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We propose a method for manipulating wave propagation in phononic lattices by employing local
vibro-impact (VI) nonlinearities to scatter energy across the underling linear band structure of the
lattice, and transfer energy from lower to higher optical bands. First, a 1-dimensional (1D), 2-
band phononic lattice with embedded VI unit cells is computationally studied to demonstrate that
energy is scattered in the wavenumber domain, and this nonlinear scattering mechanism depends
on the energy of the propagating wave. Next, a 4-band lattice is studied with a similar technique
to demonstrate the concept of non-resonant inter-band targeted energy transfer (IBTET) and to
establish analogous scaling relations with respect to energy. Both phononic lattices are shown to
exhibit a maximum energy transfer at moderate input energies, followed by a power law decay
of relative energy transfer either to the wavenumber domain or between bands on input energy.
Lastly, the nonlinear normal modes (NNMs) of a reduced order model (ROM) of a VI unit cell
are computed with the method of numerical continuation to provide a physical interpretation of the
IBTET scaling with respect to energy. We show that slope of the ROM’s frequency-energy evolution
for 1:1 resonance matches well with IBTET scaling in the full lattice. Moreover, the phase-space
trajectories of the NNM solutions elucidate how the power-law scaling is related to the nonlinear
dynamics of the VI unit cell.

I. INTRODUCTION

Periodicity has been leveraged to control acoustic and
elastic energy propagation in linear time-invariant (LTI)
phononic metamaterials [1–3]. Such systems are typically
designed on a unit cell level whereby the application of
the Bloch theorem allows one to engineer a linear band
structure which can enable or augment specified wave
phenomena with diverse applications such as lensing [4],
vibration isolation [5–7], wave steering [8], and topologi-
cal insulation [9–11]. For LTI phononic systems, a prop-
agating wave remains stationary on a prescribed subset
of its band structure, and is invariant to amplitude (or
energy) as the dynamics are completely described by the
superposition principle [3]. However, it is often desirable
to predictively tune wave propagation in phononic mate-
rials in a non-stationary or amplitude dependent fashion.
To this end, one must either manipulate the underlying
band structure altogether by utilizing external forces or
nonlinearity [3, 12], or find methods to modify the dis-
tribution of (or, equivalently, passively manage) energy
across a fixed underlying band structure.

Whereas active band manipulation has been achieved
by introducing (active) multi-physics fields, e.g., electro-
magnetic, magnetic, or thermal fields [13–18], nonlin-
ear mechanisms considered here, such as nonlinear me-
chanical coupling, offer the key advantage of being pas-
sive and tunable (self-adaptive) to energy, frequency and
wavenumber content [12, 19]. For instance, the effective
dispersion relations of granular chains with Hertzian con-
tact laws are tunable by locally linearizing about various
pre-compression states [20–22]. Moreover, passive non-
linear mechanisms posses intrinsic frequency-amplitude
dependencies which are predictable by Bloch-wave per-
turbation analysis in the low-energy regime [23] or by the

nonlinear normal modes (NNMs) of the finite lattice in
the high-energy regime [24–26].

The use of nonlinear attachments in acoustic wave
guides (either bulk or periodic) have demonstrated un-
precedented properties in acoustical systems [27]. For
instance, a small mass connected to a resonator chain
by an essential (non-linearizable) stiffness nonlinearity
has been shown to induce interesting nonlinear dynamics
when interacting with traveling waves [28], and can even
be tuned to arrest incident pules [29]. Moreover, by incor-
porating hierarchical mass scales and asymmetry, similar
systems have achieved acoustic nonreciprocity [30–32].
These effects have been extended for systems with local
nonlinear gates that enable effective diode-type features
in both continuous waveguides [33] and discrete oscillator
chains [34, 35], and similar concepts have been recently
leveraged for mechanical wave filtering in metamaterials
with interfaces [36, 37].

Herein, we aim to develop passive mechanisms for re-
distributing propagating energy using localized nonlin-
earities to transfer energy across the underlying band
structure of a phononic lattice. In the absence of ex-
ternal actions, this requires a nonlinear mechanism with
the capacity to transfer energy form one region of band
structure to another. Such a mechanism is fundamental
to achieving nonlinear energy exchanges, which are most
commonly described in terms of phase matching, inter-
nal resonances, and resonance captures [38, 39]. These
nonlinear resonant phenomena have led to the concept of
targeted energy transfer (TET) [40]. Among its many ap-
plications, TET has previously been utilized to transfer
energy between donor and receptor locations in nonlin-
ear lattices [41]. Recently, TET has been used to de-
sign passive nonlinear energy control using local attach-
ments called nonlinear energy sinks (NESs) [40]. NESs
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are local mechanisms that alter the global dynamics of
a primary linear structure to which they are attached to
achieve TET, with typical applications in vibration mit-
igation [42–56].

Traditional NES-based TET relies on resonance cap-
ture of the NES dynamics to a resonance manifold, and
thus traditional TET is intrinsically suited for systems
with smooth nonlinearities and periodic excitations [39].
However, theoretical and numerical support has recently
been extended to systems with non-stationary dynam-
ics [57] and systems with non-smooth nonlinearities such
as idealized vibro-impact (VI) laws [58–60]. Recent work
has introduced the concept of non-resonant TET en-
ergy exchanges in a directly forced primary linear struc-
ture by using VI nonlinearity to redistribute modal en-
ergy within its modal space, termed inter modal tar-
geted energy transfer (IMTET) [61–63]. Unlike resonant
TET, IMTET scatters energy across the underlying lin-
ear modal basis in a low-to-high frequency fashion.

To date, non-resonant energy scattering concepts have
not been extended to periodic phononic metamaterials
from a wave propagation perspective. The most notable
differences between modal and periodic acoustical sys-
tems is the time scales which described the dynamics of
nonlinear oscillators considered. While both modal and
acoustic systems oscillate at fast time scales governed by
the eigenfrequencies, the first employs a modal basis to
describe stationary vibrations (and is suitable for systems
of finite extent whose dynamics are governed by relatively
slow time scales, i.e., slow flow dynamics [40]); while
the latter focuses on acoustics and relies on a continu-
ous band structure to describe propagating waves (and,
hence, applies to unbounded / large-scale systems with
time scales determined by group velocity and wave packet
bandwidth). Hence, several natural questions arise when
considering non-resonant TET phenomena in a phononic
material. Namely, to what extent can the linear wave
propagation be scattered in the wave number domain
across a dispersion branch, and to what capacity can
energy be irreversibly transferred from one band to an-
other by use of localized VI nonlinearities; these desired
phenomena are notably distinct from previous studies of
TET in lattice systems [27–35, 41]. This paper addresses
these questions with extensive computational probing,
new post-processing techniques, and physics-based rea-
soning of the resulting nonlinear acoustic phenomena.

