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Motivated by recent asymptotic results in atmosphere–ocean fluid dynamics, we present an ide-
alized numerical and theoretical study of two-dimensional dispersive waves propagating through a
small-amplitude random mean flow. The objective is to delineate clearly the conditions under which
the cumulative Doppler-shifting and refraction by the mean flow can change the group velocity of
the waves not only in direction, but also in magnitude. The latter effect enables a possible transition
from fast to slow waves, which behave very differently.

Within our model we find the conditions on the dispersion relation and the mean flow amplitude
that allow or rule out such fast–slow transitions. For steady mean flows we determine a novel
finite mean flow amplitude threshold below which such transitions can be ruled out indefinitely. For
unsteady mean flows a sufficiently rapid rate of change means that this threshold goes to zero, i.e., in
this scenario all waves eventually undergo a fast–slow transition regardless of mean flow amplitude,
with corresponding implications for the long-term fate of these waves.

I. INTRODUCTION

Nonlinear interactions between waves and non-uniform
mean flows have been recognized as important in
atmosphere–ocean fluid dynamics since the 1960s.
Prominent examples include the driving of longshore cur-
rents by surface waves [1], or the driving of the meridional
circulation in the middle atmosphere by internal gravity
and Rossby waves [2]. Much of the early work was based
on monochromatic waves encountering critical layers in-
duced by large-amplitude steady shear flows [3], but since
then theory and simulations have extended these con-
cepts in many ways (e.g., see the textbooks [4, 5]).

Recently, the cumulative impact of wave refraction due
to a small-amplitude random mean flow has been inves-
tigated in a number of geophysical settings by building
on classical scattering theory for sound or light waves in
random media (e.g. [6–9]). This is most easily studied
by assuming a scale separation between waves and mean
flows, which allows the use of well-established ray-tracing
techniques for slowly varying wavetrains. (This is a rel-
evant though by no means universally valid assumption
in atmosphere–ocean dynamics, and some recent scatter-
ing studies have gone beyond that assumption.) How-
ever, geophysical waves are strongly dispersive and thus
can behave in ways that are not possible for sound or
light waves. Most importantly, the group velocity of such
waves can transform significantly not only in direction
but also in magnitude, for instance turning fast waves
into slow waves in a manner to be defined precisely be-
low, and this inevitably has important consequences for
the long-term evolution of the waves (e.g., one may recall
that at a critical layer the group velocity goes to zero).

The present study combines detailed ray-tracing sim-
ulations with idealized theory to investigate such fast–
slow transitions in a two-dimensional model for disper-
sive waves exposed to a random mean flow. This set-up
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allows us to delineate clearly under what a priori condi-
tions on the dispersion relation and mean flow amplitude
the waves may or may not undergo a fast–slow transi-
tion. We also demonstrate the vivid differences between
fast and slow wave evolution, such as the trapping of slow
waves in coherent vortices.

II. RAY TRACING FOR DISPERSIVE WAVES
ON MEAN FLOWS

In a slowly varying wavetrain the wave action densityA
is defined as the wave energy density E divided by the lo-
cal intrinsic frequency ω, i.e., A = E/ω. It is the domain-
integrated wave action, and not the wave energy, that is
then conserved even in the presence of a slowly varying
mean flow U [10]. In the special case of a wave packet
this implies conservation of packet-integrated wave action
along the wave packet trajectories, or rays. Changes in
the wave packet energy E = ωA are then proportional to
changes in ω along the rays, so changes in ω are of par-
ticular relevance in wave–mean interactions. Both the
wave packet dynamics and the wave action conservation
are neatly summarized in a Liouville equation

∂tA+∇kΩ · ∇xA−∇xΩ · ∇kA = 0 (1)

for the wave action density in phase spaceA(x,k, t). Here
k is the wavenumber vector and the action density in
real space is the integral of A over k. This allows for the
incoherent superposition of different wave packets at the
same location, which is an advantage in many practical
applications [11]. The characteristics of (1) are the wave
packet rays

(ẋ(t), k̇(t)) = (∇k,−∇x)Ω(x,k, t) (2)

in phase space. The absolute frequency Ω acts as a
Hamiltonian function for the phase space flow in (2). In
general, Ω is the sum of the usual intrinsic frequency ω
plus a Doppler-shifting term involving the mean flow

