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Finite-size effects in the static structure factor S(k) were analyzed for an amorphous substance. As
the number of particles is reduced, S(0) increases greatly, up to an order of magnitude. Meanwhile,
there is a decrease in the height of the first peak, Speak. These finite-size effects are modeled accu-
rately by the Binder formula for S(0), and our empirical formula for Speak. Procedures are suggested
to correct for finite-size effects in S(k) data, and in the hyperuniformity index H ≡ S(0)/Speak.
These principles generally apply to S(k) obtained from particle positions in non-crystalline sub-
stances. The amorphous substance we simulated was a two-dimensional liquid, with a soft Yukawa
interaction modeling a dusty plasma experiment.

I. INTRODUCTION

The static structure factor S(k) is a function used
to describe the arrangement of particles in a substance.
Analogous to a diffraction pattern, it characterizes the
microscopic structure of the substance. When S(k)
is computed from the positions of individual particles,
finite-size effects could play a significant role. In this pa-
per, we quantify these effects, and propose procedures to
improve upon them. Our literature search did not re-
veal recent papers that prominently mention finite-size
effects in the S(k) curves obtained from a finite number
of particles. Most of the relevant literature [1–14] that we
have found is from the 1980s-1990s, describing finite-size
effects for isothermal compressibility χ. That quantity
has a theoretical relation to the value of S(k) at k = 0,
i.e., for infinitely long scale lengths. This relation, for
equilibrium conditions, is

χ = S(0)/nkBT, (1)

where n is the particle number density [15–17].
Our focus on finite-size effects for S(k) is motivated by

recent interest in the theoretical concept of hyperunifor-
mity [18–33], which refers to a special type of spatial or-
der characterized by the suppression of long-wavelength
density fluctuations. For a hyperuniform system, S(k)
exhibits a distinctive behavior at small k, i.e., long dis-
tances. Specifically, S(k) approaches zero, or becomes
strongly suppressed, as k → 0. Hyperuniform substances
are predicted to have unique photonic and mechanical
properties [22]. As a practical measure of hyperunifor-
mity of a substance, the hyperuniformity index [22, 34]

H ≡ S(0)/Speak (2)

is the ratio of two values from the S(k) curve: its value
at k = 0, and the height Speak of the first peak of S(k).
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These two values, and in particular their finite-size ef-
fects, will be the focus of this paper.
For our finite-size effect analysis, we adopt a notation

so that the values for a finite size N are distinguished
from the values for an infinite system. Hereafter, we
will write S(k,N) as the static structure factor curve
obtained using a finite number N of particles, and like-
wise S(0, N) and Speak(N) as its values at k = 0 and at
the first peak, respectively. These are distinguished from
the values S(k), S(0), and Speak for an infinite system,
i.e., as N → ∞.
We briefly summarize how S(k,N) is calculated from

positions, ri(t) of a finite number N of particles. These
particles may be physical particles imaged by cameras
in experiments [33, 35–37], or models of real particles
in a numerical simulation [38–41]. This method can be
used for liquids as in the present paper, as well as amor-
phous molecular solids. The instantaneous particle den-
sity ρ(k, N, t) for a finite size N is calculated as

ρ(k, N, t) =

N∑

i=1

exp [ik · ri(t)] , (3)

where k is a specified value of a wave number [15]. Sub-
tracting the average value of ρ(k, N, t) yields ρ̃(k, N, t),
which is the input to an autocorrelation calculation

S(k,N, t) = N−1〈ρ̃(k, N, t)ρ̃ ∗(k, N, t)〉θ , (4)

where 〈 〉θ is an angular average. Calculations of (3) and
(4) can be repeated not only for various values of the
magnitude of the wavevector k, but its direction as well.
If the available data were not just from a single snapshot
of particle positions, but were recorded over a range of
time, one would perform a time average to obtain the
static structure factor,

S(k,N) = 〈S(k,N, t)〉t. (5)

