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We present a model of the electron thermal conductivity of a laser-produced plasma. The model,
supported by Vlasov—Fokker—Planck simulations, predicts that laser absorption reduces conductivity
by forcing electrons out of a Maxwell-Boltzmann equilibrium, which results in depletion of both
low-velocity bulk electrons and high-velocity tail electrons. We show that both the bulk and tail
electrons approximately follow super-Gaussian distributions, but with distinct exponents that each
depend on the laser intensity and wavelength through the parameter o = Zv%, /v#. For a value of
a = 0.5, tail depletion reduces the thermal conductivity to half its zero-intensity value. We present
our results as simple analytic fits that can be readily implemented in any radiation-hydrodynamics
code or used to correct the local limit of non-local conduction models.

Thermal conduction is a key component of the en-
ergy balance and transport of laser-produced plasmas,
especially those produced in high-energy-density exper-
iments such as high-performace inertial confinement fu-
sion (ICF) implosions[1]. In laser direct drive (LDD)
experiments, thermal conduction is responsible for con-
verting laser energy absorbed in the corona into ablation
pressure, providing the drive for a spherical implosion[2].
The more conductive the coronal plasma, the better the
coupling between the laser and the target, which is ben-
eficial for fusion performance. In laser indirect drive
(LID), the laser illuminates the interior wall of a gas-
filled hohlraum, which emits x rays that drive the cap-
sule. The radiation transport properties throughout the
hohlraum and blowoff plasma are sensitive to the temper-
ature profile and thus thus to the thermal conductivity
of the plasma|3, 4].

The baseline model for thermal conduction in a plasma
is that of Spitzer and Harm (SH)[5]. Not only is this
the basic model used in radiation-hydrodynamics sim-
ulations, but it is also central to the construction of
non-local conduction models[6-8]. The fundamental as-
sumption underpinning this theory is that the electrons
are in local thermodynamic equilibrium with a Maxwell—
Boltzmann (MB) velocity distribution. However, the in-
verse bremsstralhung (IB) absorption of laser light dis-
torts the electron distribution function away from a MB
form, a phenomenon sometimes called the “Langdon
effect.”[9] In this case, the SH theory no longer applies,
and the local theory of heat conduction as well as non-
local models based on SH need to be revised to explicitly
account for laser absorption.

Some theoretical attempts have been made to assess
how laser intensity affects heat conduction[10-12], but
these have never precipitated a quantitative and practi-
cal model to replace the SH theory despite their dramatic
predictions: that accounting for laser intensity leads to
a reduction in the thermal conductivity by as much as
a factor of four to five. The lack of this effect in main-
line conduction models means would imply that current

radiation-hydrodynamics simulations of laser-produced
plasmas might seriously overestimate the conductivity in
regions of high laser intensity, even before considering
possible non-local effects. In the context of ICF experi-
ments, this region corresponds to the coronal (LDD) or
blowoff (LID) plasmas, where changes to the conductiv-
ity has compounding effects on the power balance and
performance of ICF designs.

In this Letter we resolve this issue by providing an ac-
curate and practical model for the reduced thermal con-
ductivity of a plasma in the presence of laser absorption.
Our approach is based on a detailed model of the electron
distribution function in the presence of absorption and
conduction, supported by Vlasov—Fokker—Planck (VFP)
simulations of the relaxation of long-wavelength tempera-
ture perturbations in a plasma absorbing laser light with
fixed intensity. Electron—ion collisions, electron—electron
collisions, and nonlinear absorption (Langdon effect) are
all taken into account. The main result is that absorp-
tion reduces the thermal conductivity from the SH value
according to
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are the effective ion charge numbers for collisions and
absorption, respectively. The quantities ¢y, c¢1, and ca



