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The out-of-time-ordered correlator (OTOC) has emerged as an interesting object in both clas-
sical and quantum systems for probing the spatial spread and temporal growth of initially local
perturbations in spatially extended chaotic systems. Here, we study the (classical) OTOC and
its “light-cone” in the nonlinear Kuramoto-Sivashinsky (KS) equation, using extensive numerical
simulations. We also show that the linearized KS equation exhibits a qualitatively similar OTOC
and light-cone, which can be understood via a saddle-point analysis of the linearly unstable modes.
Given the deep connection between the KS (deterministic) and the Kardar-Parisi-Zhang (KPZ which
is stochastic) equations, we also explore the OTOC in the KPZ equation. While our numerical re-
sults in the KS case are expected to hold in the continuum limit, for the KPZ case it is valid in
a discretized version of the KPZ equation. More broadly, our work unravels the intrinsic interplay
between noise/instability, nonlinearity and dissipation in partial differential equations (deterministic
or stochastic) through the lens of OTOC.

I. INTRODUCTION

The spatiotemporal spread of perturbations is a topic
of great interest in spatially extended, chaotic systems.
The out-of-time-ordered correlator (OTOC) has been re-
cently proposed as a diagnostic tool to understand the
growth (or decay) of perturbations in such systems. The
OTOC captures both the temporal growth and the spa-
tial spread of an initially localized perturbation. This
quantity has been used in classical models, in particu-
lar models or systems which involve a large number of
degrees of freedom. In classical systems, the initial lo-
cal perturbation can be infinitesimal. For example, the
OTOC has been used to study spreading of perturba-
tions in a classical spin chain [1], chaos in thermalized
fluids [2], many-body chaos in classical interacting spins
on a kagome lattice [3, 4], classical disordered anharmonic
chain [5], chaos and anomalous diffusion across a thermal
phase transitions in 2D XXZ model with anisotropy [6],
dynamical regimes of finite temperature discrete nonlin-
ear Schrödinger chain [7], driven dissipative Duffing chain
[8], low dimensional classical chaotic systems [9], veloc-
ity dependent Lyapunov exponents in classical chaos [10],
power-law models at low temperatures [11], integrable
spin chains including effects of breaking integrability [12],
coupled map lattices [13] and spin chains with kinetic
constraints [14, 15]. It is worth noting here that al-
though the classical OTOC has gained prominence rather
recently, the quantum OTOC is a well-established di-
agnostic of chaos in quantum many-body systems and
quantum information [16–22].

Despite these extensive studies, the OTOC in contin-
uum nonintegrable (in the Liouville sense) systems or
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nonintegrable partial differential equations has not re-
ceived much attention. In addition, much remains to be
explored regarding the intrinsic interplay between insta-
bility, dissipation and nonlinearity. In this context, a nat-
ural candidate is the well-known Kuramoto-Sivashinsky
(KS) equation [23, 24]. This is a deterministic equation
where there is a rich interplay between instability and
chaos that leads to an emergent noise, provided there are
sufficient number of unstable modes, which happens in
the limit of large system size [25, 26]. On the other hand,
certain aspects, such as scaling, spatiotemporal correla-
tions, and distributions of height fluctuations of the well-
known Kardar-Parisi-Zhang (KPZ) equation [27–29] are
deeply connected to the KS equation [26, 30, 31]. This
naturally raises the question of the possible connection
between these two models as far as OTOC is concerned.
The content of the paper is as follows. We describe the

models and their properties in Section II. We summarize
the key findings of our work in Section III. We discuss
the results for the KS equation in Section IV. Then we
present our results for the KPZ equation in Section V.
We conclude with a few remarks in Section VI.