Ω(x,k, t) = ω(k) +U(x, t) · k. (3)
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Physically, Ω is the frequency observed in a reference
frame at rest and ω is the frequency observed in a ref-
erence frame moving with the local velocity U. In gen-
eral, ω may depend on x and t as well, but we restrict
to ω(k) in our study. The absolute group velocity is
∇kΩ = cg + U where cg = ∇kω is the intrinsic group
velocity. So the wave packet is advected by the mean
flow and also moves relative to it with cg. The key dy-
namical process in (2-3) is the refraction of k by the

variable mean flow, i.e., k̇ = −(∇xU) ·k. Notably, in the
important special case of a steady flow U(x), the Hamil-
tonian function Ω(x,k) has no explicit time dependence
and hence, despite refraction, the value of Ω is constant
along a ray. This provides some ‘forever’ memory of the
wave packet’s initial conditions, which will be shown to
be important below.

A. Fast and Slow Waves

Fast and slow waves are distinguished based on the rel-
ative magnitude of cg vs. U. For slow waves |cg| ≪ |U|
holds and therefore advection by the mean flow domi-
nates the wave propagation, which implies that slow wave
rays closely resemble particle trajectories. Indeed, in the
limiting case where cg is completely negligible in (2), we
have Ω ≈ U·k and the evolution of k(t) becomes identical
to that of the gradient of a passive scalar. This limiting
regime was explored in detail for internal gravity waves
in [12].

Alternatively, for fast waves |cg| ≫ |U| holds, which
is evidently relevant for light or sound waves, but also
for surface waves relative to the typical current speeds
in the ocean. To first approximation the waves are then
unaffected by the mean current and simply travel along
straight lines whilst maintaining constant k. Meaningful
interaction effects accrue slowly over long propagation
times, which makes their study amenable to asymptotic
analysis based on a small parameter such as

ε0 =
U0

cg0
≪ 1. (4)

Here U0 is the typical amplitude of |U| and cg0 = |cg(0)|
is the initial group velocity [7, 13, 14]. The Doppler-
shifting term is then small in (3) and therefore Ω ≈ ω.
Crucially, for a steady mean flow the exact invariance of
Ω then implies the approximate invariance of ω along a
ray. Wave action conservation then implies wave energy
conservation even in the presence of a mean flow, which
severely limits the interactions between the waves and
the mean flow.

This was exploited by asymptotic analysis and numer-
ical simulation in a study of three-dimensional internal
gravity waves by Kafiabad et al. [7]. Building on the ear-
lier work of McComas and Bretherton [15] and Ryzhik
et al. [16], these authors modelled U as a steady random
mean flow with homogeneous statistics and this allowed

them to derive a diffusion approximation to (1) of the
form

∂tA+ cg · ∇xA = ∇k · (D · ∇kA) , (5)

where, for internal waves,

ω =

√
N2

|k⊥|2
|k|2

+ f2
|kz|2
|k|2

⇒ cg = |cg| ∝
1

|k|
, (6)

with k⊥ the horizontal component of the wave vector, kz

its vertical component, and N and f the Brunt-Väisälä
and the Coriolis frequencies, respectively.
Here, D is a symmetric O(ε20) diffusion matrix that de-

scribes the scattering in wave number space due to refrac-
tion by the mean flow. The details of D depend on the
power spectrum of the mean flow, but for all steady mean
flows D has the property that the diffusive flux D · ∇kA
is always perpendicular to the surfaces of constant ω in
three-dimensional wave number space. In other words,
there is diffusion along surfaces of constant ω, but none
across them. This recovers the approximate conservation
of ω alluded to before. Recently, this study has been ex-
tended to include weakly time-dependent U, which did
not change the results significantly [8]. The frequency of
internal waves depends only on the angle that k makes
with the vertical, so the diffusion takes place along un-
bounded cones in three-dimensional k-space and this al-
lows k = |k| to grow without bound even at constant
ω.
The situation is somewhat different in two-dimensional

cases of geophysical interest. For example, Villas Bôas
and Young [6] adapted Kafiabad et al. [7] to the case of
deep-water surface waves, where ω =