are numerical coefficients which depend weakly on Z. In
the above, Z;, ni, A¢;, and A;p; are the charge state,
number density, electron—ion Coulomb logarithm, and IB
Coulomb logarithm[13, 14] for ion species i, A.. is the
electron—electron Coulomb logarithm, vr = \/kpT./m.
is the electron thermal speed for temperature T., and
vy = eEr/(mewr) is the electron oscillation velocity in
a laser with angular frequency wy, and electric field ampli-
tude EL = \/2I/(cep) for a laser with intensity I. Fun-
damental constants appearing in these expressions are
the elementary charge e, the vacuum speed of light ¢,
the vacuum permittivity ¢p, and the Boltzmann constant
kp. The parameter Z measures the relative strength of
electron—ion to electron—electron collisions, which mainly
affects the ansisotropy of the distribution function re-
sponsible for the conduction. The parameter o measures
the relative strength of IB absorption to electron—electron
collisions, which mainly affects the shape of the isotropic
part of the distribution function. The limit in which
Z — oo at fixed « corresponds to the Lorentz gas model,
on which all prior theoretical work on this problem was
based[10-12]. Tt will be seen that this treatment does
capture the overall trend that conductivity reduces as «
increases, but the reduction is significantly overestimated
compared to a full kinetic treatment of electron—electron
collisions.

The VFP simulations were conducted using the code
K2, which expands the velocity dependence of the
distribution function in spherical harmonics[15]. For
the 1-D problems considered here, this is equiva-
lent to a Legendre polynomial expansion, f(x,v,t) =
Soreo fe(x,v,t)Py(vg /v), of which we retain only the
isotropic component fy and flux component f;. The two-
term truncation is valid provided the temperature per-
turbation wavelength is much longer than the collision
mean free path, otherwise the heat conduction is nonlo-
cal. Convergence to the local limit is straightforward to
establish by increasing the background electron density
and verifying that the conductivity does not vary.[16] It
is also necessary that the laser intensity not be so high
that vg > vy, otherwise the laser absorption introduces
temperature anisotropy[17, 18].

The coupled VFP equations for the isotropic and
anisotropic components of the distribution function are
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where Cy and C; are respectively the isotropic and
anisotropic electron—electron collision operators[19],
Crp is the IB absorption operator[9], ve(v) =
Ze*neMee/(Amedm?v®)  is  the  velocity-dependent
electron—ion collision rate, and FE is the ambipolar

electric field[20]. The Lorentz limit is obtained by ex-
cluding C7 from the simulations. The results shown here
were also checked using a more general VFP simulation
approach which treats the low- and high-frequency
dynamics on equal footing, rather than relying on C;p
to model the absorption[20]. This gives a more accurate
account of the IB absorption in principle, but we find
for the simple laser fields considered here (uniform and
constant) that the results are nearly identical to the
conventional approach using Cp.

The simulations are initialized with a MB distri-
bution at fixed, uniform electron density and a sinu-
soidally perturbed temperature, T.(z,t = 0) = Ty [1 +
1073 cos(2mx/L)], where L = 5mm is the domain size
and Tp = 200eV is the initial electron temperature. The
electron density ranged from 0.1 to 1 times the criti-
cal density for 0.35-micron light as needed to ensure the
long-wavelength limit was realized. The choice of a si-
nusoidal perturbation allows for periodic boundary con-
ditions and facilitates using Fourier analyis to separate
the evolution of the mean temperature from the fluctu-
ating one. The laser intensity ramps up from zero to a
uniform constant value over the first 100 fs of the simu-
lation. As the simulation progresses, the mean tempera-
ture increases monotonically due to IB absorption, while
the temperature fluctuation relaxes due to heat con-
duction. The instantaneous thermal conductivity is ex-
tracted from Fourier analysis of the k = 27/ L fundamen-
tal mode: k = Re{iQx/(kTx)}, where Qy, is the Fourier
component of the heat flux, Q = 27m. /3 [;* v° f1 dv, and
Ty, is the Fourier component of the temperature fluctua-
tion.

The thermal conductivity obtained in this way varies
in time because the mean temperature increases mono-
tonically due to absorption. Consequently, the value of
« also varies in time, as does the shape of f. The time
evolution for a typical case is shown in Fig. 1, which
shows the instantaneous values of k/ksm, a, as well
as super-Gaussian exponents characterizing the shape of
fo (discussed further below). The thermal conductiv-
ity is only formally meaningful if the simulations have
reached the hydrodynamic stage of evolution, meaning
the time- and space-variation of the distribution func-
tion is totally implicit in the time- and space-variation of
the temperature[21]. It is difficult to rigorously identify
whether or not this is the case in the VFP simulations.
Nevertheless, Fig. 1 suggests two clear regimes: a tran-
sient relaxation up to about 10 ps and a quasi-steady
evolution from about 20 ps onward. Conservatively, we
take only the last values of o and k/kgy from each sim-
ulation to construct our model.