II. MODELS AND PROPERTIES

We will start by discussing some relevant details of the
KS and KPZ equations. The KS equation [23, 32] reads

∂th = −∂2xh− ∂4xh− 1

2
(∂xh)

2 (1)

where h(x, t) is a height profile defined on x ∈ [0, L]
with periodic boundary conditions. The KS equation em-
bodies an intriguing interplay of instability, dissipation,
and nonlinearity represented by the first, second and the
third term respectively in the right-hand-side of Eq. (1)
[26, 30]. The KS equation appears in various physical
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contexts, such as propagation of waves in dissipative me-
dia [23, 32], flame front propagation [24, 33], diffusion-
induced chemical turbulence [34], irregular flow of liquid
film down a vertical plane [35–37], model system with
intrinsic stochasticity [38], dynamical systems [39, 40],
and phase turbulence [41, 42], to name a few. Besides
its importance in modelling diverse physical phenomena,
the 1D KS equation has an interesting connection with
the 1D KPZ equation [27], a typical model under the
KPZ universality class [28, 29, 43]. Numerical and theo-
retical investigations [26, 30, 31, 44–46] suggest that the
long-time and large-length properties of the KS equation
correspond to those of the KPZ equation. This deep con-
nection is rooted in the unstable long-wavelength modes
and the spatiotemporal chaos in the KS equation, which
are responsible for generating an effective “noise”.

The 1D KPZ equation is given by

∂th = ∂2xh+ g(∂xh)
2 + η, (2)

where h(x, t) is the fluctuating and growing height field,
g is the strength of nonlinearity and η is the Gaussian
white noise with strength 1:

⟨η(x, t)η(x′, t′)⟩ = 2δ(x− x′)δ(t− t′). (3)

Note that the parameter g is taken to be g = 8 for numer-
ical convenience. However, by suitably scaling the space,
time, and the height field, the parameter g can also be
set to 1 in Eq. (2) [47].

In this paper we study how localized perturbations be-
have in these two models [Eq. (1) and Eq. (2)] using
OTOC as a well-suited diagnostic. The OTOC involves
both the spatial spread as well as the temporal growth (or
decay) of the initially localized perturbation. The proce-
dure to compute the classical OTOC is as follows. We ini-
tially consider two copies of the height profile: ho(x, ti),
the original copy, and hp(x, ti), the perturbed copy which
is generated from the original copy by introducing an in-
finitesimal local perturbation (ϵ) at initial time ti. We
then define their difference ψ(x, t) as

ψ(x, t) := lim
ϵ→0

1

ϵ

(
hp(x, ti+ t)−ho(x, ti+ t)

)
, t ⩾ 0, (4)

where ho and hp are numerically computed using Eq. (1)
or Eq. (2), and in the case of KPZ, the two are subject
to precisely the same noise η(x, t). Then the OTOC, de-
noted as D(x, t), is defined in terms of ψ in the following
manner

D(x, t) := ⟨|ψ(x, t)|⟩, (5)

where ⟨·⟩ is average over different initial conditions. It
is to be noted that several works about classical OTOCs
define D(x, t) by instead averaging the square of ψ. This
quantity D(x, t) can be plotted as a “heat map” and it
encodes the spatial spread and temporal growth or decay
of the initial perturbation. The former can be character-
ized by the butterfly velocity, and the latter by the finite-
time Lyapunov exponent (FTLE) and by the velocity-
dependent Lyapunov exponent (VDLE).

III. SUMMARY OF FINDINGS

The key findings of our investigation are as follows.

1. For the KS equation, we observe a sharp light-cone
in the OTOC even in the linearized case (Fig. 1),

i.e. neglecting the term − (∂xh)
2
/2 in Eq. (1),

demonstrating that chaos due to nonlinearity is not
needed to produce such a ballistically spreading
OTOC. We compute the exact expression of OTOC
in this case and unravel the interplay between un-
stable modes and dissipation. Using the method
of steepest descent, we extract the values of but-
terfly velocity and Lyapunov exponents. We then
use extensive numerical simulations to compute the
OTOC of the fully nonlinear (Fig. 3) KS equation
Eq. (1). The velocity-dependent Lyapunov expo-
nents have been studied in both the linear and the
fully nonlinear KS equation (Fig. 4).

2. We investigate the OTOC in the 1D KPZ equation
(Fig. 5) using the discretization scheme provided
in Ref. 48. Following this numerical discretization
scheme, we observe a conventional light-cone in the
OTOC for the KPZ equation. It is important to
note that, even though certain statistical proper-
ties (such as scaling, spatiotemporal correlations
and height distributions) related to the 1D KPZ
equation are correctly reproduced by the method in
Ref. 48, the chaotic behaviour that we have char-
acterized using the OTOC is expected to be true
only for the discretized KPZ equation [49].