√
gk with gravity

g. Now the contours of constant ω in two-dimensional k-
space are circles around the origin, so constant ω implies
constant k and therefore the diffusion takes place on a
bounded manifold. For isotropic two-dimensional wave
systems the diffusion previously introduced is therefore
only angular: the wave vector k keeps a constant magni-
tude, and the diffusion only acts on its orientation.
In this situation the assumption of a steady mean

flow U(x) is in fact crucial for the long-term devel-
opment of k. This was demonstrated by Dong et al.
[17] in a ray-tracing study of rotating shallow water
gravity waves exposed to steady and unsteady random
mean currents. Here the isotropic dispersion relation is

ω =
√
f2 + gHk2 with Coriolis parameter f and undis-

turbed layer depthH. For steady flows with small Froude
number F = U0/

√
gH ≪ 1 it follows that ω can drift

from its initial value only by an O(F ) amount and this
bound is valid uniformly in time. However, this changes
completely for unsteady mean flowsU(x, t), which breaks
the forever memory and allows Ω and therefore ω to drift
away from their initial values. A robust evolution to-
ward increased values of ω was then observed numeri-
cally, which meant the waves robustly extracted energy
from the mean flow.
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B. Fast–Slow Transitions

Whether transitions between fast and slow wave
regimes are possible depends foremost on the specifics
of the dispersion relation ω(k). For example, in the
aforementioned studies of internal gravity waves both
regimes were possible for oceanic conditions, so a transi-
tion from fast to slow internal waves is of particular inter-
est both from a theoretical and a practical perspective.
This prompted a detailed ray-tracing study for three-
dimensional internal gravity waves reported in [14], in
which all wave packets start out as fast in the sense of
ε0 ≪ 1. Surprisingly, it was found that even steady mean
flows already induced a fairly rapid fast–slow transition
along the wave rays. Indeed, this led to the spontaneous
generation of a broadband spectrum in ω, in seeming con-
tradiction with the constant-ω prediction of the diffusion
theory based on ε0 ≪ 1. These numerical results can
be reconciled with the diffusion theory upon noting that
that theory is not uniformly valid in time, i.e., its validity
is restricted O(ε−2

0 ) time and length scales. The observed
fast–slow transition occurred after an initial phase that
was indeed well-described by the diffusion theory.

The mechanism for this dramatic departure from the
constant-ω regime is easy to understand in principle. For
internal waves the group velocity at fixed frequency is
proportional to k−1, a fact that can be corroborated ei-
ther by direct calculation or by observing that for these
waves ω(k) is homogeneous of degree zero in k and there-
fore cg = ∇kω must be homogeneous of degree minus one
in k [5]. In general, wave refraction by mean-flow shear
and strain has a tendency to shorten the wavelength and
therefore to increase k, which for internal waves means
that cg decreases along a ray. Hence a ray may start with
large cg0 compared to U0 but then cg decreases substan-
tially, making both speeds comparable, or even leading
to the ‘wave-capturing’ regime discussed in [12], which is
characterized by cg ≪ U0.
The fast–slow transition marks the departure from the

constant-ω dynamics described by the diffusion equation
and opens the door to strong wave–mean interactions, in
which significant energy can be exchanged between the
waves and the mean flow. Conversely, for some wave
systems the reverse transition can also take place, i.e.,
‘slow’ waves may turn into ‘fast’ waves.

We investigate this via simple theory and detailed nu-
merical simulations of idealized two-dimensional wave
packets based on a dispersion relation that is isotropic
in k = (kx, ky) and involves an adjustable power law ex-
ponent α

ω(k) =

{
1

α
kα, α ̸= 0

log(k), α = 0,
(7)

yielding

cg = kα−2 k, cg = |cg| = kα−1. (8)

