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We investigate the evolution of a light impurity particle in a Lorentz gas where the background
atoms are in thermal equilibrium. As in the standard Lorentz gas, we assume that the particle is
negligibly light in comparison with the background atoms. The thermal motion of atoms causes
the average particle speed to grow. In the case of the hard-sphere particle-atom interaction, the
temporal growth is ballistic, while generally it is sub-linear. For the particle-atom potential that
diverges as r−λ in the small separation limit, the average particle speed grows as tλ/(2(d−1)+λ) in d
dimensions. The particle displacement exhibits a universal growth, linear in time and the average
(thermal) speed of the atoms. Surprisingly, the asymptotic growth is independent of the gas density
and the particle-atom interaction. The velocity and position distributions approach universal scaling
forms which are non-Gaussian. We determine the velocity distribution in arbitrary dimension and
for arbitrary interaction exponent λ. For the hard-sphere particle-atom interaction, we compute the
position distribution and the joint velocity-position distribution.

PACS numbers: 05.20.Dd: Kinetic theory, 45.50.Tn: Collisions, 05.60.-k: Transport processes

I. INTRODUCTION

The goal of this work is to investigate the behavior of
an impurity particle (particle in short) in a monoatomic
gas. We focus on the limit when the particle is negligibly
light in comparison with background atoms. In other
words, the particle is affected by collisions with atoms,
while atoms do not “feel” the presence of the particle. We
want to understand the evolution of the particle velocity
and displacement distribution. This work extends the
results previously derived in [1].

The problem is a natural generalization of the stan-
dard Lorentz gas [2–7] where scatters are assumed to be
immobile. The speed of the particle remains constant
in the framework of the Lorentz model. In our model
the behavior is completely different and can be simply
understood using arguments from the equipartition the-
orem (when the background gas has a positive tempera-
ture the average speed of the particle increases without a
bound since the particle “tries” to reach an equilibrium
with the background atoms).

The problem is also reminiscent of the model originally
proposed by Fermi [8], and later refined by Ulam [9],
to explain the acceleration of interstellar particles and
cosmic rays. Fermi’s acceleration mechanism has been
mostly studied using methods of dynamical systems (see
[10] and references therein); an application of kinetic the-
ory to Fermi’s mechanism has been presented in [11].

Here we analyze the behavior of the light particle in
an equilibrium gas using the Boltzmann equation frame-
work. The Boltzmann equation [12] is the basic tool in
elucidating the properties of transport phenomena. The
non-linear integro-differential Boltzmann equation is so
formidable, however, that apart from the equilibrium
Maxwell-Boltzmann distribution [13] there are essentially
no solutions to the Boltzmann equation [14]. The stan-
dard Lorentz gas model where a point particle is elas-
tically scattered by immobile hard spheres is described

by the Lorentz-Boltzmann equation [2] which is linear
and, not surprisingly, amenable to analytical treatments.
The Lorentz gas has played an outstanding role in con-
crete calculations (e.g. of the diffusion coefficient) and
in the conceptual development of kinetic theory [3, 4].
Yet the very applicability of the Boltzmann framework
to the Lorentz gas is questionable — when the scatters
are fixed, the molecular chaos assumption underlying the
Boltzmann equation cannot be justified [3–7].

If, however, the background atoms move and collide
with each other, the molecular chaos assumption holds in
the dilute limit and the (properly generalized) Lorentz-
Boltzmann equation must be applicable as long as the
mass of the particle is infinitesimally small so that it
does not affect the motion of atoms. Moreover, since
the (average) particle speed continues to grow, it eventu-
ally greatly exceeds the typical velocities of background
atoms. This allows to simplify the most difficult term in
the Boltzmann equation, the so-called collision integral;
mathematically, an integral operator becomes a differen-
tial one and the integro-differential Lorentz-Boltzmann
equation reduces to a partial differential equation.

The unlimited velocity growth suggests that the parti-
cle velocity distribution approaches a scaling form. The
scaled velocity distribution satisfies an ordinary differen-
tial equation (Sects. II–IV) which admits a simple solu-
tion; for the hard-sphere atoms, the scaled velocity dis-
tribution is exponential (Sects. II–III). The Boltzmann
equation approach also describes the spatial distribution
of the particle, yet extracting the density distribution is
much more difficult as it does not obey a closed equa-
tion, so one must rely on the joint distribution function
that simultaneously describes the probability density for
the position and velocity. In Sec. V we outline the evo-
lution of the displacement using heuristic arguments and
exact calculations in one dimension based on the veloc-
ity correlation functions. In Sect. VI we derive kinetic
equations describing the joint distribution in the long-
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time limit. In Sect. VII we investigate the density profile
of the hard-sphere gas by utilizing the moment approach
and in Sect. VIII we compute the joint distribution. We
report the results of numerical simulations in Sec. IX and
summarize our findings in Sect. X.

II. ONE DIMENSION

As a warm-up, consider the one-dimensional case. This
may appear physically dubious as the particle is caged
between two adjacent atoms, so the molecular chaos as-
sumption (that is, the lack of correlations between pre-
collision velocities) underlying the Boltzmann approach
is certainly invalid in one dimension. A Boltzmann equa-
tion, however, makes sense if we consider the situation
when in each collision the scattering occurs with a cer-
tain probability (otherwise the particle and an atom just
pass through each other). This one-dimensional Boltz-
mann equation sheds light on the three-dimensional case.
Therefore it has been proven useful as a toy model and it
has been studied in a number of one-dimensional settings
(see e.g. [7, 15–18]).

The Boltzmann equation for the particle velocity dis-
tribution f(v, t) reads

∂f(v, t)
∂t

=
∫ ∞
−∞

du |v−u|P (u)[f(2u−v, t)−f(v, t)] (1)

Here

P (u) =
ρ√
2πT

e−u
2/2T (2)

is the equilibrium velocity distribution of the background
atoms corresponding to temperature T (we set the atomic
mass to unity). We shall see, however, that we do not
need the detailed form (2) of the equilibrium Maxwell-
Boltzmann distribution. To establish the asymptotic be-
havior of f(v, t) it is sufficient to assume that P (u) is an
even function, P (u) = P (−u). Even a weaker condition
that the average velocity of atoms vanishes,∫ ∞

−∞
duuP (u) = 0, (3)

suffices. Whenever (3) holds, the long-time behavior de-
pends only on the second moment of P (u) which essen-
tially defines the temperature:∫ ∞

−∞
duu2 P (u) = ρT (4)

We shall see that in the long-time, more precisely when

t� ρ−1T−1/2 (5)

the Boltzmann equation (1) for the particle velocity dis-
tribution simplifies to

∂f

∂τ
=
∂f

∂v
+ v

∂2f

∂v2
, τ = 2ρT t (6)

This kinetic equation admits the scaling solution

f(v, t) =
1
2τ

e−|v|/τ (7)

To derive (6)–(7) we first simplify the collision integral
in Eq. (1) in the t→∞ limit. Since f(v, t) = f(−v, t), it
suffices to investigate the v > 0 region [19]. Moreover we
can replace |v− u| by v− u since the region v < u where
the replacement is invalid provides a negligible contribu-
tion in the long-time limit: P (u) is very small in this
region. More precisely, the above simplification applies
if the average speed of atoms 〈u〉 ∼

√
T is much smaller

than the particle velocity v. This is our working assump-
tion which will be checked a posteriori. When 〈u〉 � v
we can additionally expand f(2u−v) that appears in the
collision integral in Eq. (1) into a Taylor series

f(2u− v) = f(v)− 2u
∂f(v)
∂v

+ 2u2 ∂
2f(v)
∂v2

− (2u)3

3!
∂3f(v)
∂v3

+
(2u)4

4!
∂4f(v)
∂v4

+ . . .

Plugging this expansion into Eq. (1) and computing the
integrals over u we obtain

∂f

∂τ
=
∂f

∂v
+ v

∂2f

∂v2
+ 2T

(
∂3f

∂v3
+ v

∂4f

∂v4

)
+ . . . (8)

In computing the integrals leading to the first two terms
on the right-hand side of (8) it suffices to use the integral
relations (3)–(4). The next two terms are obtained using
the integral relations∫ ∞

−∞
duu3 P (u) = 0,

∫ ∞
−∞

duu4 P (u) = 3ρT 2 (9)

The first relation in (9) is valid for any symmetric ve-
locity distribution, P (u) = P (−u), while the second is
derived from the equilibrium Maxwell-Boltzmann distri-
bution (2).

The first two terms on the right-hand side of (8) scale
as τ−1, the next two terms scale as Tτ−3, so they are
asymptotically negligible when τ �

√
T , that is, the av-

erage particle speed greatly exceeds the average speed of
atoms. The two following terms [which haven’t been dis-
played in (8)] contains T 2 ∂

5f
∂v5 and T 2v ∂

6f
∂v6 , so they scale

as T 2τ−5 and therefore they are even smaller. Thus in
the τ �

√
T limit (which is given by Eq. (5) in the orig-

inal variables), Eq. (8) indeed reduces to Eq. (6) in the
leading order.

The form of equation (6) suggests to seek the scaling
solution of the form

f(v, τ) = τ−1Φ(w), w = v/τ (10)

Plugging (10) into (6) we obtain an ordinary differential
equation for Φ(w) which is solved to yield Φ(w) = C e−w.
Recalling that the particle velocity distribution is even
and using the normalization condition

∫
dv f(v, t) = 1
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fixes the amplitude C = 1/2 and leads to the announced
result (7).

Having determined the scaling solution (7), we would
like to understand if any arbitrary function f(v, t) ap-
proach the scaling solution (7) in the long time limit.
The answer to this question is presumably affirmative,
at least when the initial velocity distribution f(v, t = 0)
quickly decays when |v| → ∞. Yet to prove this asser-
tion even for simplest initial velocity distributions like
f(v, t = 0) = δ(v) is hard. Analytical arguments show-
ing that the scaling solution (7) is indeed an attractor
are presented in Appendix A.

III. HARD-SPHERE GAS

Consider now the most natural three-dimensional sit-
uation and assume that atoms are hard spheres of radius
a. We ignore both the mass and the size of the particle.
The latter assumption is not crucial — if the particle is
a sphere of radius b, it suffices to replace a by a + b in
the following formulae.

We again employ the Boltzmann equation approach.
This framework is applicable only in the diluted limit; for
the hard-sphere gas, this means that the volume fraction
occupied by atoms is small: ρ× 4π

3 a3 � 1 (here ρ is the
number density of background atoms).

The Boltzmann equation reads

∂f(v, t)
∂t

=
∫
duP (u) ga2

∫
De [f(v′, t)− f(v, t)] (11)

Here e is the unit vector pointing to the position of the
particle at the moment when it hits the sphere. The
post-collision velocity v′ of the particle can be expressed
via v, e, and the relative velocity g = u− v:

v′ = v + 2e(g · e) (12)

In Eq. (11) we have also used the shorthand notation De
for the integration measure over angular coordinates. For
the hard-sphere gas, this integration measure reads [4]

De =
(g · e)
g

θ(g · e) d2e (13)

In the above expression θ(·) is the Heaviside step function
and d2e is the standard angular integration measure.