We begin by studying the effects of VI nonlinearity in
a 2-band phononic lattice of diatomic resonators by sim-
ulation and numerical post-processing. For this, we focus
on the energy scattered of energy across the frequency-
wavenumber (spectral) domain of the single optical band
of this lattice as a function of the number of local VI unit
cells and as a function of the incident wave energy grows.
Next, we consider a 4-band phononic lattice, which has
one acoustic and three optical bands over a relatively
broad frequency-wavenumber range. This band struc-
ture, coupled with the strong VI nonlinearities, allows for
low-to-high frequency energy generation of the impacts,

as well as TET across bands. This brings about the new
nonlinear acoustic phenomenon of inter-band targeted en-
ergy transfer (IBTET).
Accordingly, the organization of this paper is as fol-

lows. Section I provides a system description of the
unit cell of the 2-band phononic lattice, a computational
framework for studying spectral scattering within the sin-
gle optical band induced by the VIs, and quantification of
the spectral disorder generated by the VIs with respect
to energy. Section III extends the study to a 4-band
phononic lattice and presents a method for transferring
energy from lower-to-higher optical bands via VIs, to-
gether with relationships between these transfers and the
total system energy. Section IV presents a 2 DoF reduced
order model (ROM) which is studied through the from
the perspective of NNM analysis in order to provide a
physics-based understanding of the results of Sections I
and III, and relate the nonlinear dynamics of the ROM to
the IBTET occurring in the lattice. Lastly, Section V of-
fers concluding remarks and some suggestions for further
extension of this work.

II. SPECTRAL ENERGY SCATTERING

We begin by studying a 1D phononic lattice in the form
of a diatomic resonator chain and embed VI contact laws
in select (local) resonators while preserving the global
linear structure of the lattice. The system is compu-
tationally explored by performing numerical simulations
with wave packet excitations over an array of excitation
amplitudes and wave numbers. The resulting data sets
were post-processed in the spatial-temporal domain to
uncover the underlying trends of energy scattering in the
wavenumber domain as the excitation level (input en-
ergy) changes.

A. System Description and Simulations

We consider a linear diatomic lattice constructed by
the periodic tessellation of 1-D unit cells in the x-
direction (Fig. 1(a)). Each unit cell is composed of a
host mass and internal resonator, which depending on
the existence (absence) of rigid barriers it may (may not)
experience vibro-impacts (Fig. 1(b,c)). The correspond-
ing equations of motion for the infinite phononic lattice
are:

m1ü
k
1 = k1(u

k−1
1 + uk+1

1 − 2xk1) + k2(u
k
2 − uk1),

m2ü
k
2 = k2(u

k
1 − uk2).

(1)

Substituting a Bloch-wave solution into Eq (1) yields a
lower-frequency acoustic band and higher-frequency op-
tical band to describe propagation in the lattice.
We consider six different finite lattice configurations,

each corresponding to a unique arrangement of VI unit
cells embedded in the linear lattice with the number of
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FIG. 1. The linear phononic lattice composed of coupled
(host) masses with embedded internal resonators which may
or may not undergo vibro-impacts: (a) The primary linear
periodic system and (b) the underlying linear dispersion re-
lation showing the acoustic (A) and optical (O) bands. (c)
Schematics of finite lattice configurations which are predom-
inately comprised of (d) the linear phononic lattice primitive
unit cells with (e) nonlinear VI cells embedded at select loca-
tions in the lattice.

VIs ranging between 1 and 20 (Fig. 1(d)). These config-
urations ensured that the VI interactions remained rela-
tively localized in space with respect to the entire lattice,
while also offering insight regarding the dependency of
the energy scattering to the number of VI interactions
the wave may undergo. We fix m1 = 0.01 kg, m2 = 8m1,
and k1 = k2 = 90 kN/m unless otherwise stated. Ex-
citation is provided to the left boundary in the form
of a windowed harmonic function, F (t) = W (t) sin(Ωt)

where W (t) = A
[
H(t)−H

(
t− 2πNc

Ω

)] [
1− cos

(
Ωt
Nc

)]
is a windowing function, H(t) the Heaviside function, A
the forcing amplitude, Nc the number of cycles in the
window, and Ω the center frequency of excitation. The
forces induced by the local nonlinear VIs are described
by,

FNL(wk) = kc
[
(wk −∆i)

n
+ − (−wk −∆k)

n
+

]
g(ẇk) (2)

where wk(t) = uk2(t) − uk1(t), n = 3/2 unless other-
wise stated, ∆k is the clearance of the k-th VI in the

lattice, and kc = 2EVI

√
RVI

3(1−ν2) the stiffness parameter for

Hertzian contacts, with EVI = 200 MPa, RVI = 0.005
m, and ν = 0.3 being the modulus, radius, and Poisson
ratio of the VI, respectively. The notation ( )+ indi-
cates that only positive arguments are to be considered.
We consider an inelastic dissipation function based on

the work-energy principal [64], g(ẇk) =
(
1− 3(1−r)

2ẇ−
k

ẇk

)
,

where ẇ−
k is the velocity ẇk immediately before im-

pact and r the coefficient of restitution which is set to

FIG. 2. Simulation results for a 5-VI configuration at excita-
tion wavenumber k⋆ = 5π/9 (in the optical band of the linear
lattice) with columns corresponding to (a) low, (b) medium,
and (c) high amplitude excitations. For each amplitude, the
rows depict (i)the spatio-temporal evolution of the kinetic en-
ergy of the propagating wave, (ii) the temporal variation of
the wavenumber distribution in the lattice, and (iii) the nu-
merically computed dispersion computed using the entirety of
the simulation with a gray dashed line superimposed to depict
the analytical dispersion of the infinite liner lattice.

r = 0.7 to emulate steel-to-steel contact [63]; this roughly
equates to an equivalent linear viscous damping constant
of c2+ = 5.5×10−4k2. Note that Eq (2) does not modify
the underling linear band structure of the extended lat-
tice and the VIs only affect the propagating waves when
wk > ∆k at a given unit cell.