IV. RESULTS FOR THE
KURAMOTO-SIVASHINSKY EQUATION

To study the OTOC in the KS equation, we focus on
ψ(x, t) given in Eq. (4). The KS equation in Eq. (1) in
the limit of infinitesimally small perturbation (ϵ → 0)
reads

∂tψ = −∂2xψ − ∂4xψ − ∂xho ∂xψ . (6)

Eq. (6) is a linear equation in ψ with coefficients dictated
by the evolution of the height field ho(x, t) evolving ac-
cording to Eq. (1). We choose the following initial con-
dition for ψ where the two copies of the height profiles
differ only near x = L/2 (centre) at t = 0 in the following
manner:

ψ(x, 0) = exp

[
− (x− L/2)2

w2

]
, (7)

where 0 < w << L determines the width of the Gaussian
perturbation. We set this width to be w = 1 for studying
OTOC in the KS equation.
The lateral extent of the light-cone given by Eq. (5)

gives the spatial spread of the initial perturbation thereby
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yielding the butterfly velocity vb which characterizes the
speed with which the boundary of the light-cone, defined
by D(x, t) = 1, moves. On the other hand to understand
the temporal growth or decay at some fixed spatial point
x, we define the finite-time Lyapunov exponent (FTLE)
as

Λx(t) :=
lnD(x, t)

t
. (8)

The velocity-dependent Lyapunov exponent (VDLE)
can be defined as

lim
t→∞

lnD(x = vt, t)

t
= lim

t→∞
Λx=vt(t) = λ(v). (9)

For these systems, the maximal Lyapunov exponent is
λ(v = 0). It is interesting to note that VDLE has been
also defined in a slightly different manner in the litera-
ture (such as in Refs. 50–52) where it is often referred
to as convective Lyapunov exponent. In Ref. 50, the per-
turbation at time t is integrated over an interval of fixed
length (equal to the spatial extent of the initial pertur-
bation). Thus the perturbation may be considered as
coarse-grained. But, in the case of OTOC discussed in
Ref. 1, the approach is to consider average of the abso-
lute value of the perturbation over different initial con-
ditions instead of coarse-graining. Both these quantities,
albeit different, are likely to encode the essential aspects
of spatiotemporal chaos. However, we use the definition
in Eq. (9) in this study even though alternate definitions
might also unravel the essential characteristics of Lya-
punov exponents.

Before presenting extensive numerical results of Eq. (6)
which will give the OTOC for the fully nonlinear KS
equation, we will first present some results for the lin-
earized KS equation. This is equivalent to studying
Eq. (6) without the last term. A saddle-point analysis
of the late time behavior can be done for this linearized
model. A study of instabilities in linearized partial dif-
ferential equations is mathematically tractable [53], and
turns out to be instructive as we discuss below.

In the Fourier space, ignoring the last term in Eq. (6),

the wavenumber-k mode ψ̃k(t) obeys

∂tψ̃kn
= rkn

ψ̃kn
(10)

where

rkn
= k2n − k4n, and ψ̃kn

=
1

N

N∑
m=0

ψ
(

mL
N , t

)
e−

iknmL
N ,

(11)
with kn = 2πn/L, n ∈ Z. The solution of Eq. (10) is
easily found to be

ψ̃k(t) = ψ̃k(0) exp(rkt) . (12)

Note that the Fourier modes grow if rk > 0. Thus the
modes satisfying 0 < k2n < 1 grow with time. For a

discretized system with N equispaced gridpoints, in the
real space, the difference ψ(x, t) is

ψ(x, t) ≈ ψ̃0(0) + 2

N
2∑

n=1

erkn tRe
[
ψ̃kn

(0)eiknx
]
, (13)

where we recall that kn = 2πn/L are the modes in the
discretized system.
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FIG. 1: (Color online) Plots of (a) the heatmap for the
OTOC, and (b) FTLE without the nonlinear part in the
KS equation in Eq. (1). The emergence of a sharp light-
cone and non-zero Lyapunov exponent even in the linear
model is rooted in the unstable long-wavelength modes.
Note that the heat map is for log10D and location of
initial perturbation is at x = L/2 (center). Here, we
have used L = 400 and N = 2048.
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FIG. 2: (Color online) A schematic diagram of the de-
formed contour needed to perform the integration. The
red dots show the three roots for an arbitrary chosen
sample value of v =

√
2 for the saddle point analysis.