To simplify the Boltzmann equation (11) we shall pro-
ceed as in one dimension. Since the particle velocity dis-
tribution is (asymptotically) isotropic, let us treat f(v)
as a function of V = v2 = (v · v). Squaring (12) we get

V ′ = V + 4(v · e)(g · e) + 4(g · e)2 = V + 4(u · e)(g · e)

Using this result and expanding f(v′) = f(V ′) into a
Taylor series we obtain

f(V ′) = f(V )+4(u·e)(g·e)
∂f

∂V
+8(u·e)2(g·e)2 ∂

2f

∂V 2
+. . .

Using this expansion we simplify (11) to

∂f

∂t
= 4

∂f

∂V

∫
duP (u) ga2

∫
De (u · e)(g · e)

+ 8
∂2f

∂V 2

∫
duP (u) ga2

∫
De (u · e)2(g · e)2

(14)

As in the one-dimensional case, it suffices to keep only
the terms with the first and second order derivatives in
V ; the terms with higher order derivatives are asymptot-
ically negligible. The angular integrals in Eq. (14) are
computed [see Appendix B] to yield∫

De (u · e)(g · e) =
π

2
(g · u) (15a)∫

De (u · e)2(g · e)2 =
π

12
[
3(g · u)2 + g2u2

]
(15b)

Inserting (15a)–(15b) into Eq. (14) we obtain

1
2πa2

∂f

∂t
=
v

3
∂2f

∂V 2

∫
duP (u)

[
3(v · u)2 + v2u2

]
+
∂f

∂V

∫
duP (u) g(g · u)

(16)

In the first integral we already replaced g by −v which
is correct in the leading order. In the second integral we
should be more careful. We write

g(g · u) = −v(v · u) + v−1
[
(v · u)2 + v2u2

]
+ . . .

The integral that contains the leading term vanishes since∫
duP (u) u = 0. Thus Eq. (16) becomes

1
2πa2

∂f

∂t
=
v

3
∂2f

∂V 2

∫
duP (u)

[
3(v · u)2 + v2u2

]
+

1
v

∂f

∂V

∫
duP (u)

[
(v · u)2 + v2u2

] (17)

Using relations∫
duP (u)u2 = 3ρT,

∫
duP (u) (v ·u)2 = v2ρT (18)

we recast (17) into

∂f

∂τ
= 8v

∂f

∂V
+ 4v3 ∂

2f

∂V 2
, τ = πa2ρT t (19)

Since V = v2, we have

∂

∂V
=

1
2v

∂

∂v
,

∂2

∂V 2
= − 1

4v3

∂

∂v
+

1
4v2

∂2

∂v2
(20)

Using these identities we re-write (19) as

∂f

∂τ
= 3

∂f

∂v
+ v

∂2f

∂v2
(21)

This kinetic equation admits the scaling solution

f(v, t) =
1

8πτ3
e−v/τ (22)
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For instance, the average speed of the particle is

〈v〉 =
∫ ∞

0

v f(v, t) 4πv2 dv = 3τ

and more generally

〈vn〉 =
(n+ 2)!

2
τn (23)

The above analysis can be straightforwardly extended
from three to d dimensions. The results up to (14) require
obvious amendments, e.g. in equation (14) we must re-
place a2 by ad−1. The integrals (15a)–(15b) become (see
Appendix B)∫

De (u · e)(g · e) = A(u · g) (24a)∫
De (u · e)2(g · e)2 =

dB −A
d− 1

(u · g)2 +
A−B
d− 1

g2u2

(24b)

where A, B are constants defined by integrals:

A =
1
g2

∫
De (g · e)2 , B =

1
g4

∫
De (g · e)4 . (25)

The governing kinetic equation that generalizes Eq. (21)
reads

∂f

∂τ
= d

∂f

∂v
+ v

∂2f

∂v2
, τ = 2ad−1AρTt. (26)

Interestingly, in all dimensions the constant B drops from
the final equation; the constant A is essentially irrelevant
as it is absorbed into the new time variable τ .

Equation (26) is much simpler than Eq. (11) and it
can be solved by employing the Laplace transform (see
Appendix C). The asymptotic solution of Eq. (26) is
again a pure exponential

f = [Ωd Γ(d)]−1
τ−d e−v/τ (27)

where Ωd = 2πd/2

Γ(d/2) is the area of the unit sphere in d

dimensions. The constant in (27) has been chosen to
ensure the normalization:

∫
dvf(v, t) = 1.

In two dimensions, Eqs. (26)–(27) have been derived
in Ref. [11] in the realm of a stochastic model for Fermi’s
acceleration. Even earlier, the exponential velocity dis-
tribution was found to occur in another stochastic model
for Fermi’s acceleration [20] in which a particle is bounc-
ing in a container of fixed volume with boundaries de-
forming in a chaotic manner. In this case, the velocity
distribution becomes exponential independently of the
container’s shape and the deformation protocol.

IV. MONOATOMIC GAS

Consider now a general case of a monoatomic gas. It
is then natural to assume that the interaction between

the particle and an atom separated by distance r can be
described by a potential function U(r). In the long time
limit when the particle velocity becomes large, only the
small r behavior of the potential U(r) matters. In this
limit, the repulsion part of the interaction dominates and
it usually diverges algebraically in the small separation
limit

U(r) ' ε
(r0

r

)λ
(28)

as r → 0. For example, λ = 12 for the Lennard-Jones
potential (in three dimensions).

To estimate interaction size r∗ we can use the criterion
U(r∗) ∼ g2, from which we find r∗ and the cross section
area σ ∼ rd−1

∗ :

r∗ ∼ r0

(
ε

g2

)1/λ

, σ∗ ∼ (r0)d−1

(
ε

g2

)(d−1)/λ

The term gad−1De characterizing the hard-sphere gas
should be replaced by the term gσ∗De in the general
case. In one dimension, the interaction law is irrelevant
and the problem reduces to the hard-core interaction.
In higher dimensions, the Boltzmann equation depends
on the interaction exponent λ as it contains the factor
gσ∗ ∼ g1−γ with γ = 2(d− 1)/λ. In the long-time limit,
the particle is very fast, so it is scattered only when it
greatly approaches the atom, that is the separation is
small and therefore the above analysis is asymptotically
exact. Thus we must merely replace g by g1−γ in the
Lorentz-Boltzmann equation. This gives

∂f(v)
∂t

=
∫
duP (u) g1−γ

∫
De [f(v′)− f(v)] (29)

where we absorbed the (r0ε
1/λ)d−1 factor into the time

variable.
To simplify the Boltzmann equation (29) we repeat the

same steps as for the hard-sphere gas to yield

∂f

∂t
= 4

∂f

∂V

∫
duP (u) g1−γ

∫
De (u · e)(g · e)

+ 8
∂2f

∂V 2

∫
duP (u) g1−γ

∫
De (u · e)2(g · e)2

(30)

where we have kept the terms with the first and second
order derivatives in V as asymptotically they provide the
leading contribution. Computing the angular integrals
[as in Section III and Appendix B] we arrive at

1
4A

∂f

∂t
=
∂2f

∂V 2

∫
duP (u) v1−γ [u2v2 − (u · v)2]

+
∂f

∂V

∫
duP (u) g1−γ(u · g)

(31)

in the leading order. Thus the entire effect of the inte-
gration measure is captured by one number, A.
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To simplify the first integral on the right-hand side of
(31) we write

g1−γ(g · u) = −v1−γ(v · u)
+ v−1−γ [(1− γ)(v · u)2 + v2u2

]
where we have kept only the leading and the sub-leading
terms. The integral over the leading term vanishes. Us-
ing (18) and (20) we recast Eq. (31) into

∂f

∂τ
= v−γ

[
(d− γ)

∂f

∂v
+ v

∂2f

∂v2

]
(32)

where the modified time variable is given by [we addi-
tionally put the factor (r0ε

1/λ)d−1 back into the time
variable]

τ = 2A(r0ε
1/λ)d−1ρT t (33)

Although one cannot [21] compute the factor A without
knowing the integration measure, it is just a number that
can be absorbed into the definition of the time variable to
arrive at a universal kinetic equation (32) that depends
only on the interaction exponent λ.

The form of equation (32) implies that τ ∼ v1+γ . This
suggests a scaling ansatz

f = τ−ΛdΦ(w), w = vτ−Λ , Λ ≡ (1 + γ)−1 . (34)

Plugging (34) into (32) we obtain an ordinary differential
equation for Φ(w) which is solved to yield

Φ(w) = C exp
{
−Λ2w1/Λ

}
, C =

Λ2Λd−1

Ωd Γ(Λd)
. (35)

Thus the asymptotic growth, 〈v〉 ∼ τΛ, of the average
speed and the scaled velocity distribution have univer-
sal behaviors, the only parameters that matters are the
interaction exponent λ and the spatial dimensionality d.

To exemplify the speed growth we note that in three
dimensions

〈v〉 ∼


τ when λ =∞ (hard sphere gas)
τ3/4 when λ = 12 (Lennard-Jones gas)
τ1/2 when λ = 4 (Maxwell molecules)

By definition, the Maxwell molecules (MM) interaction
[22] leads to the collision integral that is independent on
the relative velocity. Equation (29) shows that the MM
interaction is characterized by γ = 1, so the interaction
exponent is given by λ = 2(d − 1). Interestingly, for
the MM particle-atoms interaction, the average velocity
experiences standard diffusion and the scaled particle ve-
locity distribution is Gaussian. Let us now estimate the
range of the validity of the above results if the particle
mass m is small but finite: 0 < m� 1. For a while, the
evolution follows the zero-mass limit, but eventually the
particle equilibrates with the background. The crossover

to this regime occurs when the particle velocity becomes
of the order of

vc ∼
√
T

m

In the earlier regime, t < tc, we have 〈v〉 ∼ τ1/(1+γ). The
crossover time tc is therefore estimated from

(r0ε
1/λ)d−1ρT tc ∼

(
T

m

) 1+γ
2

that is,

tc ∼ (r0ε
1/λ)−(d−1)ρ−1 T−

1−γ
2 m−

1+γ
2 (36)

The dependence of the crossover time tc on the gas den-
sity and the mass of the particle is easy to appreciate.
On the other hand, the dependence of the crossover time
on the gas temperature is a bit surprising:

1. When γ < 1, that is λ > 2(d − 1) implying that
the potential is harder than the MM potential,
the crossover time decreases as the temperature in-
creases.

2. When γ > 1, that is λ < 2(d − 1) implying
that the potential is softer than the MM potential,
the crossover time increases as the temperature in-
creases.

Interestingly, the MM potential again separates different
types of the behavior.

V. DISPLACEMENT OF THE IMPURITY

We now turn to the spatial behavior of the impurity.
We begin with a heuristic analysis. In one dimension,
the mean-free path is ` = ρ−1, the average speed grows
as ρT t [see Eq. (6)], and hence the time interval between
collisions is ∆t ∼ ρ−1/(ρT t). This leads to an estimate
for the total number of collisions during the time interval
(0, t)

N ∼ t

∆t
∼ Tt2

`2
(37)

The standard random walk argument tells us that a typ-
ical displacement of the particle is given by

xtyp ∼ `
√

N ∼
√
T t (38)

Hence the displacement exhibits a ballistic, x ∼ t, rather
than diffusive growth with time. Another unexpected
feature of the growth law (38) is that the gas density ρ
does not affect the asymptotic.