This family includes as special cases non-dispersive waves

(α = 1), deep-water waves (α = 1/2), and quantum-
mechanical matter waves (α = 2). If |α| ≪ 1 it also mim-
ics the aforementioned cg ∝ 1/k scaling behaviour of in-
ternal waves. The singular limit α→ 0, corresponding to
a group velocity cg = k−1 as in the case of internal waves,
is regularized numerically by using the dispersion relation
ω(k) = log(k). Of course, this simple two-dimensional
model differs from three-dimensional internal waves in
other respects. Most importantly, perhaps, is that in our
model the sets of wavenumbers sharing the same intrinsic
frequency are circles and therefore bounded, whereas for
internal waves they are cones and therefore unbounded.
The wave packets propagate through a non-divergent

mean flow U modelled as a Gaussian random function
with homogeneous and isotropic statistics. For most sim-
ulations U is steady, but an unsteady case with station-
ary statistics is also considered in § V. A large number
of ray-tracing experiments are then performed to extract
the statistics of the wave behaviour. These experiments
together with some simple theory then answer two ques-
tions: first, for what dispersion relations is either the
‘slow’ or the ‘fast’ wave regime the only long-time at-
tractor? And second, are there dispersion relations that
allow both regimes to be long-time attractors, so that the
ultimate behaviour depends forever on the initial condi-
tions?

III. NUMERICAL METHODS

We scale the mean flow explicitly as ε0U and therefore
(2) and (3) become

ẋ(t) = ∇kΩ = cg + ε0U (9)

k̇(t) = −∇xΩ = −ε0(∇xU) · k (10)

and

Ω = ω(k) + ε0U · k. (11)

Here U is normalized such that its root-mean-square
value (RMS) is equal to unity, i.e., U0 = 1. The start-
ing locations of the rays are chosen deterministically on
a uniform grid and the initial direction of k is chosen
randomly for each ray. All waves start with k0 = 1 and
therefore cg0 = 1 from (7). As an aside, it is easy to
check that for steady U(x) the choice k0 = 1 does not
limit the generality of our set-up, as any other choice
can be rescaled to this one. However, this is not true for
unsteady U(x, t). As the wave packets evolve the ratio
of mean flow to group velocity is monitored along rays
(with a slight abuse of notation) as

ε(t) = ε0
|U|
|cg|

(12)

Hence ε(0) ≈ ε0 and a fast–slow transition corresponds
to ε(t) reaching large values even though ε0 ≪ 1.
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The steady mean flow derives from a stream function
ψ as

U(x) = (−∂yψ, ∂xψ) , (13)

where ψ(x) is modelled as a zero-mean Gaussian ran-
dom function with isotropic and homogeneous covariance
function. This is realized as best as possible in a doubly
periodic domain by choosing the Fourier coefficients of
ψ as independent random variables drawn from a zero-
mean normal distribution. Explicitly, the Fourier coeffi-
cients are

ψ̂ =
1

q

√
C

2
q−n−1 (a+ ib), (14)

where q is the magnitude of the wavenumber of the
Fourier component, (a, b) are independent standard nor-
mal variables for each Fourier component, and C a nor-
malization constant that ensures that the RMS of U is
U0 = 1. Only a finite band of wavenumbers between
qmin = 1 and qmax = 30 is allowed and care is taken to
ensure the reality condition. Setting qmin > 0, ensures
that the mean value of the mean flow is 0. The param-
eter n > 0 sets the slope of the one-dimensional kinetic
energy spectrum to q−n.
We generated two sets of 10 mean flows that we used

throughout the study, with n = 3 (corresponding to the
direct, enstrophy cascade of 2D turbulence) and n = 5/3
(corresponding to the inverse, energy cascade in the same
situation). The flows are defined on a 2π × 2π doubly
periodic domain, with 512×512 grid points. These values
ensured numerical convergence, but our results remained
qualitatively insensitive to decreasing or increasing the
grid resolution.

The Hamiltonian ray tracing system is then solved
numerically using Matlab’s ode45 scheme with adapta-
tive time stepping, and relative and absolute tolerances
were set to 10−3. The random mean flow and its gradi-
ent tensor is computed exactly from the Fourier modes
at each grid position and then interpolated to the wave
packet positions using linear interpolation from the clos-
est neighbors. The accuracy of this interpolation step is
the most important element of the numerical scheme for
the purpose of accurate computation of the ray paths.
We checked that changing the error tolerances to 10−2

and to 10−4 did not change the results, although the ef-
fort required to compute a large number of rays with a
tolerance down to 10−4 is then significantly increased,
due to the adaptative time-stepping.