Numerical simulations were performed for center fre-
quencies corresponding to wavenumber κ = 5π/9. Ex-
citation frequencies were chosen based on the optical
band dispersion to ensure relative out-of-phase motion
between the resonator and impactor and thus excite the
VIs, and the VI clearances were nominally set to range
between 0.0002 and 0.0001 m with a logarithmic depen-
dence on position from the leading VI unit cell to account
for the momentum loss of the wave as it passes succes-
sively through VI cells based on numerical probing of
the lattices response at various forcing levels. Within
this framework, an ensemble of simulation data was con-
structed for 25 logarithmically increasing forcing ampli-
tudes for each configuration in Fig 1.
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B. Influence of VIs on Wave Propagation

In this section, we focus on a narrow subset of three
simulations conducted at low, medium and high forc-
ing amplitudes in order to build intuition on the post-
processing analysis and to establish qualitative depen-
dence of the frequency-wavenumber distribution on sys-
tem energy. Quantitative results across all simulations
will be given subsequently.

Fig. 2 depicts the results for a representative simu-
lation with a 5-VI configuration (cf. Fig. 1) for low,
medium, and high forcing amplitude (equivalently low,
medium, and high energy simulations) corresponding
A = 0.1, 1, and 10 N, respectively. The resulting en-
ergy measures are computed directly by considering only
the kinetic energies of the oscillatory. At low amplitude,
the acoustics are entirely linear as the wave does not cre-
ate deflections greater than the VI clearance (Fig. 2(ai)).
The interactions of the VI mechanisms come about in the
medium and high amplitude simulations, whereby the en-
ergy of the propagating wave wave scatters profoundly in
the space-time domain (Figs. 2 (bi,ci)).

To understand the energy scattering in terms of fre-
quency and wave-number content, we utilize a set of sig-
nal processing procedures that are briefly detailed in Ap-
pendix A. Figs. 2(aii)-(cii) depict the wavenumber spec-
trum across the lattice computed over progressions of
time snap shots for each simulation, which was recov-
ered by performing Fourier analysis in the spatial do-
main over successive time iterations. It is clear from
Figs. 2(aii)-(cii) that the wavenumber distribution in lin-
ear (low amplitude) simulations does not change after the
excitation ends, as expected for a LTI system. In con-
trast, new wave numbers emerge for medium and high
excitation amplitudes. However, for the case of high en-
ergy level, the wavenumber generation is not nearly as
pronounced compared to medium energy level, indicat-
ing that the wave reflections of Fig. 2(ci) do not generate
substantial wavenumber components beyond that of the
incident wave.

Taking the Fourier transformation across both time
and space provides the numerically resolved dispersion
D(κ, ω) = Fx,t{u(x, t)} which is given in Figs. 2(aiii)-
(ciii). Fig. 2(aiii) may serve as a reference since no VIs
engage in the low amplitude simulations, where only a
small region of the optical branch is energetic, corre-
sponding directly to the excitation spectrum. In the non-
linear regimes, the energy scattering over ω-κ is much
more profound for medium energy cases, corroborating
the trends established by Figs. 2(i,ii). Note that the
spectral content generated by scattering in Fig. 2(biii)
remains bound to the underlying linear dispersion rela-
tion; this indicates that the VIs “redistribute” (scatter)
wave energy across the dispersion relation of the under-
lying linear lattice in a non-resonant fashion, rather than
modify the dispersion altogether. Hence, this nonres-
onant scattering mechanism yields the same effect for
transient wave propagation to that studied in modal dy-

FIG. 3. Propagation of wave energy at different wavenumber
bands: (a) The kinetic energy versus time at each wavenum-
ber partition for a mid-energy simulation with sub-panels
(i)-(vii) plotted to the same color-scale to compare relative
energies; (b) superimposition of wave propagation at each
wavenumber partition depicted by contours for (i) low, (ii)
medium, and (iii) high energy simulation; (c) the optical band
of the linear lattice plotted with corresponding colors to the
wavenumber-based energy contours of (b).

namics [63].

To visualize the propagation of the wave specific to
different partitions of the optical band, and thus confirm
that wave propagation at new wavenumbers occurs due to
VI interactions, customized fitler banks were constructed
to segment spectral content in the wave-number domain.
Namely, we follow a similar continuous wavelet transform
approach to [65] and partition wavelet-transformed sim-
ulation data into 12 wavenumber partitions. The spa-
tial wavelet-transformed data at a time t, denoted as
X(κ, x)

∣∣
t
, was multiplied by a masking filter correspond-

ing to the j-th partition of the optical band to deliver
the binned quantity Kj(x, κ). The propagation in each
frequency bin K1-K12 was then computed as the collec-
tion of inverse wavelet transformations of binned wavelet
data over time. The kinetic energy can be computed
for each spatial-spectral partition with litter error (see
Appendix A), which cannot be achieved directly in the
frequency domain due to the mass dependency of the ki-
netic energy. More importantly, as discussed below, the
described numerical partition of the optical band enables
us to study in detail the transmission of wave energy at
different wavenumber bands, and, hence, can shed insight
into the nonlinear physics of the scattering of the incident
wave at the VI sites.
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FIG. 4. Mean spectral entropy in the lattice with VIs for
system configurations ranging between 1 VI to 20 VI (see
Fig. 1) over an array of excitation amplitudes logarithimcally
spaced from 0.1 to 20: Top and bottom plots are for the same
data with the bottom plots depicting the log-log scaling; a
fitted power law is denoted as a thick black line, and the
adjusted R-squared value is listed for each configuration in
the bottom plots.

Fig. 3 depicts the results of the wavenumber parti-
tioning scheme. The propagation of energy across each
wavenumber partition are given by subplots 3(ai)-a(vii)
and plotted to the same color scale with respect to kinetic
energy. The wave initiates in K7 and K8 which are both
energetic at the onset of propagation. However, mid-
way through the lattice, the energy begins to propagate
through all partitions, and this is clear indication that
the VI nonlinearity generates wavenumber content not
native to the incident wave. Fig. 3(b) shows the ampli-
tude dependence of the scattering by superimposing the
propagation in each wavenumber band for low, medium,
and high profile wavenumbers, from which it is apparent
again that wavenumber generation is far more potent at
medium amplitude simulations than for high ones.