The situation remains the same for an arbitrary di-
mension d and an arbitrary interaction. Consider first
the hard-sphere interaction. The mean-free path in this
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case is ` ∼ (ρad−1)−1 and the average speed grows as
v ∼ ρad−1Tt, see Eq. (26). Proceeding as in the one-
dimensional case we find

N ∼ t

∆t
∼ Tt2

`2

and therefore

rtyp ∼ `
√

N ∼
√
T t (39)

The striking feature of this growth law is that the dis-
placement is asymptotically independent on the density
of atoms and their size.

If the particle mass m is small but finite, 0 < m � 1,
the growth law (39) holds up to the crossover time tc
when the displacement becomes of the order of

rc ∼ (r0ε
1/λ)−(d−1)ρ−1 T

γ
2 m−

1+γ
2 (40)

while for t > tc the ballistic growth (39) switches to the
diffusive growth

rtyp ∼ rc
√
t/tc (41)

The above heuristic argument can be extended to the
case when the particle-atoms interaction is described by
a potential. At any time, the model is close to the hard-
sphere case with effective radius of the order of r∗. But
since the displacement growth (39) is independent on a
in the hard-sphere case, it will be independent on r∗ at
any given moment, and generally independent on the pa-
rameters of the interaction potential (28). Thus the dis-
placement obeys the same growth law (39) independently
on λ and d.

We now turn from heuristics to exact analyses. To de-
termine the second moment of the spatial distribution we
first express it through the velocity correlation function

〈x2(t)〉 =
∫ t

0

dt1

∫ t

0

dt2 〈v(t1)v(t2)〉

= 2
∫ t

0

dt1

∫ t

t1

dt2 〈v(t1)v(t2)〉 (42)

To evaluate 〈v(t1)v(t2)〉 let us consider the impurity par-
ticle that starts at the origin with velocity equal to zero
(initial conditions are actually irrelevant as we are in-
terested in the long time behavior however this partic-
ular choice makes the computation more compact). In
this case the probability distribution for v1 = v(t1) is
given by Eq. (7). To determine the velocity distribution
of v2 = v(t2) we must use v1 as the initial condition.
The corresponding distribution function (i.e. the condi-
tional probability) f(v2, t2|v1, t1) satisfies a kinetic equa-
tion which is different from (6) as the derivation of the
latter assumes that the distribution function is symmet-
ric, f(v) = f(−v). Generally we write

f(v) =

{
f+(v) v > 0
f−(−v) v < 0

and then proceed as in Sect. II to yield

∂f+

∂t
= 2ρT

[
∂f−
∂v

+ v
∂2f−
∂v2

]
− ρv(f+ − f−) (43a)

∂f−
∂t

= 2ρT
[
∂f+

∂v
+ v

∂2f+

∂v2

]
+ ρv(f+ − f−) (43b)

Subtracting (43b) from (43a) we see that the anti-
symmetric part

φ(v) = f+(v)− f−(v) (44)

satisfies a closed equation

∂φ

∂t
= −2ρT

[
∂φ

∂v
+ v

∂2φ

∂v2

]
− 2ρvφ (45)

(while for the symmetric part ψ(v) = f+(v) + f−(v), we
recover Eq. (6)). The initial condition is

φ(v, t = t1) = δ(v − v1) (46)

and the boundary condition, which follows immediately
from the definition Eq. (44), is

φ(v = 0, t) = 0 (47)

The initial-boundary value problem (45)–(47) is non-
trivial, yet in the interesting long time limit the governing
equation (45) simplifies to ∂φ

∂t = −2ρvφ (since v �
√
T ),

or equivalently ∂φ
∂τ = −vφ/T . Therefore

φ(v, t|v1, t1) = δ(v − v1) e−v(τ−τ1)/T (48)

The velocity autocorrelation function can be presented
in a rather compact form

〈v1v2〉 = 2
∫ ∞

0

dv1 v1f(1)
∫ ∞
−∞

dv2 v2f(2|1)

= 2
∫ ∞

0

dv1 v1f(1)
∫ ∞

0

dv2 v2φ(2|1)
(49)

Note that only the anti-symmetric part of f(2|1) con-
tributes to the 2-points velocity correlation function. For
the higher-points velocity correlation functions both the
symmetric and anti-symmetric part appear alternatively.
For example the 4-points velocity correlation function
can be written as:

〈v1v2v3v4〉 = 2

(
4∏
i=1

∫ ∞
0

dvi vi

)
f(1)φ(2|1)ψ(3|2)φ(4|3)

where ψ(v, t|v2, t2) satisfies Eq. (6) with the symmetric
initial condition ψ(v, t = t2) = δ(v − v2) + δ(v + v2).

Substituting into (49) the results for f(1) ≡ f(v1, t1)
and φ(2|1) ≡ φ(v2, t2|v1, t1) [Eqs. (7) and (48)] we get

〈v1v2〉 =
∫ ∞

0

dv1
v2

1

τ1
exp
(
−v1

[
1
τ1

+
τ2 − τ1
T

])
=

2τ2
1

[1 + (τ2 − τ1)τ1/T ]3
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Note that the equal times velocity autocorrelation func-
tion (t1 = t2 = t) reduces to 〈v2(t)〉 = 2τ2. This result
directly follows from (7) thereby providing a useful check
of the consistency of our calculation of the velocity au-
tocorrelation function. Plugging the velocity autocorre-
lation function into Eq. (42) we obtain

〈x2〉 =
1

ρ2T 2

∫ τ

0

dτ1 τ
2
1

∫ τ

τ1

dτ2
[1 + (τ2 − τ1)τ1/T ]3

(50)

Computing the integral over τ2 yields

〈x2〉 =
1

2ρ2T

∫ τ

0

dτ1 τ1

{
1− 1

[1 + (τ2 − τ1)τ1/T ]2

}
The first integral

∫
dτ1 τ1 provides the leading contribu-

tion. Recalling that τ = 2ρT t we arrive at

〈x2〉 ' Tt2 (51)

This asymptotically exact result confirms the heuristic
prediction (38).

One can also compute higher-order velocity correla-
tion functions, e.g. 〈v1v2v3v4〉, and use them to compute
higher moments of the displacement. For instance,

〈x4〉 = 4!
∫∫∫∫

0<t1<t2<t3<t4<t

dt1dt2dt3dt4 〈v1v2v3v4〉

These computations are very laborious, so we do not
present them; we just mention that using this method
we were able to compute the asymptotically exact fourth
moment of the displacement,

〈x4〉 ' 5T 2 t4 , (52)

in one dimension.
Finally we note that the above procedure can be gen-

eralized to higher dimensions. Even in the case of the
hard-sphere particle-atom interaction, however, the ex-
plicit computations are quite unwieldy.

VI. VELOCITY-POSITION DISTRIBUTION

The calculations of the moments of the displacement,
e.g. the derivation of equation (52), through the veloc-
ity correlation functions are very cumbersome. It seems
hardly possible to succeed in deriving the next moment,

〈x6〉 ' 61T 3 t6, (53)

relying on the velocity correlation functions.
Therefore we employ different procedures that utilize

a Boltzmann equation for the velocity-position distribu-
tion f(r,v, t). This joint distribution function provides
a complete description of the evolution of the impurity
particle. Recall that in studying the velocity distribu-
tion function we relied on a shorten description for the

velocity distribution function f(v, t). In studying the dis-
placement one would also like to use a governing equation
for the density function N(r, t) as a starting point. Un-
fortunately, there is no closed equation for the density
function N(r, t).

In the one-dimensional setting, the governing kinetic
equation for the joint distribution f(x, v, t) reads

∂f

∂t
+ v

∂f

∂x
= 2ρT

(
∂f

∂v
+ v

∂2f

∂v2

)
(54)

The left-hand side of this equation is exact, yet Eq. (54)
is already a simplified version of the Boltzmann equation
as the collision term is only asymptotically exact, namely
it is appropriate when v �

√
T . As we mentioned ear-

lier there is no closed equation for the density function,
N(r, t). If one tries to integrate the kinetic equation (54)
over v, the convective term leads to a current term, i.e.
∂
∂x

∫
dv vf(v, x, t) ≡ ∂

∂xJ(x, t), so the density is coupled
to the current. One can then deduce from (54) an equa-
tion for the current, but it will involve the second moment∫
dv v2f(v, x, t). This procedure leads to an infinite hier-

archy which seems intractable as (essentially) all infinite
hierarchies.

The kinetic equation (54) is a linear partial differential
equation with two coefficients depending linearly on the
velocity v. The most difficult term in Eq. (54), namely
the convective term (v∇)f , can be further simplified in
the long time limit when v �

√
T . Indeed, since the par-

ticle speed grows (on average) with a constant rate, the
particle experiences numerous collisions during a time in-
terval when its speed is almost constant. Then the prob-
lem is akin to the standard Lorentz gas where the particle
undergoes a simple diffusion. The separation between the
time scale at which diffusion appears (few collisions) and
the time scale at which the particle speed changes ap-
preciably allows us to replace the convective term by the
diffusion term of a standard Lorentz gas. In one dimen-
sion, the diffusion coefficient is D = v/2ρ, see [7]. In the
present case we can use the same formula. Thus Eq. (54)
becomes

∂f

∂t
= 2ρT

(
∂f

∂v
+ v

∂2f

∂v2

)
+

v

2ρ
∂2f

∂x2

As usual, it is convenient to use τ = 2ρT t as the time
variable. Then the above equation becomes

∂f

∂τ
=
∂f

∂v
+ v

∂2f

∂v2
+

v

4ρ2T

∂2f

∂x2
(55)

In Eq. (55) we tacitly assume that v > 0. This is ob-
vious regarding the last term on the right-hand side as
the diffusion coefficient must be positive (the correct ex-
pression is D = |v|/2ρ). The form fv + vfvv of the
collision term also assumes (see Sect. II) that v > 0.
There is no need to separately consider negative veloci-
ties, it suffices to take into account the reflection symme-
try f(x, v, t) = f(x,−v, t).
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In the long time limit, the joint distribution function
f(x, v, t) should approach the scaling form

f(x, v, t) ' 1
4x∗v∗

F (X,V ), X =
x

x∗
, V =

v

v∗
(56)

where x∗ =
√
Tt and v∗ = τ . It could be difficult to prove

that every solution approaches the scaling form (56), al-
though physically the emergence of scaling is obvious and
the numerical evidence is also very strong (Fig. 1).

