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In growing populations, the fate of mutations depends on their competitive ability against the
ancestor and their ability to colonize new territory. Here we present a theory that integrates both
aspects of mutant fitness by coupling the classic description of one-dimensional competition (Fisher
equation) to the minimal model of front shape (KPZ equation). We solved these equations and found
three regimes, which are controlled solely by the expansion rates, solely by the competitive abilities,
or by both. Collectively, our results provide a simple framework to study spatial competition.

Propagating fronts are a ubiquitous feature of spatially
extended systems. Examples include the spread of an in-
vasive species in an ecosystem [1], the spread of a ferro-
magnetic phase across a magnet [2], the spread of a high
fitness allele through a population [3], or even the propa-
gation of a flame front [4]. These and other applications
have stimulated a sustained effort to construct and ana-
lyze coarse-grained models of traveling reaction-diffusion
waves [1, 5–8]. By now, we have a general understanding
of one-dimensional waves, but two and higher dimensions
pose numerous challenges because of the interplay be-
tween the dynamics along the wave front and the shape
of the wave front itself.

Growing microbial colonies provide an excellent exper-
imental system to study the two-way coupling between
the shape of the colony edge and the spatial distribution
of different genotypes in the population [9–11]. At the
same time, microbial colonies also serve as useful model
systems for tumor growth and geographic expansions of
plants and animals [12]. Hence, the spatial competition
between two different genotypes has garnered much re-
cent attention [13, 14].

Although many approaches have been put forward to
describe how microbes colonize surfaces, we are still lack-
ing a simple, but general framework to describe com-
petition during colony growth. Most computational
studies rely on numerical simulations of complex mi-
croscopic models, and therefore can draw few general
conclusions about possible outcomes of spatial compe-
tition [15–17]. To a certain extent, this challenge has
been recently addressed by theoretical studies using ei-
ther field-theory [18] or geometric-optics [11, 13, 19] ap-
proaches to describe morphologies of colonies with two
competing species. These theoretical models, however,
are agnostic to the mechanism of competition and assume
the knowledge of emergent properties, such as the inva-
sion velocity of the mutant. In consequence, their utility
is rather limited because they cannot, for example, pre-
dict the winner of the competition given the microscopic
qualities of the mutant and the ancestor. Thus, there is

a need for a tractable model that can integrate the mi-
croscopic dynamics with the changes in the colony shape
during spatial competition.
To construct such a model, we focused on growth

on rich solid media so that one can neglect nutri-
ent diffusion [20] and complex hydrodynamics [21, 22].
Under these assumptions, the state of the colony is
well-described by two quantities: the spatial extent or
“height” of the colony h(x, t) and mutant fraction f(x, t),
which change along the colony front (x-coordinate) and
with time t [18]. For simplicity, we consider only planar
fronts, where h is simply the distance by which the colony
expanded from the inoculation site. Thus, we treat the
colony edge as a thin interface. This is a reasonable ap-
proximation because the growth region extends only a
few cell widths into the colony, and any successful mu-
tant has to emerge near the colony edge; otherwise it is
crowded out of the growth zone and remains trapped in
the colony bulk [23].
The dynamical equations for h(x, t), and f(x, t) emerge

naturally as generalization the well-studied limits of the
Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equa-
tion [3, 7] for one dimensional competition (no variation
in h) and the Kardar-Parisi-Zhang (KPZ) equation [24]
for interface growth (no variation in f).
The KPZ equation is a continuum limit of the clas-

sic Eden model of colony growth [25]. It has been quite
successful at describing both deterministic and stochas-
tic patterns in microbial colonies [26] including those ob-
served during two-species competition [23]. The KPZ
equation can also be viewed as a phenomenological model
based on gradient expansion similar to its justification
for surface growth phenomena [24, 26]. The dynamical
equation for h(x, t) reads

∂h

∂t
= v0 +

v0
2

(∂h
∂x

)2

+Dh
∂2h

∂x2
+ αf, (1)

where the first two terms express the isotropic expansion
of the colony with velocity v0 along the local normal to
the front, the third term encodes curvature relaxation,
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and the fourth term accounts for the difference in the
expansion velocities of the mutant and the ancestor [18].
We used a linear interpolation between the two veloci-
ties because most of our result are obtained “to the first
order” in the differences between the two competitors.
Higher order terms (such as αf(∂h/∂x)2) are similarly
ignored.

