ = π/6 and θ = 5π/6 part we have

fl.o.(κm, ω) ≃ 5√
3κm

(

√

3 − ω2

κm
−
√

2 − ω2

κm

)

. (B15)

Other terms in Eq. (B8) and (B11) contribute higher order terms in small κm, and is discussed in Sec. B 3.

3. Correction at small frequencies

To get the correction to the asymptotic solution of κm(P , ω) as in (B15), in particular the small imaginary part
rather than zero at small frequency, we calculate the imaginary part of f at small frequencies and solve for the
correction to κm(P , ω) perturbatively in the CPA equation.

Because we consider small frequencies ω2 < κm, the contribution is from the two acoustic modes, which are isotropic,
and thus can be calculated as

ImfL ≃ − 2

8π2/
√

3

∫ q∗
H

0

dq

∫ 2π

0

dθ q Im
[q2 cos2 θ(3 cos θ +

√
3 sin θ)2

18(ω2 − 3
16q2 + iδ)

]

≃ 20

27
ω2, (B16)

and

ImfT ≃ − 2

8π2/
√

3

∫ q∗
H

0

dq

∫ 2π

0

dθ q Im
[q2 cos2 θ(

√
3 cos θ − 3 sin θ)2

18(ω2 − 1
16q2 + iδ)

]

≃ 4ω2. (B17)

Thus we have the correction to Eq. (B15) that is valid for small ω as

f(κm, ω) =
5√
3κm

(

√

3 − ω2

κm
−
√

2 − ω2

κm

)

+ i
128

27
ω2. (B18)

We then solve the leading order CPA equation in small κm nonaffine regime perturbatively using this corrected
form of f at small ω, and get

κm(P , ω) = κ(0)
m − 256

135
(

1 −
√

2/3
) (κ(0)

m )3/2iω2, (B19)
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where κ
(0)
m is the zeroth order solution (42). This correction is very small and can not be observed in our numerical

solutions within precision.
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