The reflection symmetry with respect of the velocity
and the displacement [23] allows us to limit ourself to
the quadrant V > 0, X > 0. By inserting (56) into (55)
we obtain

2F +X
∂F

∂X
+V

∂F

∂V
+
∂F

∂V
+V

∂2F

∂V 2
+V

∂2F

∂X2
= 0 (57)

The normalization condition∫ ∞
−∞

dx

∫ ∞
−∞

dv f(x, v, t) = 1

can be re-written as∫ ∞
0

dX

∫ ∞
0

dV F (X,V ) = 1 (58)

This explains the factor 1/4 in the scaling ansatz (56).
In higher dimensions, we limit ourselves to the case

of the hard-core particle-atoms interaction. Then the
governing kinetic equation reads

∂f

∂t
+ v · ∂f

∂r
= 2ad−1AρT

(
d
∂f

∂v
+ v

∂2f

∂v2

)
(59)

Equation (59) is again asymptotically exact in the large
time limit when the typical particle velocity greatly ex-
ceeds the thermal velocity, v �

√
T . In this limit, the col-

lision term simplifies to the first term on the right-hand
side of Eq. (59) and the convective term (v · ∇)f can be
replaced by the diffusion term −D∇2f as the transport
is asymptotically diffusion with velocity-dependent diffu-
sion coefficient. More precisely, the diffusion coefficient
is given by [24]

D =
v

2dAad−1ρ
(60)

with the amplitude A known in the case of the hard-
core interaction, see (B9). Using again the modified time
variable is τ [which for hard-sphere particle-atom inter-
action is given by τ = 2Aad−1ρT t, see (26)], and taking
into account the spatial isotropy we recast (59) into

∂f

∂τ
= d

∂f

∂v
+ v

∂2f

∂v2

+
v

d(2Aad−1ρ)2T

(
∂2f

∂r2
+
d− 1
r

∂f

∂r

)
(61)

A solution to Eq. (61) approaches a scaling form

f(r, v, t) = (Ωd)−2
(
τ
√
T t
)−d

F (V,R) (62)

0 1 2 3 4 5 6

0.0
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1.5

2.0

2.5
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V

X

FIG. 1. (Color online) Shown are the simulation results (see
Sect. IX) for a gas of hard spheres in one dimension. Contour-
plot (top panel) and 3D-plot (bottom panel) of the distribu-
tion function F (X,V ). For any given position (velocity) the
dashed blue (dash-dotted green) line shows the value of the
velocity (position) for which the probability distribution has
a maximum.

with scaled spatial and velocity variables

R =
r√
T t

, V =
v

τ
(63)

With the choice (62) of the scaling form, the normaliza-
tion requirement∫ ∞

0

Ωdrd−1dr

∫ ∞
0

Ωdvd−1dv f(r,v, t) = 1

becomes ∫ ∞
0

dR

∫ ∞
0

dV Rd−1V d−1F (R, V ) = 1 (64)

Using (62)–(63) we transform (61) into

2dF+RFR + V FV + dFV + V FV V

+
V

d

(
d− 1
R

FR + FRR

)
= 0 (65)

This is a linear elliptic (recall that R > 0, V > 0) partial-
differential equation. Despite of linearity, Eq. (65) is
difficult since the coefficients in front of derivatives in
Eq. (65) vary with V and R.

We treat above equations by using different techniques.
The standard technique relying on the Laplace and
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Fourier transforms is the most powerful. In Sect. VIII
we derive the major result for the scaled joint distribu-
tion of the impurity particle in the hard-sphere gas:

F (R, V ) =
Cd

Γ(d)

∫
ds e−i

√
d s·R−V s coth s

( s

sinh s

)d
(66)

Further, the scaled density distribution reads

N(R) = Cd

∫
ds
e−i
√
d s·R

(cosh s)d
, Cd =

dd/2Ωd
(2π)d

(67)

In particular, in one dimension

N(X) =
1

coshR1
, R1 =

π

2
X (68)

while in three dimensions the density is

N(R) =
3
√

3
8

(4R2
3 + π2) tanhR3 − 8R3

R3 coshR3
, R3 =

π
√

3
2

R

(69)
First, however, we describe an approach based on the

direct computing of the moments and guessing from them
the spatial distribution.

VII. MOMENTS

The moment approach deals with the moments of the
joint distribution rather than with the joint distribu-
tion itself. The moment approach has been used in ki-
netic theory throughout its history (see e.g. [13, 14]) as
the governing equations are very complicated and sel-
dom tractable. The moment approach has also been ap-
plied [11, 20] to the Fermi’s acceleration mechanism. For
instance, in Refs. [20] the authors computed the moments
〈vn〉 for small n, guessed the answer [namely (23)] for an
arbitrary n, showed that the guess is correct, and ob-
served that the exponential velocity distribution has ex-
actly the same moments. Generally if one succeeds in
computing the moments, one still has to recover the dis-
tribution that has such moments. This is not rigorous
as at best we have infinitely many integer moments (or
only even integer moments as in examples below) and
we want to restore the entire distribution function. If
the distribution function is analytic (the fact which is
usually unknown, but believed to be correct), the distri-
bution function can be uniquely determined by (infinitely
many) integer moments, so restoring such function is a
technical problem.

Another problem is that since the number of moments
is infinite, it is usually impossible to compute them all.
Having computed a few moments one can try to guess the
rest and to check the conjecture using computer-assisted
exact calculations. We have succeeded in guessing all
even moments of the spatial displacement in one and two
dimensions, and in reading off the density in one dimen-
sion. The moment approach is therefore not really sys-
tematic and it involves a guess work. The strength of

the moment approach is that one can easily compute the
basic moments, e.g. even moments of the displacement
〈R2〉, 〈R4〉, 〈R6〉, etc., or mixed moments like 〈R2V 2〉,
and arrive at important conclusions (like the existence
of correlations between the velocity and the spatial dis-
placement manifested by relation 〈R2V 2〉 6= 〈R2〉〈V 2〉).

In our problem we eventually derived more comprehen-
sive results using standard techniques (see Sect. VIII).
Still, the moment approach has a future. Indeed it is
more powerful nowadays than it ever was as the tedious
calculations of the moments can be exactly performed by
a computer and if the resulting moments admit a sim-
ple expression through well-known sequences, there is a
good chance to extract such an expression by using The
On-Line Encyclopedia of Integer Sequences [25]. Since
the moment approach is rarely used, we illustrate it here
as in our situation where the moment approach clearly
gives highly non-trivial results. We begin with the one-
dimensional setting.

A. One Dimension

In this subsection we will present a very strong evi-
dence in favor of the announced result (68) for the spa-
tial distribution. To establish (68), we turn (57) into an
infinite set of relations

(i+ j)Mi,j = j2Mi,j−1 + i(i− 1)Mi−2,j+1 (70)

for the moments

Mi,j =
∫ ∞

0

∫ ∞
0

dX dV XiV jF (X,V ) (71)

The relation (70) is valid for all i ≥ 2, j ≥ 0.
Using (70) one can compute moments with small in-

dexes; for instance, one can establish (51)–(53). The
structure of the quasi-recurrent equation (70) and the
procedure that allows us to calculate the spatial moments
are illustrated on Fig. 2. One finds that 〈X2n〉 = M2n,0

can be expressed as a weighted sum of M0,1, . . . ,M0,n.
This sum is then computed using the identity

M0,j = 〈V j〉 =
∫ ∞

0

dV e−V V j = j! (72)

We now demonstrate this in practice. Specializing (70)
to (i, j) = (2, 0) gives M2,0 = M0,1 = 1 which is identical
to Eq. (51). Specializing (70) to (i, j) = (2, 1) yields

3M2,1 = M2,0 + 2M0,2 (73)

Taking then (i, j) = (4, 0) we obtain M4,0 = 3M2,1, or

M4,0 = M0,1 + 2M0,2 = 5 (74)

which is equivalent to (52). Further, specializing (70) to
(i, j) = (6, 0), (4, 1), (2, 2) and using (74) we obtain

M6,0 = 5M0,1 + 10M0,2 + 6M0,3 = 61 (75)



10

0 1 2 3 4 5 6 7

i

0

1

2

3

4

j

1
st

2
nd

4
th

5
th

6
th2

nd

3
rd

4
th

5
th

FIG. 2. (Color online) Schematic representation of how
Eqs. (70) can be iteratively used to calculate all the moments
Mi,j = 〈RiV j〉 with i = even (red circles). The moments
M0,j are known for all j ≥ 0. At the first step the known
value of M0,1 allows us to calculate M2,0. At the second step
the already known M2,0 and M0,2 are used to calculate M2,1,
see (73). At the third step we compute M4,0 through M2,1.
The moments Mi,j with i = odd (blue squares) cannot be
calculated using this approach.

which proves (53). The fact that we have been able to
reproduce the values of the spatial moments calculated
using the velocity correlation functions (Eqs. (51)–(53))
supports the claim that the replacement of the convection
term by the diffusion term in Eq. (54) is asymptotically
exact.

The computed even moments 〈X2n〉 are all integers
which look familiar; indeed, up to the sign they are the
Euler’s numbers

〈X2n〉 = (−1)nE2n (76)

The Euler’s numbers En appear in numerous combinato-
rial problems, as well as in number theory, topology, etc.
The Euler’s numbers are defined by the Taylor series

1
cosh(y)

=
∑
n≥0

Eny
n

n!
(77)

Note that all the odd-indexed Euler numbers are equal
to zero, while the even-indexed Euler number have alter-
nating signs.

The evidence in the exactness of (76) is overwhelm-
ing — using Mathematica, we verified (76) for all even
moments up to 〈X1000〉.

To establish (68) we start by extending the range of X
to the whole axis and calculate the Fourier transform of

Nsym(X) = 1
2N(|X|):

N̂sym(s) =
∫ ∞
−∞

dX e−isXNsym(X)

=
∑
n≥0

(−1)ns2n〈X2n〉
(2n)!

=
∑
n≥0

s2nE2n

(2n)!
=

1
cosh s

(78)

where on the first step we have expanded e−isX and taken
into account thatNsym(X) is an even function ofX, while
on the second and third steps we have used (76) and (77),
respectively. Since

1
2

∫ ∞
−∞

dX
e−isX

cosh(πX/2)
=

1
cosh s

(79)

we conclude that Nsym(X) = 1/[2 cosh (πX/2)] which is
equivalent to Eq. (68).

The moment relations (70) have helped us to deter-
mine all even moments 〈X2n〉, yet they do not allow one
to determine even the simplest odd moment 〈X〉. Us-
ing the spatial density (68), however, we can compute
this moment (more precisely it is equal to 〈|X|〉 and it
represents the dimensionless average displacement):

〈|X|〉 =
∫ ∞

0

dX
X

cosh(πX/2)
=

8G
π2

where G is the Catalan constant

G =
1
12
− 1

32
+

1
52
− 1

72
+ · · · = 0.915965594 . . .

Hence the average displacement is given by

〈|x|〉 =
8G
π2

√
T t

Similarly, one can compute an arbitrary odd moment

〈|X|2k−1〉 =
22k+1(2k − 1)!

π2k

∑
m≥0

(−1)m

(2m+ 1)2k

We can establish some qualitative and quantitative
features of the joint distribution without having its an-
alytical expression. For instance, if the joint distri-
bution has allowed the factorization, that is if it had
the form N(X)F (V ), then the moments would satisfy
〈|X|i |V |j〉 = 〈|X|i〉〈|V |j〉. This is not so, e.g.

〈X2V 〉
〈X2〉〈V 〉

=
5
3
,
〈X2V 2〉
〈X2〉〈V 2〉

=
7
3
,
〈X4V 2〉
〈X4〉〈V 2〉

=
331
75

etc. Qualitatively, these results are not surprising — the
larger separation from the starting position, the larger
(on average) the speed of the particle is expected to be.
Mathematically, this implies an inequality

〈|X|i |V |j〉
〈|X|i〉〈|V |j〉

> 1 (80)
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for all i, j > 0. This inequality is indeed obeyed in all in-
stances where we were able to compute the moments, for
instance when both indexes are sufficiently small. Using
Eqs. (70) we have also computed a few infinite series, e.g.