The method in Ref. 54 is adapted here.
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FIG. 3: (Color online) The plots of (a) the OTOC and
(b) the Lyapunov exponent for the fully nonlinear KS
equation in Eq. (6) with L = 400, N = 2048 and 500
independent simulations (see Appendix A for details re-
garding numerical methods). It is worth noting that the
value of the butterfly velocity is quite close to the value
obtained in the case of linear KS equation. However, the
Lyapunov exponents are markedly different and we find
that the nonlinear terms substantially reduce the maxi-
mum Lyapunov exponent. Similar to Fig 1, here also the
heat map is for log10D and location of initial perturba-
tion is at x = L/2 (center). Perturbation was added at
ti = 1000.

In the Fourier space, the initial condition for ψ(x, t)
given in Eq. (7) becomes

ψ̃kn
(0) =

w
√
π

L
e−

iknL
2 − k2

nw2

4 . (14)

Then, the solution at time t > 0 is given by [using
Eq. (13)]

ψ(x, t) ≈ w
√
π

L

N/2∑
n=−N/2

erkn t+iknx−
k2
nw2

4 , (15)

where x̄ = x − L/2. Thus the corresponding OTOC is
given by

D(x, t) ≈w
√
π

L

∣∣∣∣∣1 + 2

N/2∑
n=1

cos(kx) erkn t− k2
nw2

4

∣∣∣∣∣. (16)

Note that Eq. (16) is exact and plotted in Fig. 1. We
note from Fig. 1 that the butterfly velocity turns out to
be vb ≈ 1.6 and the maximum Lyapunov exponent is
Λ ≈ 0.25. Interestingly these values can be extracted by
analytical analysis of Eq. (16) via the method of steepest
descent which we will present below.

We convert the sum in Eq. (16) into an integration
which yields

D(x, t) =
w

2
√
π

∣∣∣ ∫ ∞

−∞
dk etg(k)e−k2w2/4

∣∣∣ (17)

We consider the function in the exponent of the integrand
of Eq. (17),

g(k) = ik
x

t
+ (k2 − k4). (18)

The first and second derivatives of g(k) are respectively
given by

g′(k) = i
x

t
+ (2k − 4k3), g′′(k) = 2− 12k2. (19)

Setting g′(k) = 0 and solving for k, we find three saddle
points:

k̃m(v) =
i√
2

(
−ωm−1z(v) +

1

3 ωm−1z(v)

)
, m = 1, 2, 3,

(20)
where

ω =
−1 + i

√
3

2
, and z(v) =

3

√
v

2
√
2
+

√
v2

8
+

1

27
(21)

with v = x̄/t. Note that the real parts of k̃2 and k̃3
have opposite signs but same absolute values, whereas
the imaginary parts of these solutions are same. These
three roots are shown in Fig. 2 for an arbitrary chosen
sample value of v =

√
2. We deform our integral to pass

through the two saddle points at k = k̃2, k̃3. We need to
evaluate g′′(k) at these points:

g′′(k) = −
(
2 + 3z2 +

1

3z2
± i

9z4 − 1√
3z2

)
, k = k̃2, k̃3,

(22)
where z is given in Eq. (21) and we omit the argument
v for the sake of brevity. We adopt the procedure in
Ref. 54 for the method of steepest descent to evaluate
D(x, t) in Eq. (17). Recall that we have two stationary

points (k̃2, k̃3) along the contour as observed above and
the value of D(x, t) in the limit of long time is sum of the
contributions from these points.
To reduce our problem to a form adaptable to the pro-

cedure in Ref. 54, note that

g(k̃2) =
[ v√

2

(
ω z − 1

3ω z

)
− 1

2

(
ωz − 1

3ω z

)2

−1

4

(
ω z − 1

3ω z

)4 ]
. (23)