Assuming that the mutant has a selective advan-
tage s(f), the dynamics of the mutant fraction f is de-
scribed a modified FKPP equation [3, 7]:

∂f

∂t
= s(f)f(1− f) +Df

∂2f

∂x2
+ v0

∂h

∂x

∂f

∂x
, (2)

where the first term accounts for differences in local re-
production rates, the second accounts for spatial rear-
rangements due to motility or population fluxes gener-
ated by the expansion dynamics, and the third is our
addition to describe “passive” changes in f due to the
motion of a tilted interface [18, 27, 28]. Indeed, a tilted
front advances along its normal, so it moves both verti-
cally and horizontally. The horizontal velocity −v0∂h/∂x
advects f(t, x), which manifests in the term proportional
to ∂f/∂x in the equation above; see Fig. 2 in the SI [29]
for an illustration.

Without the coupling to h, the FKPP equation is
the classic model of spatial competition between two
genotypes in one dimension. Its asymptotic solutions
are known as traveling waves because they have the
form f(x, t) = f(x−ut), where u is the invasion velocity
of the mutant. In the following, we determine how the
coupling between h and f affects u by solving Eqs. (1)
and (2) numerically using MATLAB’s pdepe (for codes,
please visit [30]). We then develop an analytical theory
that not only quantitatively matches the simulations, but
also provides deep insights into the existence of three dis-
tinct regimes of spatial competition.

The solutions of the FKPP equation are broadly classi-
fied into so-called “pulled” and “pushed” waves depend-
ing on how the selective advantage s depends on mutant
frequency f . Pulled waves are dominated by the dy-
namics at leading edge, and the invasion velocity can be
obtained by linearizing the FKPP equation for small f ;
the resulting ‘Fisher velocity’ is given by uf = 2

√
Dfs(0)

(see Refs. [1, 3, 7, 8]). In contrast, the velocity of pushed
waves depends on the values of s at all f , and cannot be,
in general, computed analytically except for some exactly
solvable models such as with s(f) = s1(f − f0) [31, 32].
For this model, pushed waves occur for f0 ∈ (−0.5, 0.5)
with u =

√
Dfs1/2(1 − 2f0); the waves are pulled

for f0 < −0.5. Behavior for f0 > 0.5 is analyzed by
changing variables from f to 1− f .
We assume that the mutant has a local fitness advan-

tage s(f) > 0, and first consider pulled waves with s(f) =
s0 > 0. The emergence of a traveling wave of f(x, t) is
apparent in Fig. 1(a). The corresponding h(x, t), how-
ever, is not a simple traveling wave (Fig. 1(b)). The

(a)

(b)

(c)

FIG. 1. Sample simulation results generated by solving
Eqs. (1) and (2) numerically in the pulled wave regime s(f) =
s0. (a) Profiles of mutant frequency f(x, t) at five equally-
spaced time slices labeled by color. (b) Height profiles h(x, t)
taken at the same five time points as in panel (a) with the
same color convention. Starting from a flat initial condition,
the height field develops a nontrivial morphology through a
dependence of the growth rate of h on the mutant frequency
f . (c) The spatial distribution of the two competitors is vi-
sualized by plotting successive solutions of the height field h
and coloring each point according to the value of f at the
corresponding x and t.

colony front is composed of a curved portion dominated
by the ‘mutant’ and a flat front dominated by the ‘an-
cestor’. While the transition point between these two
regimes advances with the same velocity u, the overall
shape of the curved portion depends on both time and
the co-moving coordinate (x − ut) because the growth
dynamics encoded by α persist even after the mutant
displaces the ancestor.

To understand how the invasion velocity u is affected
by the coupling to height, we computed it numerically
at different values of α. For α = 0, the equations are
effectively decoupled because genetic variation along the
front does not create any disturbances in the front shape,
which remains h = v0t for all x. Mutant is faster than
the ancestor when α > 0 and slower otherwise. While the
latter case may seem paradoxical, it has actually been
observed experimentally [19].