〈X2n|V |〉
〈X2n〉〈|V |〉

=
1

2n+ 1
|E2n+2|
|E2n|

> 1

〈X2|V |j〉
〈X2〉〈|V |j〉

= 1 +
2
3
j

〈X4|V |j〉
〈X4〉〈|V |j〉

= 1 +
88
75
j +

4
15
j2

〈X6|V |j〉
〈X6〉〈|V |j〉

= 1 +
794
549

j +
116
183

j2 +
40
549

j3

(81)

Thus in these cases the inequality (80) is valid.
The correlation between the velocity and the displace-

ment of the particle shows that the knowledge of the
velocity distribution F (V ) and the density N(X) pro-
vides a limited information about the characteristics of
the particle — the joint distribution function F (X,V )
is needed to provide a complete (in the realm of kinetic
theory) description.

B. Higher Dimensions

The normalization condition (64) suggests to define the
moments via

Mi,j =
∫ ∞

0

dR

∫ ∞
0

dV Ri+d−1V j+d−1F (V,R) (82)

Multiplying equation (65) by Ri+d−1V j+d−1 and inte-
grating we arrive at the moment relations

(i+ j)Mi,j = j(j + d− 1)Mi,j−1

+
i(i+ d− 2)

d
Mi−2,j+1 (83)

We can now proceed as in the one-dimensional case.
Namely using relations (83), we can in principle exactly
compute any moment 〈R2n〉 = M2n,0 by expressing it
as a weighted sum of M0,1, . . . ,M0,n. Then we use the
known expression for M0,j

M0,j = 〈V j〉 =
∫ ∞

0

dV
e−V

Γ(d)
V j+d−1 =

Γ(j + d)
Γ(d)

(84)

which is computed with the help of Eq. (27). This pro-
cedure gives

〈R2〉 = d (85a)

〈R4〉 = (d+ 2)(d+ 2
3 ) (85b)

〈R6〉 = d−1(d+ 2)(d+ 4)(d2 + 2d+ 16
15 ) (85c)

Using Mathematica, we have computed the moments
〈R2n〉 = M2n,0 up to 〈R1000〉 in two and three dimen-
sions. A few of these even-indexed moments are listed

n 1d 2d 3d

0 1 1 1

2 1 2 3

4 5 32
3

55
3

6 61 544
5

1687
9

8 1385 63 488
35

8651
3

10 50 521 2 830 336
63

5 047 691
81

12 2 702 765 357 892 096
231

437 804 783
243

14 199 360 981 30 460 116 992
429

16 325 727 605
243

16 19 391 512 145 26 862 763 900 928
6435

6 868 768 364 827
2187

TABLE I. The moments 〈Rn〉 in one, two, and three dimen-
sions for small even indexes.

in Table I. In contrast to one-dimensional results (also
presented in Table I), the moments are no longer integer;
apparently [26] they are non-integer for all (even) n ≥ 4.

We tried to identify the sequence 〈R2n〉 = M2n,0 with
known sequences [25]. Since most known sequences are
integer, one can seekM2n,0 as a ratio of integer sequences.
In three dimensions one can write 〈R2n〉 = Mn/3n. The
sequence Mn is integer, but it does not appear in [25]. In
two dimensions we were more lucky: Seeking M2n,0 as a
ratio of integer sequences we arrived at

〈R2n〉 =
23n+1(4n+1 − 1)

n+ 1
· n!n!

(2n)!
|B2n+2| , (86)

where Bk are the Bernoulli numbers [27]. The evidence
in the exactness of (86) is overwhelming (we have checked
it up to n = 500).

C. Tail of the density distribution

According to our definition of the scaled density dis-
tribution N(R), it satisfies∫ ∞

0

dRRd−1N(R) = 1 (87)

In one dimension, N = [cosh(πX/2)]−1, and therefore
the tail of the distribution is

N ' 2 e−πX/2 when X →∞ (88)

This exact asymptotic leads to the conjecture that gen-
erally in d dimensions the leading asymptotic is exponen-
tial. More precisely, we assume that

N ' C Rc e−µR when R→∞ (89)

where we have augmented the controlling factor e−µR by
an algebraic pre-factor Rc and the amplitude C. The
parameters µ, c, C are dimensionless, so they can depend
only on d.

In principle, the moments

〈R2n〉 =
∫ ∞

0

dRR2n+d−1N(R) (90)
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depend on the entire density distribution N(R). In the
n→∞ limit, however, the integral in Eq. (90) is chiefly
gathered in the tail of the distribution. Hence we can use
the ansatz (89). Plugging it into (90) we get

〈R2n〉 ' C
∫ ∞

0

dRR2n+c+d−1e−µR

=
C

µ2n+c+d
Γ(2n+ c+ d) (91)

when n� 1.
In two dimensions, Eq. (86) that yields even moments

involves Bernoulli numbers whose asymptotic can be
extracted from the celebrated Euler’s formula relating
Bernoulli’s numbers with the values of the zeta function
at positive even integers:

|B2k| =
2 (2k)!
(2π)2k

ζ(2k) , ζ(s) =
∑
j≥1

1
js

(92)

Thus we recast (86) into

〈R2n〉 =
23n+1

(
4n+1 − 1

)
n+ 1

n!n!
(2n)!

2 (2n+ 2)!
(2π)2n+2

ζ(2n+ 2)

Using Stirling’s formula, we simplify the ratio

n!n!
(2n)!

'
(
n
e

)2n2πn(
2n
e

)2n√4πn
=
√
πn

22n

We also notice that ζ(2n + 2) − 1 ' 2−2n−2, and there-
fore asymptotically ζ(2n + 2) ' 1 for n � 1. Thus the
moment 〈R2n〉 approaches to

〈R2n〉 ' 2n+3

π2n+2

√
πn (2n+ 1)! (93)

in the n → ∞ limit. On the other hand, in two dimen-
sions the asymptotic prediction (91) based on the ansatz
(89) can be re-written in the form

〈R2n〉 ' C

µ2n+c+2
(2n)c (2n+ 1)! (94)

where we used the well-known asymptotic [27]

Γ(m+ a)
Γ(m)

' ma when m→∞

The asymptotics (93) and (94) would agree if

2n+3

π2n+2

√
πn =

C

µ2n+c+2
(2n)c

We get µ = π/
√

2 by matching the dominant exponential
factors. Matching then the sub-leading algebraic factors
we get c = 1/2. Matching finally the amplitudes yields
C = 25/4π. Therefore in two dimensions

N ' 25/4π
√
R e−πR/

√
2 when R→∞ (95)
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FIG. 3. (Color online) Plot of Gn ≡ (2n)2〈R2n〉
〈R2n+2〉 for the hard

sphere gas in d = 1, 2, 3. Using Eq. (97) we extract the con-
trolling exponential factor e−µdR of the density profile at large
R and we confirm that µd = π

2

√
d in d = 1, 2, 3.

The asymptotics in one and two dimensions make plau-
sible that the controlling exponential factor in higher di-
mensions is

N ∼ exp
{
−π
√
d

2 R
}

(96)

Thus N ∼ e−µ3R with µ3 = 1
2π
√

3 + 2.720699 in three
dimensions. To extract µ3 we proceed as follows. Using
Mathematica, we have determined the exact values of the
moments 〈R2n〉 = M2n,0 up to 〈R1000〉 in three dimen-
sions. Hence we can compute the ratio of consecutive
terms and compare the outcome with the prediction of
Eq. (91). The latter becomes (in three dimensions)

〈R2n〉
〈R2n+2〉

' (µ3)2

(2n+ c+ 3)(2n+ c+ 4)
(97)

Thus the quantity Gn ≡ (2n)2〈R2n〉/〈R2n+2〉 should con-
verge for n → ∞ to (µ3)2 = 3π2/4 + 7.402203. This is
indeed in excellent agreement with our findings (Fig. 3).

D. Correlations

As in the one-dimensional case, both in two and three
dimensions there are correlations between the position
and the speed of the impurity particle. In this subsection,
we present a few results for the three-dimensional case.
One can compute 〈RiV j〉 for even i and arbitrary j. For
instance

〈R2V 2〉
〈R2〉〈V 2〉

=
13
9
,
〈R2V 4〉
〈R2〉〈V 4〉

=
17
9
,
〈R4V 2〉
〈R4〉〈V 2〉

=
991
495

etc. suggesting again that the inequality

〈RiV j〉
〈Ri〉〈V j〉

> 1 (98)



13

is valid for all i, j > 0. One can compute the left-hand
side of Eq. (98) for arbitrary j and sufficiently small i:

〈R2V j〉
〈R2〉〈V j〉

= 1 +
2
9
j (99a)

〈R4V j〉
〈R4〉〈V j〉

= 1 +
208
495

j +
4
99
j2 (99b)

〈R6V j〉
〈R6〉〈V j〉

= 1 +
27074
45549

j +
236
2169

j2 +
40

6507
j3 (99c)

For instance, let us establish (99a). First, we specialize
(83) to d = 3 and i = 2 to yield

(j + 2)M2,j = j(j + 2)M2,j−1 + 2M0,j+1 (100)

Using (84) and setting d = 3 we get M0,j+1 = 1
2 (j + 3)!

and therefore (100) becomes

M2,j = jM2,j−1 + (j + 3)(j + 1)! (101)

The form of this recurrence suggests to seek M2,j in the
form M2,j = j!Nj . This transformation leads to

Nj = Nj−1 + (j + 3)(j + 1) (102)

Solving recurrence (102) subject to the ‘initial’ condition
N0 = 3 [this condition ensures that M2,0 = 〈R2〉 = 3] we
obtain

Nj = 3 +
j∑
l=1

(l + 3)(l + 1) =
1
6

(j + 1)(j + 2)(2j + 9)

Since 〈R2V j〉 = M2,j = j!Nj = 1
6 (j + 2)!(2j + 9) and

〈R2〉〈V j〉 = 3M0,j = 3
2 (j + 2)!, we have

〈R2V j〉
〈R2〉〈V j〉

=
1
6 (j + 2)!(2j + 9)

3
2 (j + 2)!

= 1 +
2
9
j

thereby establishing (99a). Using similar reasoning we
have derived (99b)–(99c), as well as analogous results
(81) in one dimension.

The ratios (99a)–(99c) suggest that∫ ∞
0

dRR2+2iF (R, V ) = e−V Pi(V ) (103)

with Pi(V ) being a polynomial of V of degree i. We al-
ready know that P0(V ) = 1/2 in three dimensions. (Gen-
erally P0(V ) = 1/(d − 1)!.) Using (99a)–(99c) we arrive
at the following explicit results for the polynomials Pi(V )
with i = 1, 2, 3:

P1(V ) =
1
2

+
1
3
V

P2(V ) =
17
18

+
34
27
V +

10
27
V 2

P3(V ) =
457
162

+
457
81

V +
266
81

V 2 +
140
243

V 3

(104)

E. Monoatomic gas

In the case when the particle-atom interaction has a
power law tail (28) in the small separation limit, the joint
distribution approaches a scaling form

f(r, v, t) = (Ωd)−2
(
τΛ
√
T t
)−d

F (V,R) (105)

with scaled spatial and velocity variables

R =
r√
T t

, V =
v

τΛ
(106)

The analog of equation (65) reads

(1 + Λ)dF+RFR + ΛV FV + V −γ [(d− γ)FV + V FV V ]

+D
V

d

(
d− 1
R

FR + FRR

)
= 0 (107)

Here D is a numerical factor which quantifies diffusion in
the Lorentz gas where the particle-scatters interaction is
given by (28).