The results are collected in Fig. 2, which shows the
reduction in thermal conductivity as a function of « for
various values of Z. Each data point is the final instan-
taneous values of k/ksy and «a obtained from a different
value of the laser intensity (I = 0,102,103, 10,105
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FIG. 1. Time evolution of a Z = 10 plasma at various laser
intensities. (a) conductivity reduction factor. (b) Langdon
parameter. (c) fitted super-Gaussian exponent for bulk elec-
trons. (d) fitted super-Gaussian exponent of tail electrons.
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FIG. 2. Ratio of the thermal conductivity to the SH value
as a function of Langdon parameter « for various ion charge
numbers Z, as well as for a Lorentz gas. Symbols are the re-
sults of VFP simulations and lines are interpolation formulas.

W/cm?). For each Z, the results are fitted to Eq. (1)
and shown as solid lines; the resulting fit coeflicients are
given in Table I. Note that ¢y should in principle be
unity, but we find it is systematically a few percent less,
indicating that the zero-intensity thermal conductivity
from VFP is slightly less than the SH value.

At nonzero intensity, the thermal conductivity is sub-
stantially reduced from the SH value. Even at small val-
ues of the Langdon parameter, « = 0.1, the reduction
is already about 25%, while at « = 1, the reduction is
almost 60%. This reduction exhibits only a weak de-
pendence on Z, indicating that the reshaping of fy due

Z=1272=3572=10 Z =29 Z =80 Lorentz

co 0982 0.989 0977 0976 0971 0.981
c1 1.332 1.038 0943 0.739 0.615 3.278
c2 4.862 4214 3.685 2984 2483 17.94

TABLE I. Fit coefficients for the conductivity reduction factor
in Eq. (1).

to IB and the reshaping of f; due to electron—electron
collisions are essentially separable effects. It is mainly
the deformation of fy that causes the conductivity re-
duction, while the effect of electron—electron collisions
on f1 is not strongly intensity-dependent. This insen-
sitivity to Z might lead one to think that the Lorentz
gas model should be adequate to describe the thermal
conductivity reduction; however, this turn out not to be
the case. VFP results for the Lorentz gas severly over-
estimate the reduction in thermal conductivity. In the
absence of a laser, the Lorentz gas model corresponds to
the Z — oo limit of the Spiter—H&rm conductivity, but
this relationship no longer holds at nonzero intensity. In
fact, when electron—electron collisions are fully accounted
for, the trend is that at fixed «, higher-Z plasmas have
a conductivity that is slightly closer to the SH value.

To better understand the failure of the Lorentz gas
model, it is instructive to connect with the theory of Mora
and Yahi[10]. The Mora—Yahi theory takes f; in steady
state and neglects C; to obtain

eF
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muv
where Ae; = v/ve; is the mean free path. They

consider fp to have a super-Gaussian form, fo(v) o
exp|—(v/vm,)™], where the exponent, m, is assumed to
be known. The thermal conductivity may then be de-
termined analytically as a function of m, with m = 2
recovering the Lorentz-gas limit of SH theory.

To connect with the VFP results, we must determine
the value of m that best characterizes the shape of fj
in the velocity range relevant to conduction. We empha-
size the importance of choosing the appropriate velocity
range because this has been a point of confusion in the
past[11]. In the literature on IB absorption, there is both
simulation and experimental support for relating the ex-
ponent to a as mrp(a) = 2+3/(1+1.66/a"7%4), as pro-
posed by Matte et al.[13, 22-24]. However, IB absorption
is sensitive only to the bulk electrons with v < 3vp, and
accordingly we find that this formula only describes the
low-velocity population in our VFP simulations.