IV. RESULTS FOR STEADY MEAN FLOWS

Throughout this section we consider a random steady
mean flow of the form (14) with power law n = 3. For
a steady mean flow the invariance of Ω along rays im-
plies that changes in ω(k) are compensated by changes
in the Doppler-shifting term ε0U ·k. In the regime α > 1

changes with k are superlinear in ω but only linear in the
Doppler-shifting term, hence the stretching of k must
eventually cease because the aforementioned compensa-
tion becomes impossible. Together with the increase of cg
with k if α > 1, this leads to the simple prediction that
in this regime fast waves remain fast forever, i.e., that
ε0 ≪ 1 implies ε(t) ≪ 1 uniformly in t. Moreover, it also
appears likely that almost all slow waves will eventually
transition to fast waves, simply because any stretching of
k will reduce ε(t).
Conversely, if α < 1 then the dynamics is reversed:

the frequency changes sublinearly with k, making the
changes in the Doppler-shifting term dominant, and cg
decreases as k is stretched. This suggests that in this
regime slow waves remain slow, whilst fast waves may
also transition to slow waves.

A. Ergodic and Trapped Rays

The qualitative difference between these two regimes
is illustrated with a couple of sample runs in figure 1.
Both runs start with ε0 = 0.5 but in the first run α = 1.2
whereas in the second it is α = 0.5. As expected, in the
first run the wave remains fast, traverses the domain in
a seemingly ergodic fashion, and there is no discernible
trend in k/k0 or ω/ω0. By contrast, in the second run
there is a fast–slow transition, k/k0 and ω/ω0 sharply
increase, and the ray gets trapped in a single vortex.
As an aside, in the second case k eventually grows lin-

early in time once the wave has been trapped. This can
be explained by considering the limiting dynamics of pas-
sive advection by a circumferential vortex flow U(r), say.
The wave packet maintains a fixed radius r and its an-
gular momentum is conserved, so

ṙ = 0 and (k× r)
·
= 0. (15)

With k = (kr, kθ) it follows that k̇θ = 0 and, using equa-
tion 10, that

k̇r = −rkθ
d

dr

(
U(r)

r

)
. (16)

This makes obvious that any non-uniform angular ve-
locity U/r eventually leads to secular growth of kr and
k. Indeed, figure 2 shows k in the α = 0.5 case of fig-
ure 1: the blue line shows the mean trend when the ray
is trapped, corroborating this simple explanation.
The two different regimes can be explored statistically

by looking at the sample distribution at t = 200 of 1600
rays initially distributed evenly on a 40 × 40 grid. The
outcome is shown in figure 3 with α = 1.2 and ε0 = 0.5
at the top and α = 0.5 and ε0 = 0.5 at the bottom (same
values as in figure 1). The left plots present the end lo-
cations of the rays superimposed on the stream function
and the center plots coarse-grains this distribution over
20 × 20 bins to estimate the probability density func-
tion (PDF) of the rays. This makes the concentration
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FIG. 1. Sample rays in two cases. The first column shows the ray path as dots in physical space, superimposed on the stream
function of the mean flow; the spacing of the dots becomes denser and resembles a solid line if the ray slows down. Lighter
red color refers to later times for orientation. The second column shows the path of the ray in the phase space and the third
column shows the logarithm of the intrinsic frequency ω as a function of time. Top row: α = 1.2 and ε0 = 0.5, corresponding to
an ergodic trajectory with no shift in frequency and no fast–slow transition. Bottom row: α = 0.5 and ε0 = 0.5, corresponding
to a trapped trajectory with shift in frequency, indicative of the fast–slow transition.
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FIG. 2. Evolution of k in the case α = 0.5 and ε0 = 0.5.
The wave packet is trapped around t ≈ 100 and afterwards
k exhibits secular growth, with fluctuations around a linear
trend (oblique blue line).

of rays in the vortex cores qualitatively apparent in the
α = 0.5 case. To measure this quantitatively we exploit
that the stream function ψ is negatively correlated with
the vorticity ∇2ψ and therefore |ψ| is positively corre-
lated with the vorticity magnitude. Hence |ψ| can be
used as a smooth proxy for vortex cores and the third
column shows the time evolution of the sample Pearson
correlation coefficient R(t) between |ψ| and the ray PDF.
In the α > 1 regime R fluctuates close to zero, but in the
α < 1 regime R rises to 0.3 and stays at this value for
the entire time of the simulations. These results are in-
sensitive to the particular mean flow sample being used.