Simulation results are shown in Fig. 2, with different
markers denoting different values of s0. We immediately
observe that the data falls into two regimes: For small α,
the invasion velocity is a constant, which depends on s0.
For large α, the situation is reversed: the velocity de-
pends on α, but not on s0. Thus, there appears to be
two distinct regimes: one mediated by local competition
described by the FKKP equation, and one mediated by
the expansion rates in the KPZ equation.

We tested this hypothesis by comparing solutions of
the uncoupled FKKP and KPZ equations to the results
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in Fig. 2. For small α, there is perfect agreement be-
tween the observed values of u and the expected Fisher
velocity uf = 2

√
Dfs0. In hindsight, this may not be

too surprising since pulled waves are controlled by the
dynamics at the leading edge, where h is flat and the
coupling term is the FKPP equation vanishes. However,
the influence of growth velocity differences manifests dra-
matically in the shape of the front, which changes from
a V-shaped dent at negative α to a composite bulge for
positive α; see Fig. 2.

For large α, the simulations match

u =
√
2α(v0 + α) ≈

√
2αv0, (3)

which can be obtained from the KPZ equation by anal-
ogy with the equal-time argument in Ref. [11] and the
geometric theory in Ref. [19]. In this regime, the mutant
forms a circular bulge [33] of radius (v0 + α)t, while the
ancestor has a flat front at height v0t. These two curves
intersect at point whose x-coordinate moves with veloc-
ity u =

√
2α(v0 + α) ≈

√
2αv0. The transition between

the s0−dependent and α−dependent invasion velocities
occurs at a critical value of αc = 2s0Df/v0 when the
velocity of the circular bulge exceeds the Fisher velocity.
This agrees with the general observation that a faster
moving solution typically controls the behavior of a trav-
eling wave [8].

The above results for pulled waves are surprising from
both mathematical and biological perspectives. Mathe-
matically, it is surprising that the invasion velocity u is
controlled by only one of the equations, i.e. there is no
two-way coupling. Biologically, it seems counter-intuitive
that, no amount of disadvantage in the expansion veloc-
ity (α < 0) can overcome the competitive advantage (s0).
To see whether these conclusion hold more generally,
we carried out equivalent simulations for pushed waves
with s(f) = s1(f − f0). The results are shown in Fig. 3.

Compared to pulled waves, there are three regimes.
One regime occurs for large α and corresponds to a
mutant assuming a circular bulge morphology invading
at u =

√
2αv0. This regime is completely analogous to

what we described for pulled waves above.

In addition, there are two new regimes at α near zero
and at large negative α. The dynamics in the latter
regime depends on whether Eq. (2) describes propaga-
tion into an unstable state (s(0) < 0, the mutant has
a competitive advantage at any f) or into a metastable
state (s(0) > 0, the mutant needs a critical density to
out-compete the ancestor).

For s(0) < 0 (f0 > 0, f = 0 is stable), the invasion
speed u changes sign when α becomes sufficiently neg-
ative. In this case, the ancestor invades a more com-
petitive mutant (s1 > 0) because it has a much larger
expansion velocity. The invasion proceeds with a circu-
lar bulge of the ancestor which must advance with veloc-
ity u = −

√
2|α|v0.
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FIG. 2. Invasion dynamics in pulled waves. (Top): Invasion
velocity shows two regimes with dependence on either α or s.
The horizontal dashed lines are the predicted ‘Fisher veloc-
ities’. The curved dashed line is u =

√
2αv0, as predicted

by Eq. (3). For each value of s0 the filled in circle shows
the location of the transition point αc between the composite
and circular arc morphologies. (Bottom): Depending on α,
there are three distinct colony morphologies. When α < 0
the front shape is a V-shaped dent. When 0 < α < αc the
morphology is a composite bulge consisting of a central cir-
cular arc transitioning to a constant slope at the bulge edges.
When α > αc the front is entirely a circular arc. The red ar-
row shows the invasion velocity u, which is the speed of the
mutant-wildtype boundary along the horizontal axis. Param-
eters used are v0 = 10, Df = Dh = 1.

When s(0) > 0 (f0 < 0, f = 0 is unstable), the invasion
velocity remains positive for all values of α, and eventu-
ally becomes constant. The value of this limiting velocity
matches 2

√
Dfs(0) = 2

√
−Dfs1f0, which is the velocity

that one would obtain by linearizing Eq. (2). This be-
havior is identical to what we found for pulled waves, in
Fig. 2, so, in effect, the slower expansion rate of the mu-
tant converted its invasion of the ancestor from pushed
to pulled.