C. Quantifying Wavenumber Spectrum Disorder

Having established, in a qualitative sense, that the VIs
generate new wavenumbers in an amplitude-dependent
fashion (cf. Figs. 2 and 3), we now seek to quantify the
spectral scattering and establish emperical relationships
with respect to amplitude. To this end, we consider the
spectral entropy, which is the extension of classical Shan-
non entropy to the frequency domain [66], to quantify
signal complexity in terms of frequency content. We con-
sider the wavenumber entropy generated over space at a
given time snap shot as

H(x) = −
∑
κ

P (x, κ) log2 P (x, κ), (3)

where P (x, κ) is the space-dependent probability dis-
tribution over wavenumber computed with the space-

FIG. 5. Increasing the bands of the lattice: (a) Schematic of
the unit cell, and (b) the corresponding dispersion diagram
for parameters λ = 0.1 and η = 0.5 showing the acoustic band
(A) and optical bands 1-3 (O1-O3).

frequency power spectrogram. Computing P (x, κ) over
time snapshots, tj delivers a matrix of entropy-versus-
time, H(x, t), capturing the time-evolution of wavenum-
ber entropy of the propagating wave for each simulation.
We compute a statistical summary of the wavenumber

entropy by considering the elements of H(x, t) for time
intervals after the incident wave has already reached the
first VI unit cell at t = t̂. Fig. 4 depicts the average
entropy quantity normalized between 0.01 and 1 with
respect to forcing amplitude for all configurations de-
picted in Fig. 1. To this effect, we are capturing the
relative scattering of wavenumbers as compared to an
optimal excitation amplitude for a given VI configura-
tion. For low amplitude (linear) simulations, the en-
tropy remains nearly zero as the only variation in the
wavenumber comes from the intrinsic dispersive charac-
teristics of the underlying linear lattice (i.e., with inactive
VIs). However, once the VIs are engaged at medium and
high excitation levels, the entropy rises to a maximum
before rapidly falling again with respect to forcing am-
plitude. Fig. 4 reveals that after the maximum entropy is
reached, the remainder of the data fits remarkably well
with a power law, with adjusted R-squared coefficients
above 0.95 being recovered for the majority of config-
urations studied. The power coefficients b for the law
y = axb are reported by insets in each sub-panel of Fig. 4
showing that the decay rate has a 1-to-1 proportion to
energy with b ≈ −1, and that this trend is ubiquitous
among each considered configuration (i.e., 1 VI to 20 VI
oscillators). Error bars in Fig. 4 measure the standard
deviation of entropy across the spatial extent of the lat-
tice which corresponds to the spatial uniformity of the
scattering. Hence, the larger error bounds at high exci-
tation amplitudes indicate that novel wavenumber com-
ponents are localized rather than distributed (or propa-
gated) throughout the spatial extent of the lattice, and
this is in direct agreement with the qualitative results of
Figs. 2 and 3.

III. INTER-BAND TARGETED ENERGY
TRANSFERS (IBTET)

With section I establishing that the VI nonlineari-
ties can scatter energy about the optical band of a di-
atomic lattice, we now seek to induce VI-enabled tar-



6

FIG. 6. IBTET in the 4-band lattice with 5 VI sites: (a) shows the evolution of the propagating wave energy; (b-d) propagation
of the wave energy corresponding to each band of the lattice based on the numerically recovered dispersion of the full simulation;
(e,f) dispersion of the input and output segments (labeled in (a)) demonstrating the targeted energy transfer to the higher
bands; (g,h) Fourier spectra corresponding to the velocity of the four unit cell DoFs selected before (5-th unit cell) and after
(150-th unit cell) VI engagement, with the four band-pass regions depicted with shading and insets depicting the corresponding
velocity time histories.

geted energy across different bands. This can be con-
sidered the acoustics-equivalent to the IMTET mecha-
nism established for modal dynamics [61]. Hence, this
section demonstrates inter-band targeted energy transfers
(IBTET) by showcasing irreversible transfer of energy
from a lower optical band to a higher one. Moreover,
we demonstrate this phenomenon for multiple classes of
VI contact laws by introducing a nonlinear VI law to be
studied alongside the Hertzian model of Section I. This
demonstrates that the subsequent results are not partic-
ular to the Hertzian contact law utilized in section I and
thus achievable by a broader design space of phononic
wave guides. Achieving IBTET requires additional opti-
cal bands above the first optical band, since a spectral
feature of VIs is the low-to-high frequency energy trans-
fers [63]. To maintain the simplicity of 1D, we proceed
with a 4-DoF model of the unit cell, offering two addi-
tional bands to transfer energy towards.

A. The 4-band Lattice

The 4-band model emulates closely the resonator
model of Fig. 1 with the main difference begin tow
masses added in-series in between resonators as shown
in Fig. 5(a). The equations of motion for a unit cell of

the infinite 4-band phononic lattice read,

m1ü
k
1 + k4

(
uk1 − uk−1

4

)
+ k1

(
uk1 − uk2

)
= 0

m2ü
k
2 + k2

(
uk2 − uk1

)
+ k3

(
uk2 − uk3

)
+ k4

(
uk2 − uk4

)
+ fNL(w

k) = 0

m3ü
k
3 + k3(u

k
3 − uk2)− fNL(w

k) = 0

m4ü
k
4 + k1

(
uk4 − uk+1

1

)
+ k4

(
uk4 − uk2

)
= 0.

(4)

To maximize the potential for IBTET, the parameters of
system (4) were selected to ensure that (i) sufficient out-
of-phase motion was achieved on the second band (which
is selected as the excitation band), (ii) the excitation
band corresponds to high group velocities to minimize
linear dispersive effects in the simulation, (iii) the higher
bands possess adequate bandwidth to receive the low-to-
high frequency energy redistribution caused by the VI
interactions [63], which is equivalent to maximizing their
average group velocity over the IBZ. System (4) is pa-
rameterized by η and λ which relate the mass and stiff-
ness of the resonator cell to the nominal parameters of
m1 = m4 = m = 0.005 kg and k1 = k4 = k = 2 × 104

N/m by m2 = m(1 − η), m3 = mη, and k3 = kλ while
we fix k2 = 104 N/m. We confine the design space to
0.1 < λ < 1 and 0.1 < η < 1, and recover λ = 0.1 and
η = 0.5 (see supplemental material), which results in the
band structure shown in Fig. 5(b).

To simulate the system, a finite lattice of 300 unit cells
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FIG. 7. The portion of input energy transferred to the upper
two optical bands versus forcing amplitude of the incident
wave for (a) Hertzian VIs and (b) bilinear VIs in (i) depicting
linear-linear and (ii) log-log scales.