Also it is easy to see that the directions of steepest de-
scent for k̃2 are given by

θ2 = −1

2
Arg[g′′(k̃2)] +

3π

2
, (24)

where our notation is such that an angle θ = 0 corre-
sponds to the positive real axis. We deform our contour
(Fig. 2) at k̃2 along the direction dictated by θ2 given
in Eq. (24). From Eq. (24), it turns out that θ2 lies in
the fourth quardrant, 11π/6 < θ2 < 2π. Similarly, the

contour at k̃3 is deformed as per θ3 given by

θ3 = −1

2
Arg[g′′(k̃3)] +

π

2
, (25)

and using Eq. (25), it turns out that θ3 lies in the first
quadrant, 0 < θ2 < π/6. We need to integrate along
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these directions and add the contributions. Therefore,
adapting Ref. 54 we find that the contribution from the
saddle point k̃2 is given by

D2(x, t) =

√
2π√

t|g′′(k̃2)|
eiθ2+tg(k̃2)−(k̃2

2w
2/4) , (26)

while the contribution from k̃3 is the complex conjugate
of this. Combining the contributions, we get the follow-
ing result:

D(x, t) ≃ 2
√
2π√

t|g′′(k̃2)|

∣∣∣Re [eiθ2+tg(k̃2)−(k̃2
2w

2/4)
] ∣∣∣. (27)

The velocity-dependent Lyapunov exponent is then given
by the exponential growth (or decay) of this with time:

λ(v) = Re
[
g(k̃2)

]
. (28)

Using Eq. (23), λ(v) in Eq. (28) takes the form,

λ(v) =
z4

8
+
z2

12
− v z

2
√
2
+

v

6
√
2 z

+
1

108 z2
+

1

648 z4
+

1

6
, (29)

where we recall that z(v) is given by Eq. (21). Although
Eq. (29) is rather cumbersome, it turns out that λ(v =
0) = 0.25 which is the maximal Lyapunov exponent. The
butterfly velocity can be extracted by solving for λ(vb) =
0. It turns out that the butterfly velocity vb extracted in
this way is vb ≈ 1.62. Therefore Lyapunov exponent and
butterfly velocity extracted are in good agreement with
the numerically obtained values.

Since we see from these analytical calculations that
D(x, t) goes as ∼ etλ(v), we thus obtain a “light-cone”
behavior for this OTOC that is qualitatively the same as
is seen in many-body chaos. But this is appearing in a
linear equation due to its linear instability.

Having discussed the saddle-point analysis and the lin-
ear KS equation, we now present results for the fully non-
linear KS equation using extensive numerics. As shown in
Fig. 3, we observe a distinct light-cone in the heatmap of
the OTOC and also temporal growth in chaos unravelled
by the finite-time Lyapunov exponent. Interestingly, we
find the value of the butterfly velocity (vb ≈ 1.50) is
changed very little when nonlinearity is included. On the
other hand, remarkably, the maximum Lyapunov expo-
nent λ(v = 0) shows a large decrease when nonlinearity
is included. In the linear KS equation, λ(v = 0) is set
by the most unstable linear modes. However, in the non-
linear case, the interaction term strongly couples all the
linear modes; apparently this causes the maximum Lya-
punov exponent to be more like an average over many
of the linear modes, and thus much smaller than that of
the most unstable linear mode. This behavior is in con-
trast to adding a nonlinearity to a linearly stable system,