Multiplying equation (107) by Ri+d−1V j+d−1 and in-
tegrating we arrive at the moment relations

(i+ Λj)Mi,j = j(j + d− 1− γ)Mi,j−1−γ

+ D
i(i+ d− 2)

d
Mi−2,j+1 (108)

To the best of our knowledge, the value of the numerical
constant D is not known.

VIII. JOINT DISTRIBUTION

Here we derive the announced results (66)–(67) by em-
ploying an approach based on the combination of the
Laplace and Fourier transforms. It proves easier to deal
with original kinetic equations (61) rather than with its
scaled version. As a bi-product, we can also see that the
solution approaches the scaling form.

We begin again with the one-dimensional setting and
show that the Laplace and Fourier transforms allow one
to solve Eq. (55) for an arbitrary initial velocity distri-
bution. Then we generalize to higher dimensions.

A. One Dimension

It is convenient to study Eq. (55) on the entire line
−∞ < x < ∞ while for the velocity will be taken posi-
tive, 0 ≤ v < ∞, as previously. Performing the Laplace
transform in the v variable and the Fourier transform in
the x variable, we find that the transformed joint distri-
bution

g(q, k, τ) =
∫ ∞
−∞

dx eiqx
∫ ∞

0

dv e−vk f(x, v, τ) (109)
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satisfies

∂g

∂τ
+
(
k2 −Q2

) ∂g
∂k

= −k g, Q2 ≡ q2

4ρ2T
(110)

This linear hyperbolic partial differential equation can be
solved using the method of characteristics. The charac-
teristics are the curves in the (k, τ) plane which are found
from

dk

dτ
= k2 −Q2 (111)

Solving this differential equation we get

k = −Q coth[Q(ξ + τ)] (112)

where ξ parameterizes different characteristics. Along
a characteristics, that is keeping ξ fixed, the governing
equation (110) becomes

dg

dτ

∣∣∣
ξ=const

= −k g (113)

Using (112) we express k via ξ and τ , so that Eq. (113)
becomes

dg

dτ
= Q coth[Q(ξ + τ)]g (114)

whose solution reads

g = sinh[Q(ξ + τ)]G(ξ) (115)

Specializing (112) and (115) to τ = 0 we get

g0(k,Q) = sinh(Qξ)G(ξ), k = −Q coth(Qξ)

so that

G(ξ) =
g0[−Q coth(Qξ), Q]

sinh(Qξ)
(116)

Combining (115)–(116) we arrive at the exact solution
for the transformed joint distribution

g =
sinh[Q(ξ + τ)]

sinh(Qξ)
g0[−Q coth(Qξ), Q] (117)

Using (112), we massage the ratio and rewrite the argu-
ment of g0 to transform (117) into

g =
1

cosh s+ k
Q sinh s

g0

(
k +Q tanh(s)
1 + k

Q tanh(s)
, Q

)
(118)

where we have used the notation s = Qτ which has been
used previously, e.g. in (79). This exact solution is valid
for any initial distribution

g0(k, q) =
∫ ∞
−∞

dx eiqx
∫ ∞

0

dv e−vk f(x, v, τ = 0) (119)

Consider now the simplest initial velocity distribution

f(x, v, τ = 0) = δ(x) δ(v) (120)

which corresponds to the initially stationary particle at
the origin. The governing equation Eq. (55) is formally
applicable if v �

√
T (since the simplification of the col-

lision integral in Eq. (1) leading to Eq.(55) is valid only
under this condition), but we are now more concerned
with finding the simplest solution, in addition the ini-
tial condition is asymptotically irrelevant. For the initial
condition (120) we get g0 = 1 and the transformed joint
distribution becomes

g =
1

cosh s+ k
Q sinh s

, s = Qτ = q
√
T t (121)

The dependence on k in (121) is very simple, so we
perform the inverse Laplace transform and obtain

f(x, v, τ) =
∫ ∞
−∞

dq

2π
e−iqx

s e−V s coth s

τ sinh s

Note that the above formula already has the scaling
form (for the initial condition (120) the scaling form es-
tablishes instantaneously). Extending the variable V to
the whole axis (this amounts to replace V → |V | and
divide by 2) and re-writing the distribution in the mani-
festly scaling form (f(x, v, τ) = F (X,V )

4v∗x∗
, see (56)) we get

F (X,V ) =
∫ ∞
−∞

ds

π
e−isX

se−V s coth s

sinh s
(122)

Integrating in velocity, N(X) =
∫∞

0
dV F (X,V ), we ar-

rive at the announced result (68).
We could not compute the integral (122) in a closed

form, so we determined it numerically. The results of the
numerical integration (Fig. 4) are in excellent agreement
with the results of direct simulations (Fig. 1). The excel-
lent agreement between theory and simulations is further
shown in Figs. 5–6; it provides further verification of our
simulation scheme and demonstrates again that the re-
placement of the convection term by effective diffusion is
indeed asymptotically exact.

B. Higher Dimensions

The joint distribution f(r,v, τ) is isotropic in r and
v. It is convenient to explicitly assume the latter, so we
want to find f(r, v, τ). We define the Laplace-Fourier
transform of this distribution through

g(q, k, τ) = Ωd
∫
dr eiq·r

∫ ∞
0

dv vd−1 e−vk f(r, v, τ)

(123)
We limit ourselves to the hard-sphere interaction. Ap-
plying the Laplace-Fourier transform to (61) we obtain

∂g

∂τ
+
(
k2 −Q2

) ∂g
∂k

= −dk g (124)
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FIG. 4. (Color online) Contour-plot (top panel) and 3D-plot
(bottom panel) of the joint distribution function F (X,V ) for
the 1d hard-sphere gas, Eq. (122).

0 0.5 1 1.5 2 2.5 3 3.5
X

10
-4

10
-3

10
-2

10
-1

1

F(
X

,V
)

V=0.035
V=1
V=2
V=3
V=4

FIG. 5. (Color online) Values of F (X,V ) for the 1d hard-
sphere gas along the lines of fixed V = 0.0035, 1, 2, 3, 4. The
continuous lines are obtained from the numerical simulations
(see Sec. IX) while the symbols represent the values obtained
by computing the integral (122).

where we have used the short-hand notation

Q2 =
q2

d(2Aad−1ρ)2T
≡ q · q
d(2Aad−1ρ)2T

The characteristics curves in the (k, τ) plane are defined
by the same equation (111) as in one dimension, while
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FIG. 6. (Color online) Values of F (X,V ) for 1d hard-sphere
gas along the lines of fixed X = 0.0035, 1, 2, 3. The data are
obtained as explained in Fig. 5.

instead of (113)–(114) we get

dg

dτ

∣∣∣
ξ=const

= −dk g = dQ coth[Q(ξ + τ)]g

Integrating we find

g = (sinh[Q(ξ + τ)])dG(ξ)

while the general solution

g(k, q, τ) =
(

cosh s+
k

Q
sinh s

)−d
g0

(
k +Q tanh(s)
1 + k

Q tanh(s)
, Q

)
with s = Qτ . For the simplest initial velocity distribution

f(r,v, τ = 0) = δ(r) δ(v) (125)

the general solution simplifies to

g =
(

cosh s+
k

Q
sinh s

)−d
(126)

As a check of this result we set q = 0. Then s = Qτ = 0
and limQ→0Q

−1 sinh s = τ , so that Eq. (126) becomes
g(k, q = 0, τ) = (1 + τk)−d which is exactly the Laplace
transform of the velocity distribution [see (C4)].

Thus the joint distribution is the inverse Laplace-
Fourier transform of (126). Performing the inverse
Laplace transform of (126) in k is easy. Therefore the
final answer is the inverse Fourier transform. Re-writing
the result in the scaling form we arrive at the announced
scaled joint distribution (66). Similarly we obtain (67).

Equations (66) and (67) involve integrals of the kind

J(R) =
∫
ds e−i

√
d s·R Φ(s) (127)

The integral J(R) is actually rotationally invariant,
J(R) = J(R), which becomes clear by noting that
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we can simultaneously rotate R and s. Using spheri-
cal coordinates we write ds = Ωd−1(sin θ)d−2sd−1ds dθ
where θ is the angle between s and R (that is, we have
s · R = sR cos θ). This allows us to reduce the d−fold
integral (127) to the double-fold integral

J(R) = Ωd−1

∫ ∞
0

ds sd−1 Φ(s)
∫ π

0

dθ (sin θ)d−2 e−i
√
d sR cos θ

The integral in θ is computable, so one actually reduces
(127) to a single integral.

For example in two dimensions we have

F (R, V ) = 2
∫ ∞

0

ds s3 J0(
√

2sR)
(sinh s)2

e−V s coth s (128)

and

N(R) = 2
∫ ∞

0

ds s
J0(
√

2sR)
(cosh s)2

(129)

while in three dimensions we obtain

F (R, V ) =
3
πR

∫ ∞
0

ds s4 sin(
√

3sR)
(sinh s)3

e−V s coth s (130)

and

N(R) =
6
πR

∫ ∞
0

ds s
sin(
√

3sR)
(cosh s)3

(131)

Computing the integral on the right-hand side of (131) we
arrive at the announced result (69). The integrals defin-
ing the joint distribution in d = 2, 3 (Eq.(128)–(130))
were evaluated numerically and the resulting distribu-
tions are qualitatively similar to the one shown in Fig. 4
for the 1d case.

IX. NUMERICAL SIMULATIONS

In order to verify our theoretical results we have used
different types of numerical simulations.

The most straightforward numerical approach to check
our theoretical results would be to perform a full molec-
ular dynamics (MD) simulation. We are interested, how-
ever, in the evolution of a single particle in a gas of back-
ground atoms. The MD simulations are very inefficient
to study such a situation since they keep track and up-
date the positions and velocities of all the background
atoms that are unnecessary to compute the quantities of
interest. Whenever possible we turn to less costly com-
putational method.

For the hard sphere gas in one and two dimensions, the
in-homogeneous Boltzmann equation was simulated by
stochastically updating the velocity and positions of 106

and 108 particles respectively. A particle with velocity
v travels for a time ∆t from the last collision covering
a distance v∆t before colliding with a background atom

with velocity u. At the instant of collision the particle’s
velocity changes. Thus the update rules are:

tn+1 = tn + ∆tn (132a)
rn+1 = rn + vn∆tn (132b)
vn+1 = vn + 2e[(u− vn) · e] (132c)

Under the assumption already used in writing down
the Lorentz-Boltzmann equation, the quantities ∆t,u, e
are random variables whose distributions need to be spec-
ified in order to have a complete description of the tem-
poral evolution. The velocity update rule (132c) can be
understood by analyzing the collisions in the reference
frame of the background atom (which in our case coin-
cides with the center of mass reference frame). The key
feature of the hard-sphere interaction is that the collision
rate is proportional to the absolute value of the relative
velocity g, so that the particle more often collides with
atoms moving in direction opposite to its own.