(1200 DoF) was constructed, which is one half of the
total DoFs of the resonator chain studied in section I.
Accordingly, we consider only a 5-VI lattice configura-
tion (as depicted in Fig. 1(d)) herein and refer the reader
to supplemental material for the results of a 1-VI lattice
configuration. Simulations were performed similarly to
section I with excitation provided by a windowed tone
burst. An input signal of 30 periods was considered, and
the excitation frequency is selected based on the max-
imum group velocity of the optical band. Simulations
were performed for 50 selections of the excitation ampli-
tude between 1 and 104 N.
We employ the same Hertzian contact law described

by Eq (2) for n = 3/2, and also a bilinear contact law
which takes the same form as Eq (2) but for n = 1. This
is performed to ensure that the subsequent results are
not particular to nonlinear Hertzian contact laws but are
rather a product of the contact nonlinearity. For the 4-
band system considered, the contact stiffness parameters
(kc) were computed based on E = 100 MPa, ν = 0.3,
and RVI = 0.005 m, and the clearances are now varied
between 10−2.65 and 10−2.75 m.

B. Low-to-high band targeted energy transfer

Fig. 6 depicts an example of a wave propagating
through the 4-band system with five Herzian VIs en-
gaged. Energy clearly cascades from the main wave
packet as it propagates through the lattice (Fig. 6(a)),

similar to the diatomic chain (Fig. 2). Computing the
numerical dispersion at the beginning and end of the sim-
ulation clearly shows that energy in fact transfers from
the lowest optical band to the higher two optical bands
(Figs. 6(f,g)). This is further confirmed by Figs. 6(h,i)
which shows the difference in the temporal frequency
of the wave at the start versus end of the lattice and
hence the low-to-high frequency targeted transfer of en-
ergy from the second band to the higher bands.
Energy transfer between bands can be quantified by

first converting the numerically measured data into the
ω-κ domain with the 2-D Fourier transformation. There-
after, the 2-D spectrum is partitioned band-by-band and
also into band-gap regions. For each partition, the re-
mainder of the spectrum is zero-padded before the inverse
Fourier Transformation returns the spectral content into
the spatio-temporal domain for that specific partition.
This results in the propagation depicted in Figs. 6(b-e)
where it can be seen that the content of the upper bands
indeed corresponds to propagating waves generated by
the VIs, and thereafter kinetic energy calculations over
each band can be conveniently performed.
Fig. 7 depicts the results of the IBTET analysis over

the ranges of forcing amplitudes considered for both
Hertzian and bilinear VI laws. The log-log plots depict
a very similar trend to what was observed in section I:
a sudden spike in energy transfer once the amplitude is
sufficient enough to engage the VI, and a sudden decline
in energy transfer as the excitation amplitudes rise there-
after. This decline in IBTT continues until a minimum is
reached which is defined by the relative energy obtained
by the higher bands for a completely linear system. This
≈0.01 % lower bound of the total system energy is ex-
plainable by the fact that the excitation is a Gaussian
distribution in the frequency domain which invariably
provides trace amounts of energy to the higher bands.
The same trends in IBTET are recovered for both

Hertzian and bilinear contacts, indicating that the na-
ture of the contact law does not play a critical role in
the energy transfer, but rather the discontinuous poten-
tial is the driving mechanism for the energy exchanges.
This is further verified in Figs. 7(aii,bii) which show that
the maximum IBTET is on the same order for both the
Hertzian and bilinear VIs (30-35%) which confirms that
(i) an appreciable level of IBTET is achievable and (ii)
that this phenomenon is general across various VI de-
signs.

IV. PHYSICAL INTERPRETATION OF IBTET
MECHANISM

We now seek to relate the trends established in Sec-
tions I and III to physics-informed arguments in order
to shed physical insight into IBTET in a consistent and
comprehensive way. We do so by studying the nonlin-
ear normal modes (NNMs) of a reduced order model
(ROM) constructed to emulate the VI unit cells. NNMs
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FIG. 8. A 2-DoF model emulating a VI resonator cell.

have proven a useful tool for interpreting the responses
of nonlinear dynamical systems and their passive tun-
ability with respect to energy through either analytical
or computational tools [67–70]. The uses and interpre-
tations of NNMs are quite extensive, however a direct
and intelligible way of interpreting the evolution of the
system’s dynamics with respect to energy is with the fre-
quency energy plot (FEP) of a given dynamical system
and its bifurcating branches [67]. Such methodology has
been employed already for understanding the dynamical
evolution of VI systems of various forms [71–73].

A. Reduced Order Model (ROM)

We consider a 2-DoF ROM that emulates the indi-
vidual VI-resonators embedded within the 4-band lat-
tice of section III. Fig. 8 provides a schematic of the
ROM whereby the parameters k̄1 = k = 2 × 104 N/m,
k̄2 = 2 × 103 N/m, and m̄2 = m̄2 = 0.0025 kg, which
parameterize the set of equations

m̄1 ¨̄u1 + k̄1ū1 + k2(ū1 − ū2) + fNL(w̄) = 0,

m̄2 ¨̄u2 + k̄2(ū2 − ū1)− fNL(w̄) = 0.
(5)

where an overbar denotes that the variable is associated
with the ROM and not the full phononic lattice. The
nonlinear force in Eq (5) is considered in both Hertzian
and bilinear forms with a contact stiffness and clearance
of 10−2.75 m.

We assume that the connecting stiffness between
masses in the lattice is distributed between the two mass
elements. Thus, the grounding stiffness on the left and
right boundaries of the ROM’s outer mass is approxi-
mated to be one-half of the coupling stiffness of the full
phononic lattice. Moreover, the most critical component
of the ROM is the internal stiffness and nonlinear VI com-
ponent, which matches identically to the VI cells consid-
ered in Section III. Hence, the ROM provides reasonable
resemblance to the VI cells in the full lattice system al-
lowing it to capture the trends of the full system with
surprisingly good accuracy, as we will show.