The other new regime occurs for α near zero. In con-
trast to pulled waves, the invasion velocity u exhibits a
dependence on both s1 and α. We will now analyze this
new dynamics using perturbation theory.

To find how u depends on both s(f) and α, we will
treat the coupling between the dynamics of f and h, i.e.
the term v0∂xh∂xf in Eq. (2), using an approach detailed
in Refs. [34–37]. The scale of the perturbation is thus set
by the maximal front slope which we denote σ.
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FIG. 3. Invasion dynamics in pushed waves. Symbols show
the measured invasion velocity from simulations as a function
of the expansion velocity difference α. The dashed curves
show the result of the perturbation theory discussed in the
text, and the horizontal dashed-dotted lines are the invasion
velocity predicted from simple linearization of Eq. (2). When
α is large and positive, all invasion velocities match the solid
black line, the speed of the invading circular arc. The behavior
for α sufficiently negative (corresponding to a mutant growing
much slower than the wildtype), depends on the sign of f0.
When f0 < 0, the invasion speed approaches a value predicted
by the linearized equations u = 2

√
−s1f0Df . For f0 > 0, the

invasion velocity changes sign at large negative α, reversing
the competitive outcome. The negative invasion speed is that
of a leftward-moving circular arc (u = −

√
2|α|v0) which is

depicted by the solid black line. Inset in the figure is a sample
morphology which arises when the mutant is invaded by the
wildtype (u < 0). The simulation shown is initialized as a
half-space where the left half is occupied by mutant and the
right by wildtype. Parameters are v0 = 20, s1 = 4, Df =
Dh = 1.

The perturbative scheme proceeds as follows: In the
absence of coupling, the invasion profile of a mutant frac-
tion (f(z = x−ut) is f (0)(z)) is the solution of the stan-
dard one-dimensional Fisher equation, which are known
exactly for certain s(f). We can use the solution of the
standard one-dimensional invasion problem to obtain the
correction to u due to nontrivial morphological changes
associated with mutant sectors. Substituting f (0)(z) into
Eq. (1) leads to a non-linear differential equation whose
solution provides the first order profile h(1)(z = x− ut).
As described in the SI [29] the non-linear equation can be
solved exactly via a Cole-Hopf transformation, resulting
in a complicated form for h(1)(z = x) that depends on
v0, Dh and α. Qualitatively, this height profile is a sig-
moidal curve that changes from v0t in the region f → 0
(h′ → 0), to v0t + σz as f → 1 (h′ → σ). The limiting
slope can be obtained from Eq. (1) by setting f = 1 (see

[29] for details).

−uσ = α+ v0σ
2/2 . (4)

After substituting h′(1)(z) into Eq. (2), the methodol-
ogy described in Refs. [34–38] can be used to compute
the first order correction to the invasion velocity, leading
to the correction

u = u0 − κv0σ +O(v20σ
2) , (5)

where u0 is the unperturbed velocity for α = 0.
To coefficient κ in Eq. (5) is a ratio of integrals that

depend on the function h(1)(z) (see SI [29]). In general,
the solution is complex, but it can be simplified in two
limiting cases.
By setting Dh = 0, equation for h(1)(z = x) becomes

first order, and its solution simplifies the evaluation of all
downstream integrals. This limit corresponds to the ge-
ometric description in which the profile simply advances
along the local normal without further relaxation, yield-
ing κgeom. =

1
4 (1 + 2f0). The Dh = 0 case captures the

qualitative changes in κ including the transition to pulled
waves at f0 = −0.5, where κ must vanish. Thus, our
theory recapitulates the finding that the invasion speed
becomes insensitive to the morphology when the wave
becomes pulled.
The insensivity of pulled waves to morphology is a

general finding of our perturbative approach. To demon-
strate this, consider the dynamics of the tail of any pulled
wave (with arbitrary s(f)), which follows a linearized
Eq. (2) about f = 0 in the co-moving frame:

−uf ′ ≈ s(0)f +Dff
′′ + v0f

′h′ . (6)