where the nonlinearity causes chaos and thus an increase
of the maximum Lyapunov exponent. We also show the
velocity-dependent Lyapunov exponent both for the lin-
ear and fully nonlinear KS equation in Fig. 4.
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FIG. 4: (Color online) The plots of the velocity-
dependent Lyapunov exponents (VDLE) λ(v) for (a) the
linear and (b) the fully nonlinear KS equation in Eq. (1)
for L = 4000 (N = 8192) and L = 400 (N = 2048),
respectively. Note that in (a), the expression for λ(v) is
taken from Eq. (29). One can notice good agreement be-
tween analytical computation and direct numerics in (a).
In (b), the black dashed line represents a suitable fit for
the VDLE in the fully nonlinear KS equation.
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FIG. 5: (Color online) (Left) The OTOC for the KPZ
equation [see Eq. (2) and Eq. (4)] for g = 8 using the
Lam-Shin finite-difference method (see Appendix B for
details) with L = 512, ϵ = 10−5, N = 512 with w = 4.
Total number of independent simulations is 14900. Note
that the heat map is for log10D, and location of initial
perturbation is at x = L/2 (center). Perturbation was
added at ti = 500. (Right) Behaviour of the OTOC
D(x, t) in Eq. (5) as a function of x for various time
snapshots t = 5, 10, 20, 40. Both the left and the right
moving fronts show a ballistic propagation. The slow-
down from exponential temporal growth during the time
window t = 20 to t = 40 can be attributed to the finite-
ness of ϵ.
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It is important to recall that there have been stud-
ies [31] showing deep connection between the KS and
KPZ equations. In particular, Tracy-Widom and Baik-
Rains distributions which were observed for the 1D KPZ
equation earlier [55] were also shown to occur in the KS
equation. One naturally wonders whether there is such
a connection in the OTOC as well. We next discuss the
OTOC and related quantities in the KPZ equation un-
der a lattice discretization and numerical scheme given
in Ref. 48.

V. RESULTS FOR KARDAR-PARISI-ZHANG
EQUATION

For the KPZ case, the equation obeyed by the differ-
ence field ψ given in Eq. (4) (in the limit of infinitesimally
small perturbation) is

∂tψ = ∂2xψ + 2g∂xψ∂xho, (30)

where recall that ho is the original height field satisfying
KPZ equation given in Eq. (2). Note that albeit Eq. (30)
is linear in ψ, the presence of the stochastic field ho(x, t)
is what gives rise to sharp lightcones and related features,
of course assuming the numerical discretization. In order
to study the OTOC for the KPZ equation, we employ
the Lam-Shin finite difference method [48] and we resort
to the method of two copies in Eq. (4). We describe the
Lam-Shin finite-difference method in Supplemental Ma-
terial [56]. In Fig. 5, using extensive numerics we present
results for the light-cone which is characterized by a but-
terfly velocity vb ≈ 4.8 and FTLE Λ ≈ 0.32 for nonlin-
earity strength g = 8. As mentioned earlier, our results
are valid only in the discretized KPZ equation and will
not hold in the strictly continuum KPZ equation [49].
Therefore, despite the established deep connections in
the long time and large system size limit between the
continuum KS and continuum KPZ equation, it is im-
portant to keep in mind that certain quantities such as
OTOC are expected to be strikingly different.

VI. CONCLUSIONS AND OUTLOOK

We have studied the spatiotemporal spread of an ini-
tial localized perturbation using the OTOC in the 1D
Kuramoto-Sivashinsky (KS) equation. This is a de-
terministic nonlinear differential equation with unstable
long-wavelength modes whose steady-state chaos is sta-
bilized by nonlinear terms. Via extensive numerical sim-
ulations we have characterized spatial spread and tem-
poral growth of initial localized perturbations in the KS
equation in the continuum limit. We provide an ana-
lytical insight for the linearized KS equation which has
a unique property of hosting a well-defined light-cone
structure even in the linear regime. The role of the un-
stable long-wavelength modes in the linearized KS equa-
tion has been understood by a saddle-point analysis. We

also provide results for the KPZ equation under a nu-
merical discretization scheme described in Ref. 48. How-
ever, in the truly continuum limit, the KPZ equation is
not expected to show spatiotemporal chaos [49]. The
positive largest Lyapunov exponent in the KS equation
has the linearly unstable long-wavelength modes as its
source, while for the (discretized) KPZ equation there
are no linearly unstable modes and the chaos appears to
be “sourced” at the scale of the numerical discretization.
Our work demonstrates that the KS equation is

an excellent platform for studying chaos in spatially
continuum systems. It will be interesting to explore
spatiotemporal chaos in multi-component systems
[57–64] where one can study chaos in different species.
Given that many physical systems fall into the 1D
KPZ universality class [28, 29, 43, 65, 66], our findings
should hold for such systems of both experimental and
theoretical interest.