B. Nonlinear Normal Modes as a Measure of
Nonlinearity

The energy dependencies of Figs. 4 and 7 make contin-
uation of NNM branches a natural approach since it pro-
vides an overview of the dynamics across energy scales.
To this end, we apply the NNM continuation scheme de-
scribed in [70] to our ROM with minor numerical mod-
ifications (see Appendix B). A condensed description of
this procedure is given, and the reader is directed to [70]
for full algorithmic details. The state form of system (5)
is ż = g(z) where g(z) is a nonlinear function of the
state variables. A periodic orbit (or NNM) will sat-
isfy the two-point boundary value problem defined by
the shooting function, H(zp0

, T ) = z(zp0
, T ) − zp0

= 0.
A phase condition of zero initial velocities is employed
to ensure unique NNM solutions, and with this New-
ton’s method returns the first NNM during the shoot-
ing stage. After the shooting stage, a pseudo-arclength
predictor-corrector routine traces out the NNM branch
in the 2n + 1 dimensional parameter space, where n is
the number of degrees of freedom of the ROM. This is
a critical step for resolving the NNMs of the VI system
since the NNM branches may have turning points that a
standard Newton-Raphson algorithm cannot solve.

The result of numerical continuation is a frequency
energy plot (FEP) which describes the evolution of the
NNM branch for 1:1 resonance (the so called “backbone”
branches) in the frequency-energy space. Fig. 9 depicts
the FEPs computed for system described by equation (5)
for both Hertzian and bilinear contact laws. It is inter-
esting to emphasize that the degree (strength) of non-
linearity of the ROM can be qualitatively interpreted by
the slope of a given NNM branch [71]. The steeper the
slope is of the branch is, the more sensitive the frequency-
amplitude dependency of the NNM becomes, and the
more intense the nonlinearity in the ROM when it re-
sponds on that NNM is.

The FEP results reveal similar trends for both Hertzian
and bilinear VI ROMS, possessing four dynamical region
labeled (I)-(IV) in Fig. 9 which describe the transition
between two distinct smooth limiting systems. The cor-
responding phase trajectories of the periodic orbits in
each region are given in Fig. 9(e) and 9(f) for Hertzian
and Bilinaer models, respectively. In the low energy re-
gion (I), the VIs do not engage, and the dynamics are
completely linear; this is confirmed by zero slope of the
FEP; this can be regarded as the low-energy limiting sys-
tem. In region (II), there is a grazing of the VI contacts,
causing a sudden change in the dynamics and a rapid
increase of FEP slope; this marks the critical energy re-
quired to engage the VIs. Here, the corresponding NNM
branch folds back on itself towards lower energies before
transitioning towards higher energies, with this effect be-
ing more prevalent in the bilinear model (the Hertzian
nonlinearity being less prominent in the small deflection
amplitude limit). This fold in the NNM branch yields
a small neighborhood of energies where the FEP slope
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FIG. 9. The FEPs of the ROMs with (a) Hertzian and (b)
bilinear nonlinearity with insets zooming in on the transi-
tion from region I to II with instability denoted by orange
for regions with Floquet multipliers |α| ≫ 1; (c,d) slopes of
the FEPs of of (a,b) with respect to energy; (e) and (f) cor-
responding phase trajectories of the NNMs for (a) and (b),
respectively, for regions I, II, III, and IV of the FEPs.

is theoretically infinite, and these energies correspond to
the maxima of subplots of Figs. 9(c,d) indicating that
the transition from region I to II represents a transition
where the dynamics are most sensitive to nonlinear ef-
fects. Despite the apparent smoothness of Figs. 9(eII,fII)
the volatile VI-grazing dynamics in region II are unstable
as determined by the maximum magnitude of the NNMs
Floquet Multipliers, α, which greatly exceed unity for the
energy regions depicted by orange lines in Figs. 9. Hence,
the solutions corresponding to maximum FEP slopes are
not physically realizable.

After grazing, the FEP gradually increases in fre-
quency towards region III. Region III is characterized
by strong VI oscillations which is apparent by the box-
like phase trajectories indicating non-smooth temporal

dynamics. Here, the linear dynamics of k̂1 are negligible
and the VI dynamics dominate, however the VI forces
only interact with the oscillator for localized time win-

dows during an oscillation cycle (hence the non-smooth
phase portrait). It is in region III that the slopes of
the FEPs decrease in a power-law like fashion as the
ROM asymptotically reaches the limiting region IV. This
asymptotic approach corresponds to the power-law de-
cline of the FEP slopes of Figs. 9(c,d). The physical
interpretation of this result is as follows. As the energy
increases, so to does the frequency, and the indentation
depth of the VI. As a result, the VI forces exist for rel-
atively longer durations during the periodic oscillation
as energy grows. This corresponds to a transition from
the box-like non-smooth VI phase trajectories marked
by sudden changes in kinetic and potential energies, to
the limiting smooth dynamics of regime IV. Region IV
is characterized by in-phase dynamics dominated by the
contact stiffness; this can be regarded as the high-energy
limiting system. In this region, the clearance is negligible
and the VI contacts behave as an extremely stiff elastic
spring. Hence, the dynamics of the ROM with Hertzian
contacts approaches a smoothly nonlinear system with a
3/2 nonlinear coupling, whereas the dynamics of the bi-
linear ROM approaches a linear system at high energy,
as is confirmed by the phase portraits of Figs. 9(eIV,fIV).
Moreover, for the bilinear system, the FEP clearly levels
off as the high-energy (almost) linear limiting behavior
is reached.

C. Relating the Dynamics of the ROM to the
Acoustics of the Lattice

The evolution of the FEP slope with respect to energy
of the ROM (Figs. 9(b,c)) posses a remarkable similarity
to trends of nonlinear IBTET in the full phononic lattice
(Fig. 7). The two measures can be related to one another
by replotting the energy transfers of Fig. 7 with respect
to system energy (to match the energy-dependent nature
of the FEP) and superimposing the FEP slopes to com-
pare similarities in their evolution with energy. To do
this requires a normalization, as the maximum and min-
imum values of the FEP slope can be arbitrarily large
or small, whereas the relative energy of the upper opti-
cal bands is lower-bounded by the amount provided by
the excitation source (from the Fourier uncertainty prin-
cipal), and upper-bounded by unity (since the energy in
the upper bands cannot exceed the total energy of the
system). Moreover, the wave propagation in the 1200
DoF phononic lattice carries the energy of 30 cycles of
the windowed excitation, whereas the FEP energy is pa-
rameterized by the periodic orbits of the 2 DoF ROM.
Thus, the energy of the finite lattice must be normalized
in order to be commensurate with the energy of the ROM
used to generated the FEP. These normalizations are per-
formed as follows. The FEP slope is divided by a scalar
to quantitatively align with the relative energy transfer
so that a direct comparison can be made with respect to
decay rate versus energy. A scalar quantity defined by
the low-bound of IBTET (dashed lines of Fig. 7) is then
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FIG. 10. The relative inter-band energy transfer, with the
normalized slope from the ROM-FEP superimposed for (a)
Hertzian and (b) bilinear contact models; the dashed lines
depict the normalized FEP slopes, the gray lines depict the
normalized FEP slopes lower-bounded by the initial (linear)
energy of the higher bands, and green lines depict a power
law fit to red dots, with the adjusted R-squared value shown
with the inset.