The random variable ∆t is the first collision time which
is distributed according to a Poisson process. This can be
understood in the following way. The particle can collide
with any background atom. The probability that the
particle has not collided with the background atom ith

up to time t is called Si(t). The survival probability Si(t)
is decaying in time and satisfies a very simple differential
equation:

∂Si(t)
∂t

= −ri Si(t), ri ∼ |v − ui| (133)

The rate of collision, ri, is proportional to the absolute
value of the relative velocity with respect the ith atom.
The probability that the particle has not collided with
any atom up to time t is S(t) =

∏N
i=1 Si(t), where N is

the total number of background atoms. Using Eq. (133)
and the definition of S(t) we obtain

∂S(t)
∂t

= −r S(t), r =
N∑
i=1

ri (134)

whose solution is a simple exponential decay with rate
r. Note that S(t) is also the probability that the first
collision happens at time t, i.e. S(t) is the distribution of
the first collision time. Reintroducing the dependence on
the particle velocity explicitly we obtain the probability
P (∆t|v) that the particle with velocity v collides for the
first time at time ∆t:

P (∆t|v) = r(v) exp(−r(v)∆t) (135a)

r(v) =
N∑
i=1

ri(v) = 2aρ 〈|v − u|〉u (135b)

Here 〈(·)〉u denotes the average over the velocity distri-
bution of the background atoms, a is the radius of the
hard-spheres and ρ is the number density of background
atoms. The last equality in (135b) has been specified for
the two-dimensional case.
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The probability of making the first collision with the
ith atom is [28]

ri(v)
r(v)

=
|v − ui|

N〈|v − u|〉u
(136)

This equation can be understood in the following way. If
it was equally likely to collide with any atom only the
factor 1/N would appear in Eq. (136). The correction
( |v−ui|
〈|v−u|〉u ) in Eq. (136) to this simple behavior describes

the fact the the particle collides preferentially with atoms
moving in direction opposite to its own. It is worth noting
that this correction approaches 1 if v � 〈u〉.

The calculation of the total rate is difficult in any di-
mension d > 1. It can be approximated by

〈|v − u|〉u ∼ |v|+ 〈|u|〉u ∼ |v|+
√
T (137)

Only the limiting behavior for v �
√
T and v �

√
T

of Eq. (137) are important. We are interested in the
large time limit when v � 〈u〉 and r(v) ∼ N |v|. Equa-
tion (137) correctly reproduces this limit. Moreover,
Eq. (137) ensures that a particle with an unexpected low
velocity (in the extreme case v = 0) will collide with a
background atom with a rate proportional to the thermal
velocity of the background gas.

Using (135a)–(137) one computes the collision time
∆t. Then a background velocity u is generated from the
Maxwell-Boltzmann distribution (2) and it is accepted
with probability |v−u|

〈|v−u|〉u (see Eq. (136)). Finally the ran-
dom variable e is generated from the distribution (13).

The velocity distribution is in excellent agreement with
the exponential scaling form. The density profiles are
shown in Fig. 7. In one dimension, there is a perfect
agreement with the theoretical prediction, Eq. (68). In
two dimensions, the numerical simulation correctly re-
produces the known values for the moments 〈R2n〉 (see
Table I) and agrees with the prediction (96) for the tail.

In the one-dimensional case, every velocity distribu-
tion of the background atoms is stationary (since in a
two-body collision the atoms merely exchange their ve-
locities). In particular it is possible to chose a uniform
velocity distribution for −umax < u < umax. In this case
the total rate (Eq. (135b)) can be calculated exactly and
Eq. (136) can be enforced very efficiently. In this situ-
ation we were able to stochastically update the velocity
and positions of 108 particles which allowed us to sim-
ulate the joint distribution F (X,V ) (see Fig. 1). It is
interesting to note how the exponential character of the
speed distribution F (V ) is also present for F (V,X = 0).
In the same way the character of the density distribu-
tion N(X) persists for F (V = 0, X). In the contour-plot
(top panel of Fig. 1) we observe that the equiprobability
line always cross the V -axis perpendicularly while they
cross the X-axis at acute (obtuse) angle for X < Xc

(X > Xc) where Xc ∼ 0.8. This has the consequence
that for any given velocity the maximum probability is
always at X = 0 (green line in Fig. 1) while for fixed X

the maximum probability is at V = 0 only for X < Xc

(blue line in Fig. 1). The numerical result clearly show
the lack of factorization: The joint distribution F (X,V )
is not a product of functions of X and V .

In two dimensions, we have also used a “brute-force”
molecular dynamics simulations to investigate the case
when the atoms interact between themselves and with
the particle through the potential U ∼ r−λ. This sim-
ulation schemes is much more time-consuming than the
stochastic update of the position and velocity of the par-
ticle. For this reason we were able to simulate only 104

particles. This is sufficient to check the scaling of the
average velocity and displacement with time, but does
not allow us to check the full distribution. In our system
the background atoms are affected by other atoms and
insensitive to the presence of the particle; the particle is
affected by the atoms. Computationally this property is
implemented in a simple way. At each time step of the
molecular dynamic simulation we calculate the total force
acting on a background atom summing only the contri-
butions from the other atoms (no contribution from the
particle). The total force acting on the particle is ob-
tained summing all the contributions from the atoms.

Numerically it is convenient to simulate many indepen-
dent particles in the same background gas of atoms. Usu-
ally, even if the particle-particle potential is set to zero,
particles interact indirectly via the background gas. In
our case, the particles do not affect the background atoms
and are totally independent from each other. We have
simulated 104 independent particles in the same back-
ground gas of 5 · 103 atoms. For the reason explained
before this simulation scheme is equivalent to 104 runs of
a single particle in a background gas of 5 · 103 atoms.

The equations of motion have been numerically inte-
grated using the velocity-Verlet algorithm [29]. The time-
step of the numerical integration was reduced during the
time evolution in order to keep the average particle’s dis-
placement during a single time step constant and smaller
than the mean free-path of the gas. The initial positions
of the background atoms and of the particles were ran-
domly drawn from the uniform distribution inside the
simulation box with periodic boundary conditions. The
initial velocity of the particles were drawn from the dis-
tribution δ(v − v0)/2π while the initial velocity of the
atoms were generated from the Maxwell-Boltzmann dis-
tribution and were rescaled in order to ensure that the
total energy (∼ T ) of the background gas had a fixed
value.

The results of different simulations at fixed density and
fixed interaction exponent are shown in Fig. 8 and 9,
respectively; these results are in excellent agreement with
theoretical predictions.

Finally, the quasi-recurrent relation (108) has been it-
eratively solved (as shown in Fig. 2 and explained in the
text) using Mathematica. This has allowed us to calcu-
late exactly the moments of the spatial distribution 〈R2n〉
up to n = 500 for the hard sphere gas in d = 1, 2, 3. In
Fig. 3 we show the ratio (2n)2〈R2n〉/〈R2(n+1)〉 which al-
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FIG. 7. (Color online) Density profile for the hard sphere gas

vs. the rescaled variable R = r/
√
Tt. The numerical simula-

tions in d = 1, 2 (red squares and blue triangles, respectively)
are compared with the theoretical predictions (continuos red
and dashed blue line, respectively), Eq. (68) and Eq. (129)
(integrated numerically). The theoretical prediction for d = 3
(dot-dashed green line), Eq. (69), is also shown.
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FIG. 8. (Color online) Average particle velocity and displace-
ment in two dimensions with a particle-atom interaction po-
tential diverging as U ' r−λ for r → 0. In all cases the
density of the background gas is ρ = 25%. The slopes of the
fitting curves (dashed lines) are 0.5, 0.66, 0.74, 0.79 (bottom
to top), all in excellent agreement with the theoretical pre-
diction λ/(λ+ 2). The solid black line has slope 1 and it is a
guide for the eye.

lows us to extract the asymptotic exponential decay of
the density distribution.

X. SUMMARY

We have analyzed the behavior of a very light particle
in an equilibrium background gas. We have shown that
in the long-time limit, the average particle displacement
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FIG. 9. (Color online) The same system as in Fig. (8) with
fixed interaction exponent λ = 8 and varying density. The
slope of the fitting curves (dashed lines) is Λ = 0.79 in all
cases, while the intercepts are b = 0.79, 1.60, 2.41 (bottom
to top). Note these values are in the ratio 1 : 2.02 : 3.05
in excellent agreement with the theoretical prediction (26)
bi/bj = (ρi/ρj)

Λ which gives 1 : 2.08 : 3.03. The solid line
has slope 1 and it is a guide for the eye.

grows linearly with time and proportionally to the ther-
mal velocity of the background atoms — the density of
the gas, the size of atoms, and the details of the interac-
tion between the particle and the atoms do not affect the
asymptotic. The average particle velocity also grows in
a rather universal way and the scaled velocity distribu-
tion approaches a scaling form which is generically non-
Gaussian (the only exception is when the particle-atoms
interaction is described by a Maxwell potential).

For the hard-sphere particle-atom interaction in ar-
bitrary dimensions, we have computed the asymptot-
ically exact velocity distribution, position distribution
and joint velocity-position distribution. The most com-
plete results for the joint distribution have been derived
using a combination of Fourier and Laplace transforms.

In one dimension, we have also determined the prob-
ability density for the particle displacement using a
less standard moment approach. Specifically, we have
guessed an exact expression for the moments 〈r2n〉, which
we verified by exact (Mathematica–assisted) calculations
of the moments up to 〈r1000〉, and we found the prob-
ability density that results in these moments. We have
also guessed an exact expression for the moments 〈r2n〉
in two dimensions and we have confirmed to the same
depth as in one dimension. Further, we have used the
moments to establish the large displacement tail of the
probability density and to study the correlations between
the velocity and displacement of the particle.

Our theoretical predictions are in perfect agreement
with the numerical simulations providing strong evidence
that our simulation scheme is correct and that the sim-
plification of the collision integral and the replacement
of the convective term by effective diffusion are indeed
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asymptotically exact in the limit when the particle ve-
locity greatly exceeds the thermal velocity of atoms.

The Lorentz model was originally suggested [2] as an
idealized model of electron transport. Quantum mechan-
ics is of course essential for this problem. In the context of
the quantum particle in a container of fixed volume with
boundaries deforming in a chaotic manner (a stochas-
tic model for Fermi’s acceleration of the quantum parti-
cle), some mostly numerical work has been done (see e.g.

[30]). A quantum linear Boltzmann equation that prob-
ably can be used as a mathematical framework of the
quantum version of our model has also been studied (see
[31] and references therein). An interesting extension of
the present work is to analyze the quantum version of
our model.
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Appendix A: Approach to Scaling

In one dimension, atoms merely exchange their veloc-
ities, so there is no relaxation and any velocity distribu-
tion P (u) can be taken as an equilibrium distribution. As
an example, consider the bimodal velocity distribution

P (u) = δ

(
u− 1

2

)
+ δ

(
u+

1
2

)
(A1)

(The bimodal distribution is often used in studies of
the one-dimensional Boltzmann equation, see e.g. [17].)
Note that for the bimodal velocity distribution the condi-
tion of Eq. (3) holds; further, the density and the temper-
ature of the background gas are ρ = 2, T = 1/4. There-
fore τ = 2ρT t = t and the scaling solution (7) becomes

f(v, t) =
1
2t
e−|v|/t

Let us now try to establish exact results starting with
initial condition

f(v, t = 0) = δ(v) (A2)

The velocity distribution cannot approach the smooth
distribution (7). For the bimodal velocity distribution
(A1) and the initial condition (A2), the particle velocity
can be only integer:

f(v, t) =
∞∑

n=−∞
Pn(t) δ(v − n) (A3)

The amplitudes Pn(t) are still expected to behave as

Pn(t) =
1
2t
e−|n|/t (A4)

in the limit |n| → ∞ and t→∞, with n/t being finite.
To probe the exact behavior we insert (A1) and (A3)

into the Boltzmann equation (1) and deduce an infinite
set of rate equations

Ṗn =
(
n− 1

2

)
Pn−1 +

(
n+

1
2

)
Pn+1 − 2nPn (A5)

for n ≥ 1 and

Ṗ0 = P1 − P0 (A6)

(It suffices to consider Pn with n ≥ 0; with initial condi-
tion (A2), the particle velocity is a manifestly even func-
tion of v and therefore P−n ≡ Pn.)