VII. ACKNOWLEDGEMENTS

We would like to acknowledge Guillaume Barraquand
and Pierre Le Doussal for very useful discussions. M.K.
would like to acknowledge support from the project
6004-1 of the Indo-French Centre for the Pro- motion
of Advanced Research (IFCPAR), Ramanujan Fellow-
ship (SB/S2/RJN-114/2016), SERB Early Career Re-
search Award (ECR/2018/002085) and SERB Matrics
Grant (MTR/2019/001101) from the Science and Engi-
neering Research Board (SERB), Department of Science
and Technology (DST), Government of India. M.K. ac-
knowledges support of the Department of Atomic Energy,
Government of India, under Project No. 19P1112RD.
D.A.H. was supported in part by (USA) NSF QLCI grant
OMA-2120757.

Appendix A: Numerical method for the KS equation

We describe here the numerical techniques used in the
direct numerical simulation (DNS) of the 1D KS equa-
tion. We use the pseudo-spectral method which is well-
known in fluid dynamics [67]. The two equations of in-
terest are

∂tho = −∂2xho − ∂4xho −
1

2
(∂xho)

2 (A1)

∂tψ = −∂2xψ − ∂4xψ − ∂xho ∂xψ . (A2)

where ho(x, t) is the original copy of the KS model and
ψ(x, t) is defined as

ψ(x, t) := lim
ϵ→0

1

ϵ

(
hp(x, ti+t)−ho(x, ti+t)

)
, t ⩾ 0. (A3)
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First we take the Fourier transform of the Eqs. (A1) and
(A2), such that the equations are

∂th̃ok = (k2 − k4)h̃ok −Fk

(
1

2
(∂xho)

2

)
, (A4)

∂tψ̃k = (k2 − k4)ψ̃k −Fk

(
∂xho ∂xψ

)
, (A5)

where Fk(·) is the Fourier transform corresponding to the

wavenumber k such that h̃ok = Fk(ho) and ψ̃k = Fk(ψ).
The Fourier transforms are easily computed numerically
using the fast Fourier transform (FFT). The inverse
transform is also easy to perform using inverse FFT
(IFFT). We compute the nonlinear terms in real space
by transforming back to real space using IFFT, and then
return to Fourier space using FFT.

We carry out the time-evolution of the Eqs. (A4) and
(A5) using the exponential time-differencing fourth order
Runge–Kutta method (ETDRK4) [68, 69] in our simula-
tion. The ETDRK4 and its application to the 1D KS
equation is discussed in detail in Ref. 68. Ref. 69 stud-
ies a slightly modified version of the ETDRK4 which we
adapt in our simulation. Here we note that we evolve
only Eq. (A4) upto time ti(≫ 1). Then we start evolving
Eq. (A5) along with Eq. (A4).

Appendix B: Numerical method for the KPZ
equation

Here we discuss the numerical method we employ for
solving the KPZ equation. The Lam-Shin method [48]

is a finite-difference technique where central difference
is used for the second-derivative term and the nonlinear
term is handled with a modified difference term adapted
for the 1D KPZ equation. The height profile hn at the
n-th grid point (assuming periodic boundary conditions)
satisfies

dhn
dt

= Cn + gNn + ξn, (B1)

where

Cn = hn+1 + hn−1 − 2hn,

Nn =
1

3

[
(hn+1 − hn)

2
+ (hn+1 − hn) (hn − hn−1)

+ (hn − hn−1)
2 ]
.

(B2)

Note that here we set ∆x = L/N to 1 [48]. Thus the
height hn in the Lam-Shin numerical scheme is directly
coupled only to the nearest neighbours. With this dis-
cretization shown in Eq. (B1), we use Euler-Maruyama
method for time-marching [48, 70].
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[57] D. Ertaş and M. Kardar, Phys. Rev. Lett. 69, 929 (1992).
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