added to the FEP slope account for the lower threshold
of the energy transfer in the VI lattice. The energy of the
finite lattice is normalized so that the initiation energy,
that is, the energy required to engage the first VI site en-
countered by the propagating wavefront, aligns with the
transition between regions I and II of the FEP. These nor-
malizations preserve the slopes of both quantities since
scalar multiplication results only in translations for log
scaling. Hence, the amplitude-normalized FEP slopes
can be directly compared to energy-normalized IBTET
when superimposed.

Fig. 10 displays the described superposition where a
remarkable agreement is found between the trends in the
slope of the FEP of the ROM and the energy transfer be-
tween bands in the lattice. Hence, the underlying FEP
of the ROM, along with the evolution of the dynamical
regimes of Fig. 9, clearly have a direct implication of the
IBTET in the lattice. Moreover, by fitting a slope to the
measured energy transfer versus normalized system en-
ergy for data points falling in region III, a near-perfect
power law is recovered as indicated by the adjusted R-
squared values close to 1 (see Fig. 10). Finally, these
results are in agreement with the trends observed for
spectral spreading within the optical band of the 2-band
system considered in section I, indicating that the same
physical arguments developed in section IVB can be used
to interpret the trends of section I as well. Hence, the nu-
merical results presented for the finite lattices can be un-
derstood in terms of the underlying nonlinear dynamics

of the ROM as it transitions from a limiting low-energy
linear system to a highly nonlinear VI system, and then
asymptotically approaching a smooth high-energy lim-
iting system. With this, a predictive tool is presented
to assess the capacity for IBTET in full phononic sys-
tems based on the simplified VI ROMs which, being of
low-dimensionality, are much more amenable to analysis
compared to the extended nonlinear lattices considered
herein.

V. CONCLUSIONS

In this work, we have investigated the effect of local
VI nonlinearities on the propagation of traveling waves
in 1-D phononic lattices. Specifically, first a di-atomic 2-
band lattice was numerically studied over a wide range of
forcing amplitudes and embedded VI configurations (sec-
tion I). It was demonstrated that spectral energy transfer
in the optical band of this lattice is most profound for
moderate excitation amplitudes, and decreases in effec-
tiveness as the energy rises (Fig. 2). This was quantified
using the spatial-spectral entropy (or wavenumber en-
tropy), for various systems which all followed very closely
to power-law decays with respect to excitation amplitude
after the peak value was reached (Fig. 4). Attention then
turned to inter-band targeted energy transfer (IBTET) in
a 4-band system (Section III). Simulations were carried
out over a range of excitation amplitudes, and numeri-
cal post-processing of wave scattering demonstrated that
IBTET is indeed possible. Moreover, this phenomenon
was proven effective for both Hertzian and bilinear VIs,
and the trends in IBTET with respect to excitation am-
plitude followed closely to those observed for spectral en-
ergy transfer in the 2-band lattice (Fig. 7).
To provide some physical insight into the effect of the

VIs on the acoustics of the lattice, a 2-D ROM was con-
structed based on the unit VI cell. The underlying FEP
of the ROM was computed for the NNM family of 1:1
resonance branches which revealed four dynamic regimes
that the ROM assumes with respect to energy. Namely, a
limiting linear low energy region, a grazing region charac-
terized by the initiation of VI interactions, a VI-oscillator
regime with nonsmooth temporal dynamics, and an effec-
tively linear or smoothly nonlinear limiting high-energy
regime, depending on the contact law (Hertzian or bilin-
ear). This, in turn, produced a frequency-energy slope
that directly scales to the trends of IBTET in the lat-
tice with respect to system energy, providing the physi-
cal interpretation of the spectral scattering of sections I
and III. Moreover, the FEP presents a means for ac-
curately predicting energy transfer capacity of the full
phononic lattice based on the low-dimensional ROM.
Although this work focused primarily on fundamental

understanding of the physics at play, the implications and
potential for future developments are rather extensive.
The low-to-high energy transfers directly correspond to
a reduction in magnitude, since the energy must be pre-
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served in the frequency transfer. Moreover, the evolution
of the VI dynamics with respect to energy corresponds
to an effective filter that can greatly alter transmissibil-
ity of incident waves (cf. Fig. 2). These attributes alone
make VI-based methods attractive for wave transmission
tuning (or tailoring) with respect to amplitude. More-
over, while we have targeted low-to-high energy transfers
between bands, future works could explore the potential
for targeting specific bands and specific sub-regions of
bands of phononic lattices by optimizing the distribution
and parameters of local VIs in lattices through methods
such as genetic programming or machine learning.
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A. DETAILS ON SIGNAL PROCESSING
PROCEDURES

1. Continuous Wavelet Transformation (CWT)

In this section, we provide a brief discussion of the
wavelet transformation algorithm employed in this work
in order to clarify the mathematical details pertinent
for performing the wavelet-based wavenumber partition
analysis of section I (cf. Fig. 3). A similar discourse may
be found in [65]. The CWT is traditionally used as a
time-frequency analysis tool by transforming the signal
from the time domain to the time-frequency domain. To
the same effect, one can consider the space-wavenumber
domain. For 1D systems the standard definition of the
CWT with respect to the spatial variable x is,

X(κ, x) =

√
κ

κc

∫ ∞

−∞
u(ξ)ψ∗

(
κ
ξ − x

κc

)
dξ (6)

where ψ∗(ξ) is the complex conjugate of the mother
wavelet function and κc the center frequency,

κc =

[∫∞
0
κ2|Ψ(κ)|2dκ∫∞

0
|Ψ(κ)|2dκ

]1/2

. (7)

We consider the Morelet wavelet for all transformations
in this work:

ψ(x) =
1

π1/4

(
eiκcx − e−κ2

c/2
)
e−x2/2. (8)

For the scale and quantities of datasets considered in this
work, computational efficiency is a requirement. To this