To treat (A5)– (A6) let us use the generating function

P(t, z) = P0(t) + 2
∑
n≥1

Pn(t) zn (A7)

Note that

P(t, z = 1) =
∞∑

n=−∞
Pn(t) = 1 (A8)

explaining why we have chosen the definition (A7) of the
generating function instead of

∑
n≥0 Pn(t) zn.

Utilizing the generating function (A7) we recast an in-
finite set of rate equations (A5)– (A6) into a single partial
differential equation

∂P

∂t
= (1− z)2 ∂P

∂z
+

(1− z)2

2z
P0(t)− 1− z2

2z
P (A9)

We want to solve (A9) subject to the initial condition
Pn(t = 0) = δn,0, or equivalently

P(t = 0, z) = 1 (A10)

and the boundary condition (A8).
Using ζ = 1/(1− z) instead of z, we re-write (A9) as

∂P

∂t
=
∂P

∂ζ
+

P0(t)
2ζ(ζ − 1)

+
1− 2ζ

2ζ(ζ − 1)
P (A11)

The transformation ξ = (t + ζ)/2, η = (t − ζ)/2 recasts
(A11) into

∂P

∂η
=
P0(ξ + η) + [1− 2(ξ − η)]P

2(ξ − η)(ξ − η − 1)
(A12)

To solve (A12) we note that its homogeneous version,

∂P

∂η
=

1− 2(ξ − η)
2(ξ − η)(ξ − η − 1)

P ,
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has a general solution

P(ξ, η) =
√

(ξ − η)(ξ − η − 1)Q(ξ)

where Q(ξ) is an arbitrary function of ξ. Then a solution
to the full equation (A12) can be sought using the varia-
tion of constant technique. In the present case we must
actually vary the function Q(ξ), namely, we should seek
a solution of the form

P(ξ, η) =
√

(ξ − η)(ξ − η − 1)Q(ξ, η) (A13)

Plugging (A13) into (A12) we obtain a simple equation
for Q which is integrated to find a final solution. Return-
ing back to the variables (t, ζ) we get

P(t, ζ) =
√
ζ(ζ − 1)Q(t, ζ) (A14)

with

Q =
1√

(t+ ζ)(t+ ζ − 1)

+
1
2

∫ t

0

dτ
P0(τ)

[(t− τ + ζ)(t− τ + ζ − 1)]3/2

(A15)

Equations (A14)–(A15) give rather formal results as
we haven’t yet extracted P0(t). However, on this stage
we can already confirm the emergence of scaling (A4).
Indeed, assuming that P0(t) decays and approaches to
zero as t → ∞, we conclude that the integral term on
the right-hand side of (A15) is asymptotically negligible
and therefore Q ' 1/(t + ζ). Therefore (A14) becomes
P ' ζ/(t+ ζ), where we additionally consider the large ζ
limit. Hence P ' 1/(1+ t/ζ) = 1/(1+ t− tz). Expanding
this result we get

Pn(t) =
1
2

tn−1

(1 + t)n

which in the scaling limit n → ∞ and t → ∞ with n/t
being finite is indeed equivalent to (A4).

Appendix B: Angular Integrals

Let us first prove the validity of relation (24a) with A
defined in (25). The integral in (24a) is equal to (J · u),
where J =

∫
De (g · e) e. Due to symmetry, the vector J

must be directed along g. Hence

J = Ag (B1)

where the amplitude A is independent on g since J scales
linearly with g. Computing the scalar product of g and
J we obtain

A =
1
g2

(J · g) =
1
g2

∫
De (g · e)2 (B2)

Using (B1) we arrive at∫
De (u · e)(g · e) = (u · J) = A(u · g)

which together with (B2) lead to (24a).
To establish (24b) with B defined in (25) we note that

the integral in Eq. (24b) is equal to (u · T · u), where

T =
∫

De (g · e)2ee (B3)

Tensor T depends only on vector g, so it must read

T = C1gg + C2g
2U (B4)

where U is the unit tensor. To determine the amplitudes
C1 and C2, we compute the trace of tensor T and the
product (g · T · g). Using (B4) we find

Tr(T) = (C1 + dC2)g2 (B5a)

(g · T · g) = (C1 + C2)g4 (B5b)

If instead we use (B3) we get

Tr(T) =
∫

De (g · e)2 = Ag2 (B6a)

(g · T · g) =
∫

De (g · e)4 = Bg4 (B6b)

where we have used the definitions of A and B, see (25).
Comparing (B5) with (B6) we express the amplitudes C1

and C2 via A and B:

C1 =
dB −A
d− 1

, C2 =
A−B
d− 1

(B7)

yielding indeed (24b).
For the three-dimensional hard-sphere gas, the integra-

tion measure is given by Eq. (13) and therefore

A =
1
g3

∫
d2e θ(g · e) (g · e)3

B =
1
g5

∫
d2e θ(g · e) (g · e)5

(B8)

Let us now introduce spherical coordinates with the axis
along g. We have d2e = 2π sinϑ dϑ, (g · e) = g cosϑ;
the term θ(g · e) limits the integration over the range
0 ≤ ϑ ≤ π/2. Thus

A = 2π
∫ π/2

0

sinϑ (cosϑ)3 dϑ =
π

2

and similarly B = π/3. Thus we obtain (15a)–(15b).
(See Ref. [4] for the computation of integrals similar to
(15); such integrals often appear in kinetic theory of the
hard-sphere gas.)

For the d−dimensional hard-sphere gas, we have the
same expression (B8) for A and B, the only difference is
that de = Ωd−1 (sinϑ)d−2 dϑ. Computing A yields

A = Ωd−1

∫ π/2

0

(sinϑ)d−2 (cosϑ)3 dϑ =
π(d−1)/2

Γ(d+3
2 )

(B9)
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Appendix C: Exact Solution of Eq. (26) and Analysis
of Solutions of Eq. (32)

Let us first solve Eq. (26) using the Laplace trans-
form. Note that in Eq. (26) the variable v varies in the
range (0,+∞) and therefore we use the Laplace trans-
form rather than e.g. the Fourier transform. In any
number of dimension we define

g(k, τ) = Ωd
∫ ∞

0

dv vd−1 e−vk f(v, τ) (C1)

where Ωd = 2πd/2

Γ(d/2) is the area of the unit sphere in d

dimension. According to this definition, the function g
satisfies the boundary condition g(k = 0, τ) = 1 and the
initial condition

g0(k) ≡ g(k, τ = 0) = Ωd
∫ ∞

0

dv vd−1 e−vk f(v, τ = 0)

Applying the Laplace transform to Eq. (26) yields

∂g

∂τ
= −d k g − k2 ∂g

∂k
(C2)

The right hand side can be rewritten as −k2−d ∂
∂k (kdg)

thereby suggesting to use the function h = kdg instead
of g. One gets hτ = −k2hk, or equivalently

∂h

∂τ
=
∂h

∂κ
, κ = k−1. (C3)

A general solution to the simple wave equation (C3) is
h(κ, τ) = H(κ+ τ) where H is determined by the initial
condition: h(κ, τ = 0) = H(κ). Returning to the orig-
inal function g we arrive at the general solution for the
Laplace transform

g(k, τ) = (1 + τk)−d g0

(
k

1 + kτ

)
(C4)

As an example of the initial distribution with a com-
pact support (that is, vanishing for sufficiently large ve-
locities) consider the isotropic distribution with fixed ini-
tial speed v0. In other words, let

f(v, τ = 0) =
δ(v − v0)
Ωd vd−1

0

(C5)

In this case [32] the solution reads

g(k, τ) =
1

(1 + τk)d
exp
[
− v0k

1 + τk

]
Expanding the exponential and separately performing
the inverse Laplace transform of each term we obtain

f(v, τ) =
1

ΩdΓ(d)τd

∞∑
n=0

(−v0/τ)n

n! 1F1

[
n+ d; d;− vτ

]
(C6)

where 1F1 is the confluent hypergeometric function. The
asymptotic behavior (τ � v0) of (C6) is given by the
first term (n = 0) in the sum and is equal to

f(v, τ) =
1

ΩdΓ(d)
e−v/τ

τd
(C7)

where we have used the identity 1F1[d; d; z] = ez.
As an example of an initial distribution with infinite

support, consider an exponential distribution

f(v, τ = 0) =
1

ΩdΓ(d)
e−v/v0

vd0
(C8)

In this case, the velocity distribution remains exponential
throughout the evolution

f(v, τ) =
1

ΩdΓ(d)
e−v/(v0+τ)

(v0 + τ)d
(C9)

The asymptotic (τ � v0) behavior of the solution (C9)
is again given by (C7).

These two examples illustrate the general behavior
which can be deduced from the general solution (C4):
If the initial velocity distribution decays exponentially or
faster, the asymptotic behavior of the velocity distribu-
tion is universal (that is, independent on the initial veloc-
ity distribution) and given by (C7). If the initial veloc-
ity distribution decays slower than exponentially in the
v →∞ limit, the long time asymptotic behavior is given
by Eq. (C7) apart from the tail region. For instance, if
f(v, τ = 0) ∼ v−ν as v → ∞, the asymptotic velocity
distribution is given by (C7) when 0 ≤ v � (ν−d)τ ln τ ,
while for v � (ν − d)τ ln τ the initial distribution domi-
nates: f(v, τ) ∼ v−ν .

Essentially the same qualitative behavior is valid in
the general case of the potential particle-atom interaction
(28). The governing kinetic equation (32) describing the
long time behavior is substantially more difficult than
Eq. (26) corresponding to the hard-sphere interaction,
e.g. applying the Laplace transform to Eq. (32) does not
lead to a closed equation for g(k, τ). Therefore it is much
harder to prove rigorously that the asymptotic is given
by (34)–(35). A non-rigorous, but physically convinc-
ing, argument relies on the existence of a one-parameter
family of exact solutions generalizing the scaling solution
(34)–(35). Indeed, let us start with an initial velocity
distribution [32]

f(v, τ = 0) =
C

vd0
exp

{
−Λ2

(
v

v0

)1/Λ
}

(C10)

where v0 is a parameter and the constants C and Λ are
the same as in Eqs. (34)–(35). A solution of Eq. (32)
subject to the initial condition (C10) reads [33]

f = C
(
τ + v

1/Λ
0

)−Λd

exp

{
−Λ2 v1/Λ

τ + v
1/Λ
0

}
(C11)
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Obviously, the velocity distribution (C11) approaches
the scaling form (34)–(35) in the long time limit. This
strongly suggests that for an arbitrary initial velocity dis-
tribution that decays as exp

{
−const.× v1/Λ

}
or faster,

the asymptotic behavior is given by (34)–(35). For

the initial velocity distribution decaying slower than the
above stretched exponential, the asymptotic velocity dis-
tribution is still given by Eqs. (34)–(35) in the major
range and only the tail region is dominated by the initial
velocity distribution.