B. Phase Diagram of Fast–Slow Transitions

We perform a large number of simulations to map out
the long-term behaviour of the rays as a function of the
parameters α and ε0, which yields a phase diagram of the
fast–low transitions. We discretize in steps of 0.025 in
either parameter and choose limits of α = −2.4 through
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FIG. 3. Top row: no-transition case with α = 1.2 and ε0 = 0.5. Bottom row: fast-slow transition case with α = 0.5 and ε0 = 0.5.
Left: stream function ψ and 1600 rays at t = 200. Center: normalized PDF computed by counting the rays on a coarse-grained
grid. Right: sample correlation coefficient between |ψ| and the ray PDFs, which is close to zero in the no-transition case but
significantly positive in the fast-slow transition case (several graphs for different mean flow samples are plotted).

1.2 and ε0 = 0.025 through 1. The asymmetric range of α
focuses on the potential trapping regime with α < 1. For
each (α, ε0) we draw 10 random mean flow samples and
launch 16 rays spaced on a uniform grid for each sample,
corresponding to a total of 160 rays for each location in
phase space. The evolution of the intrinsic ω and ε are
monitored as a function of time and averaged over all
rays.

The phase diagram of the values of ε at t = 200 is
presented in figure 4 for two different mean flows. Both
have qmin = 1 and qmax = 30 but their power law expo-
nent is different: n = 3 in the top row and n = 5/3 in
the bottom row. The center plots show the corresponding
phase diagram with the ray-averaged ε(200) color-shaded
such that blue corresponds to fast waves and red to slow
waves. We identify two regimes: (1) a slow regime in
which ε(t) goes to high values (saturation of the color-
bar in red), indicating that the group velocity becomes
small compared to the mean flow; and (2) a fast regime
in which ε(t) remains bounded and smaller than 1. As

discussed in the case of a single ray, these regimes are as-
sociated with (1) a significant shift in intrinsic frequency
or (2) no such shift and therefore ω remains close to its
initial value. In the shift case, not all rays are trapped
in background flow structures but the system reaches a
state in which a majority of rays are trapped. Moreover,
some rays can still escape this trapped dynamics while
others are being trapped in turn; we observed that this
de-trapping behavior is more likely to occur close to the
regime boundary. On the other hand, none of the rays
are trapped in the no-shift case, their trajectory being
ergodic.

As previously mentioned, a clear boundary at α = 1
is seen when ε0 approaches 1, highlighted by a white
dashed line; this boundary has been detected consistently
in other runs for values of ε0 up to 1.5. For α > 1, no
fast–slow transitions have been detected in the simula-
tions and the only attracting end state is the fast wave
regime. For α < 1, however, there is a threshold for ε0
such that above the threshold the slow wave regime now
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FIG. 4. Comparison between the n = 3 case (top row) and the n = 5/3 case (bottom row), showing a representative stream
function (left), the phase diagram of ε(t = 200) in the (α, ε0) space obtained by computing the trajectories of 16 rays on 10
mean flows (center), and the extracted mean boundary with its standard deviation computed over the 10 mean flows (right).

becomes the only attracting state (identified in figure 4,
right). Conversely, below that threshold the fast wave
regime remained the attractor for the duration of the in-
tegration. We found very little sensitivity of these thresh-
old values to integration time and domain size, which
warrants a closer inspection of the dynamics near these
values.