An illustrative example is shown in Fig. 3, which shows
fo from VFP simulations, as well as super-Gaussian fits
to the bulk and tail electron populations. Here, “bulk”
refers to electrons with v < v, and “tail” to electrons with
v > vy, where v, is the velocity where fi(v.) = 0. That
is, the tail electrons are those flowing down the tempera-
ture gradient and contributing positively to the thermal
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FIG. 3. Isotropic component of the velocity distribution func-
tion for a Z = 10 plasma with a = 0.45. Solid line is the VFP
result, dashed line is a super-Gaussian fit to the bulk elec-
trons, dashed-dotted line is a super-Gaussian fit to the tail
electrons, and dotted line is a Maxwellian distribution. Note
the transition from linear to logarithmic scale at v = v.

conductivity, while the bulk electrons are those which
form the neutralizing return current and contribute neg-
atively to the thermal conductivity. The bulk and tail
are characterized by different super-Gaussian exponents.
The bulk agrees well with the Matte et al. model, which
gives myp(0.45) = 2.76 in the case shown in Fig. 3. This
implies that the collisional bulk electrons are insensitive
to the presence of heat flow, and their energy distribution
is described well with standard IB theory. The tail, how-
ever, is more sharply non-Maxwellian, with m = 4 be-
ing the best-fit value. This implies that the tail electron
population is more depleted (and the thermal conductiv-
ity reduction more severe) than one would predict using
myp. Evidently, a separate model for the tail electron
distribution is needed.

Using the tail exponent fitted from each VFP simula-
tion, the Mora—Yahi theory is evaluated and compared to
VFP simulation result in Fig. 4, which shows the thermal
conductivity reduction as a function of the tail exponent.
Strikingly, all the VFP simulations which properly ac-
count for electron—electron collisions on f; collapse in a
way that suggests that k/kgpy is a universal function of
m. Though m generally depends on both Z and «, the
Z dependence is weak, and we find that a Z-independent
expression of the same form used for IB,

m(a) =2+ 3/(1 +0.247/a"97), (8)

approximates the tail exponent of the VFP simulations
at any Z within 3% when o < 1. The Lorentz-limit
VFP results follow a different trend entirely but are in
excellent agreement with the Mora—Yahi prediction. An
interesting finding is that though the VFP results do not
reach m = 5, they do appear to trend toward the m =5
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FIG. 4. Ratio of the thermal conductivity to the SH value
as a function of super-Gaussian exponent of tail electrons.
Symbols are VFP results for various charge numbers Z, as
well as for a Lorentz gas. The solid curve is the Mora—Yahi
theory.

Mora—Yahi prediction. A simple linear fit connecting the
m = 2 and m = 5 limits
@ =1-0.251(m—2) (9)
KRSH
gives remarkably good agreement with the VFP results,
the errors for all but one case being within 8%.[25]
Note, however, there is some compounding of errors when
Egs. (8) and (9) are used together, so that applications
requiring accuracy better than a few percent might prefer
to interpolate the coefficients in Table I for use in Eq. (1).

In the theory of IB, m = 5 is an upper limit obtained
when Cj is neglected[9]. The trend of VFP toward Mora
and Yahi’s m = 5 prediction indicates that the Lorentz
limit is only realized when all electron—electron collisions
are neglected, not just those acting on f;. One impor-
tant implication for VFP[15, 26-28] and simplified kinetic
models[6, 29-31] of laser plasmas is that one cannot ne-
glect C7 unless one is also willing to neglect Cy. This
goes against a widespread practice to neglect C; and
compensate by rescaling ve; to recover the SH conduc-
tivity in the local transport limit. This is done because
(7 is cumbersome to invert, making it both a compu-
tational bottleneck for VFP codes and inconvenient for
analytic theory. This procedure, while tempting, totally
misrepresents the effect of IB absorption on the heat flow
and produces the wrong local transport limit at non-zero
intensity.

In summary, we have determined the thermal conduc-
tivity and equilibrium distribution function of a plasma
heated by a laser using VFP simulations. In doing so, we
have shown the importance of retaining an accurate and
fully kinetic model of absorption and electron—electron
collisions. This allowed us to identify important short-



comings of previous attempts to determine the thermal
conductivity of a laser plasma. Speficially, in this work,
the Lorentz approximation was eschewed and no func-
tional form for the isotropic distribution function was as-
sumed. The results can be represented analytically in a
simple form which can be straightforwardly implemented
in radiation-hyrdodynamics codes and non-local conduc-
tion models as an intensity-dependent correction to the
SH conductivity. The impact of this reduced conductiv-
ity on coupling efficiency in ICF experimental design will
require thorough study and be the subject of future work.
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