The zeroth order solution travels at a speed u0 =
2
√
s(0)Df and the profile has a tail which is asymptotic

to e−
√

s(0)/Dfz as z → ∞. The correction to the invasion
velocity (see SI) is a ratio of integrals, with the denom-
inator being

∫∞
−∞(f (0)′)2eu0z/Df dz. Substitution of the

asymptotic profile shape immediately shows that this in-
tegral diverges, and thus the correction to the invasion
speed vanishes for any pulled wave.
Another useful approximation is obtained by neglect-

ing the nonlinear term in Eq. (1), which is justified for
small α because ∂h/∂x ∝ α. In this case, we have to eval-
uate the downstream integrals numerically, but obtain a
perfect agreement with the simulations at least when α is
small; see Fig. 4. Our perturbation theory, as well as the
model described in this work, rests on the assumption of
small slopes in the height field (σ ≪ 1) allowing a gra-
dient expansion description of the colony expansion. In
terms of our three velocities, this requires α ≪ u0 ≪ v0
We can use perturbation theory to estimate the lo-

cation of the transition from a right-moving wave (mu-
tant taking over) to the left-moving wave (ancestor taking
over). This occurs when u = 0, i.e for α = −u2

0/(2v0κ
2).
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FIG. 4. Numerical results showing the dependence of the co-
efficient κ as defined in Eq. (5) on f0. The numerical values
of κ were obtained by fitting measured invasion velocities as
functions of α in the limit α → 0. The best-fit slope is then
used to obtain κ in Eq. (5). The red dashed line is the the-
oretical prediction of our perturbative analysis for the value
of Dh used in simulation at small α. The yellow dashed line
is the theoretical value of κ when Dh = 0. Parameters are
v0 = 10, Dh = Df = 1, s1 = 2.

Beyond this point, simulations show that u jumps dis-
continuously (when f0 > 0) from u = 0 to the value
corresponding to a left-moving circular arc as discussed
above.

Although we have not studied stochastic versions of
Eqs. (1) and (2), we anticipate no major qualitative
changes due to noise. Our focus is largely on sector
morphologies formed by selective forces between strains,
which have characteristic lengths scaling linearly with
time, overshadowing noise-induced, sublinearly scaling
fluctuations. As such, long-term ballistic sector motion
should render noise corrections irrelevant, though it may
cause minor quantitative alterations to invasion velocity
values [38, 39]. For pulled waves, noise might also induce
qualitative changes, such as a non-zero κ reflecting noise
strength.

Microbes, cancer cells, and invasive species of-
ten spread across space forming a continuous two-
dimensional populations. Here, we couple a model of
surface growth (KPZ equation) to a model of com-
petition (generalized FKPP equation). The combined
model faithfully describes recent observations of nontriv-
ial colony morphologies near emerging mutants [11, 19].
Moreover, it elucidates how colonization rate and local
competitive strength affects the fate of the mutation. We
find that mutant takeover relies on whether the FKPP
equation allows for pulled waves, driven by growth dy-
namics at low mutant densities, or pushed waves, in-
fluenced by growth dynamics across the entire mutant-
ancestor interface.

For pulled invasions, we found that the mutant with a

positive selective advantage s(0) > 0 always wins regard-
less of the value of α. For small α, the invasion velocity
depends only on s(0), while for large α, it is given by
the geometric theory and depends on α only. For pushed
waves propagating into an unstable state s(0) > 0, the
mutant always wins as well, but its invasion velocity
could depend on both s(f) and α. The competitive out-
come, however, could be different for pushed waves prop-
agating into a metastable state. If s(0) < 0, the mutant
that would invade in a strictly one-dimensional popu-
lation, i.e. without coupling to morphology, could lose
during colony expansion. Specifically, a large negative α
reverses the direction of invasion. Simulations with a dif-
ferent selection coefficient (s(f) = s3(f

3 − f0)) further
suggest invasion reversal is only possible when f = 0 is
an unstable fixed point - see SI [29].

These intricate interplay between local competition
and global expansion rates are supported by numerical
simulations and analytical perturbation theory. Taken
together our results not only elucidate many subtleties
associated with mutant establishment, but also pave the
way for a more parsimonious and universal description of
evolutionary and ecological processes in growing popula-
tions that is also very amenable to theoretical analyses.
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