C. Threshold Boundary

The existence of a threshold in ε0 below which a fast–
slow transition becomes impossible can be made plausible
by considering the detailed consequences of the conser-
vation of absolute frequency in (3) for the illustrative
case α = 1/2, which is relevant to the deep-water surface
waves studied in [6]. For α = 1/2 the conservation law
Ω = Ω0 is

2
√
k + ε0Uk cos θ =

1

α

√
k0 = 2. (17)

Here U = |U|, θ is the angle between U and k, and
the initial Doppler-shifting term has been neglected for
simplicity. This is a quadratic equation for

√
k and for

small ε0 its roots are O(1) on one branch and O(1/ε0)
on the other. The ray starts with

√
k0 = 1 on the O(1)

branch and a fast–slow transition corresponds to a con-
tinuous transition to the other, O(1/ε0) branch. This
requires that the two branches coincide on a double root,
the condition for which is that

1 + 2ε0U cos θ = 0 (18)

holds at some moment in time along the ray. If ε0 is
small enough that this condition can never be satisfied
then a fast–slow transition is strictly impossible. For a
single flow sample a strict threshold for ε0 can be com-
puted from this condition using the maximum flow ve-
locity of the sample. For random mean flows the thresh-
old depends on the extreme-value statistics of the flow,
e.g., for a two-dimensional Gaussian random mean flow
with unit variance a restriction to flow speeds within
three standard deviations yields |U cos θ| ≤ 3/

√
2, so
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ε0 <
√
2/6 ≈ 0.24 would be a reasonable threshold for

this random mean flow. This agrees quite well with the
observed threshold for α = 1/2 in figure 4. Notably, the
relevant ε0 values for the surface waves studied in [6] were
significantly below this threshold, which is the consistent
with the lack of fast–slow transitions observed in that
study. The case α = −1 also leads to a quadratic equa-
tion, which then yields the threshold ε0 <

√
2/12 ≈ 0.12,

again in good agreement with figure 4. We were not able
to derive a general formula for the threshold as a continu-
ous function of α < 1. Some heuristic arguments suggest
that the threshold is proportional to 1/(1−α), which ap-
pears broadly consistent with the numerical results, but
is not very accurate when comparing the detailed results
for the two cases α = 1/2 and α = −1.
The threshold boundary converges towards a similar

shape for different random mean flows: in figure 4, we
present the results for mean flows with power laws n = 3
and n = 5/3, but we also observed it for various other
cases such as n = 2 or n = 10. For example, the threshold
at α = 0 varied slightly but was always in the range
0.2 ± 0.05. This convergence is also very robust, as the
boundary can be obtained only with statistics on a few
set of rays (9 rays for a single mean flow, for instance,
would give qualitatively the same behavior as the 160
rays used to obtain figure 4).

V. UNSTEADY MEAN FLOWS

Based on the earlier work on two-dimensional ray dy-
namics in [17] it can be anticipated that allowing the
mean flow to be time-dependent will have a significant
impact on the fast–slow transitions. We explored this by
using a simple stochastic model for the time evolution of
the Fourier coefficients in (14). Specifically, all the pa-
rameters (a, b) undergo independent Ornstein–Uhlenbeck
processes [e.g., 18] with unit variance and temporal auto-
correlation that decays exponentially with an adjustable
decay rate γ ≥ 0. This produces a time-dependent mean
flow with stationary statistics and γ = 0 recovers the
steady mean flow from before. In actual fluid dynamics
the autocorrelation decay rate is a modest multiple of the
vortex turnover rate, which scales as the vorticity ε0∇2ψ
in our model. Hence the most relevant parameter range
for γ is a modest fraction of the RMS vorticity, which
we denote by ε0ξ0, where ξ0 is the unscaled RMS of the
vorticity of the flow.

Phase diagrams computed for various unsteady mean
flows are shown in figure 5 for a q−3 mean flow, with
γ/ε0ξ0 varying from 0 (steady flow) to 1 (fast varying
flow). The steady mean flow diagram is consistent with
the previously discussed ones. The fast varying flow di-
agram, however, shows a different behavior: the curved
boundary present for α < 1 had disappeared, and only
remains a sharp cut-off at α = 1, meaning that frequency
shift is always observed for power laws smaller than 1 no
matter the initial ratio ε0 between the RMS of the flow

and the group velocity of the waves. This constitutes a
“white noise” regime, in which the variations of the flow
are happening so fast that they are decorrelated between
each time step, so the waves are seeing very different and
abruptly changing features. This is ultimately an ana-
loguous regime to the large ε0 case for the steady flow,
in which the group velocity is too small for the waves to
follow the flow if α < 1. Between the steady and the fast-
varying flow cases, a transition occurs for γ/ε0ξ0 ∼ 10−2,
although a precise investigation of this transition was not
carried out.