FIG. 11. The reconstructed kinetic energy and correspond-
ing reconstruction error for the described wavelet partition
scheme; red dashed line indicates 1 percent error.

end, the Fast Fourier Transform is employed to speed
up wavelet computations. Taking Ψ(κ) as the analytical
Fourier Transform of the mother wavelet,

Ψ(κ) = e−(κ−κc)
2/2, (9)

and x̃(κ) the FFT of the signal, Parseval’s allows one
to express wavelet transformation can be written equiv-
alently as:

X(κ, x) =

√
κc
κ

∫ ∞

−∞
x̃(η)Ψ∗(ηκ/κc)e

iηxdη. (10)

Each wavelet transformation can be partitioned over
space and wavenumber. The spectral partitions are de-
fined over 12 regions spanning between κ = 0 and κ = π
to account for 12 different wavelet-domain representa-
tions of the spatial signal at each time instant. The k-th
wavenumber partition is defined as:

Xk(κ, x) = X(κ, x)hk(κ),

hk(κ) = H

(
κ− (k − 1)π

12

)
−H

(
κ− kπ

12

)
.

(11)

The inverse wavelet transformation can be applied
at each time snap shot to each wavenumber partition,
uk(x) = W−1 {Xk(κ, x)}, which is computed as:

uk(x) =

√
κ

κ
3/2
c C

∫ ∞

0

∫ ∞

−∞
X̂k(κ, ξ)Ψ

(
ξκ

κc

)
dξdκ. (12)

where X̂k(κ, ξ) is the Fourier transformation of Xk(κ, x)
with respect to x. Fig. 11 depicts the reconstructed ki-
netic energy of the lattice, KErec, as well as the directly
computed (exact) kinetic energy from the numerical sim-
ulations KEphys, with the error between the two quanti-
ties computed by:

e(t) =
||KErec(t)−KEphys(T )||

||KEphys(t)||
. (13)

2. Spectral Entropy

Here, we provide more details pertaining to the spec-
tral entropy plots displayed in Fig. 4. Fig. 12 depicts
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FIG. 12. Contours of the instantaneous wavenumber entropy
across the time-entropy domain for low, medium, and high
amplitude simulations(top), and the summary contours of the
instantaneous entropy H(t) (bottom).

the distribution of entropy using Eq (3) to recover H(x)
for each t. The resulting matrix H(x, t) is plotted as an
image for low, medium, and high excitation amplitudes.
The distribution of high-entropy regions is clearly seen in
the medium and high excitation amplitude simulations
as the VIs engage the incoming wave. Superimposed on
each image is the instantaneous spectral entropy, which
summarizes H(x, t) over space to render time-dependent
measures H(t).

A data set storing H(t) for each excitation ampli-
tude in the simulation ensemble can then be generated
and plotted in the form of an image to study how the
wavenumber entropy varies in time with respect to the
forcing amplitude for a given lattice configuration. This
is depicted in the bottom plot of Fig. 12. In the low-
amplitude region with no VI engagement, no entropy is
generated after excitation (as expected). For medium
amplitudes, regions of sustained high wavenumber en-
tropy are realized after the VIs engage the incident wave.
In contrast, only localized patches of high entropy are
seen for high-amplitude simulations, indicating that the
VIs do not affect the global wavenumber of the lattice
after the incident wave passes through (or reflects off of)
the unit cells with embedded VIs.

3. Computing energy on each band

The computation of wave energy over each band in
section III is performed as follows. The data matrix for a

FIG. 13. Energy Reconstruction of band-partitioning decom-
position.

given simulation is mapped to the Fourier domain using
the 2D FFT algorithm D(κ, ω) = Fx,t{u(x, t)}. Next,
frequency filters are constructed as follows,

Gk(κ, ω) =

{
1 ω ∈ Bk, −π ≤ κ ≤ π

0 otherwise
(14)

were the first four ranges of frequencies Bk are defined
over the temporal frequency limits of the four pass-bands
(PB),

B1 = min(PB1) ≤ ω ≤ max(PB1)

B2 = min(PB2) ≤ ω ≤ max(PB2)

B3 = min(PB3) ≤ ω ≤ max(PB3)

B4 = min(PB4) ≤ ω ≤ max(PB4)

(15)

A remaining two filter banks are constructed for the band
gap between the acoustic band and first optical band
(BG1), and of for the band gap between the upper two
optical bands (BG2),

B5 = min(BG1) ≤ ω ≤ max(BG1)

B6 = min(BG2) ≤ ω ≤ max(BG2).
(16)

The spatial-temporal dynamics corresponding to each
pass band and band gap regions are then given as,

uk(x, t) = F−x,−t{Gk(κ, ω) · D(κ, ω)}

where F−x,−t{ } indicates the 2D inverse FFT with re-
spect to x and t. The rigid boundaries of the filters in
Fourier space inevitably results in minute numerical ar-
tifacts in the inverse transformation for each partition
taking the form of ripples along the space-time bound-
aries. However, the reconstruction of energies computed
by summing the energy over each band matched nearly
identically to the energies computed for the direct nu-
merical simulations, and hence these numerical artifacts
are negligible.
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B. NONLINEAR NORMAL MODE
COMPUTATIONS

The recipe for NNM calculations follows very closely
to the procedure outlined in [70]. For all FEP calcu-
lations, the shooting method used a prescribed initial
step size of 1−5 and a tolerance of ε = 1 × 10−6. For
low energy orbits, Newmark integration was employed
with 2000 steps per period, and Jacobian calculations of
predictor-corrector steps were computed using the sensi-
tivity analysis in [70]. In region II, the unstable dynamics
proved to be challenging for the computation of the corre-
sponding NNM branch. Hence, sufficiently small predic-
tor steps were required for convergence, with the residual
reduction being varied from 10−12 to 10−10. Sensitivity
analysis was employed again to compute Jacobian terms

in region II.

Once the dynamics of the NNMs stabilized to that of
a definitive VI oscillator in region III, and moreover to
smoothly stable NNMs in region IV, the finite difference
method sufficiently approximated Jacobian terms allow-
ing for the implementation of fast and accurate Runge-
Kutta based methods such as ODE78. The nonsmooth
nature of dynamics in region III would require still a
great number of Newmark iterations to achieve the same
accuracy as the ODE78 routine, and therefore the transi-
tion was made to a finite-difference Jacobian calculation
scheme based on ODE78 for energies beyond region II to
increase computational speed and reduce the number of
steps required to resolve the high-energy regions of the
FEP branch.
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