VI. CONCLUDING REMARKS

Motivated by recent studies in geophysical fluid dy-
namics involving internal and surface gravity waves inter-
acting with a mean flow, we performed detailed ray trac-
ing simulations of wave packets based on a simple two-
dimensional isotropic power law dispersion relation of the
form ω ∝ kα. This model captures some of the pertinent
dynamics of internal gravity waves (such as the possible
reduction of group velocity with increasing wavenumber),
but it also fails in other respects, which limits that com-
parison. Foremost of these is that the wavenumber sets
belonging to a single frequency are compact circles here
whilst they are unbounded three-dimensional cones for
internal waves. So this is a partial analogy at best and
our two-dimensional model is more relevant to surface
gravity waves.

Now, the ratio ε of the typical mean flow speed U to the
group velocity cg then demarcates two distinct regimes of
fast (ε ≪ 1) and slow (ε ≥ 1) waves. The markedly dif-
ferent behaviour of these two wave types was illustrated
in figure 1: fast waves are barely affected by the mean
flow, they traverse the domain in a seemingly ergodic
fashion, and there is no net drift in their frequency ω.
The latter property is particularly important as wave ac-
tion conservation implies that wave energy changes are
proportional to changes in ω, hence fast waves do not
exchange much energy with the mean flow. In contrast,
slow waves are strongly affected by the mean flow, they
get trapped in coherent flow structures such as vortices,
and their frequency grows significantly (cf. figure 2 and
3), indicating that slow waves are extracting energy from
the mean flow.

Fast–slow transitions, whereby a fast wave becomes a
slow wave or vice versa, depend on α and on the ini-
tial value of ε. Crucially, they also depend strongly on
whether the mean flow is steady or not. This is because
for steady mean flows the ray tracing equations conserve
the absolute frequency Ω and this conservation in time
provides a non-trivial forever link to the initial condi-
tions of the wave packet. The profound implications of
this for the long-term dynamics are illustrated in figure 4.
Clearly, if α > 1 then fast waves are the only attracting
states in the long run, i.e., fast waves remain fast and
slow waves become fast. Alternatively, if α < 1 then
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γ
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FIG. 5. Evolution of the phase diagram of ε(t = 200) in the (α, ε0) space in the case of an unsteady mean flow. On the far
left is the base case of a steady mean flow. On the far right is the case of a fast varying mean flow that leads to a decorrelated
“white noise” regime for which the boundary between shift and no-shift is a straight line at α = 1. A gradual transition lies in
between and separates these two limiting behaviors.

there is a finite threshold value for ε0 (depending on α)
below which fast waves will remain fast forever; this is the
main new finding of our study. Above that threshold, on
the other hand, fast waves will inevitably transition into
slow waves in the long run, thereby limiting the validity
in time of asymptotic theories based on fast waves. The
underlying mathematical reason for this finite threshold
could be illustrated in detail in the special case α = 1/2,
which is relevant for surface waves.

Now, for unsteady mean flows the conservation of Ω
no longer holds and this allows more waves to transi-
tion from fast to slow regimes. This is illustrated in the
sequence of (α, ε0) regime diagrams as a function of in-
creased mean flow unsteadiness in figure 5: as the un-
steadiness increases the thresholding behaviour for α < 1
gradually fades away until the only remaining regime
threshold is α = 1. This state of affairs, in which all
waves eventually transition to slow waves, is reached al-
ready at fairly modest levels of unsteadiness. For exam-
ple, the third panel corresponds to a rate of change of the
mean flow of just 10% of a typical eddy turnover time.

From this it seems plausible that in practice sufficient
mean flow unsteadiness will be the most likely cause of
fast–slow transitions, provided that the dispersion rela-
tion links large values of k to small values of cg.

Of course, our study of unsteady mean flows was
restricted to the artificial time evolution of a random
stream function pattern, rather than to realistic fluid evo-
lution. In particular, this meant that coherent structures
such as vortices did not persist in a Lagrangian fashion
in our simulations. Whether this would affect our con-
clusions requires further study.
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