In an initial assessment of the finite-size effects in the
static structure factor obtained from particle positions
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using expressions like Eqs. (3-5), Zhuravlyov et al. [42]
used data from a molecular-dynamics simulation. They
reported opposite trends: the calculated value of static
structure factor near k = 0 decreased, while the height
of the first peak increased, with an increasing number of
particles N . Those results were for a two-dimensional
(2D) liquid, with a Yukawa interparticle interaction to
model a dusty plasma with highly charged micron-size
particles immersed in an ionized gas.
In this paper, to extend that initial assessment of the

finite-size effects, we analyze simulation data over a much
wider range ofN , up to nearly 106 particles. We use these
results to test two formulas, by fitting them. The Binder
formula [1] is found to accurately model the system-size
dependence of S(k,N) at small k, i.e., S(0, N). Likewise,
another formula, that we suggest, is found to describe
how the height of the first peak, Speak(N), depends on
N . Furthermore, these results, along with Eq. (2), allow
us to assess how the hyperuniformity index H depends
on the analyzed system size.
We review the Binder formula along with its historical

context in Sec. II, where we also present our empirical
formula for the height of the first peak, Speak(N). The
2D Yukawa liquid and simulation method are described in
Secs. III and IV, respectively. Particle-position data were
used with Eqs. (3-5) to calculate S(k,N) for analyzed
regions of varying size N , leading to our primary results
that are presented in Sec. V. These results lead us to
suggest, in Sec. VI, procedures useful for correcting S(k)
data for finite-size effects.

II. FORMULAS FOR FINITE-SIZE EFFECTS
TO TEST

A. Finite-size effects for S(k,N ) at small k

While in this paper we are primarily interested in the
finite-size effects of S(k), we must turn to another phys-
ical parameter, the isothermal compressibility χ, for his-
torical context. While we found a paucity of literature
for finite-size effects in S(k), there is a considerable num-
ber of papers [1–14] for finite-size effects in χ. The latter
studies motivate our work because they offer practical
formulas for finite-size effects, and there is a theoretical
connection between S(0) and χ in Eq. (1).
The formulas that describe finite-size effects for χ were

presented beginning with a 1981 paper by Binder [1]. In
Binder’s notation, the best estimate of the true isother-
mal compressibility χ for an infinite system is related to
the value for a finite system χL by

χL = χ− χbL
−1, (6)

where the factor χbL
−1 is the finite-size correction for an

analyzed region of a linear dimension L. We will refer to
Eq. (6) as the “Binder formula.” Essentially the Binder
formula is an expansion with a single term for a small
correction due to finite size.

The history behind the Binder formula traces back to
a 1972 scaling theory of Fisher and Barber [43]. Their
paper was for critical phenomena in a film of finite
thickness, which they generalized for various dimensions.
Fisher and Barber took into account the boundary condi-
tions of this thin film by using a first-order expansion for
a thermodynamic quantity, which was the critical tem-
perature. The paper of Fisher and Barber motivated
Landau, in 1976, to investigate finite-size behavior of
compressibility along with other thermodynamic param-
eters, in a three-dimensional (3D) Ising lattice [44]. Lan-
dau’s paper in turn motivated Binder’s 1981 paper on
Ising lattices in various dimensions, and this paper in-
cluded the formula for susceptibility, which is the same
as isothermal compressibility. After Binder’s publica-
tion, the formula was used by other authors for vari-
ous physical systems, including binary mixtures [7], poly-
mers [9], hard-disk fluids [11, 45], and Lennard-Jones flu-
ids [3, 4, 6]. Among those who investigated 2D Lennard-
Jones fluids were Rovere et al. [3], who in 1988 chose to
add a second-order correction to the first-order correction
of Binder. To describe trends with varying N , starting
with Binder all the authors we cited used two phrases,
“finite-size effects” and “boundary corrections.” Many
of these authors used the two terms interchangeably, and
some further complicated their terminology by mixing
in a third phrase, “boundary effects.” For the present
paper, we will simply use the term “finite-size effects.”
We will rewrite the Binder formula Eq. (6) in terms

not of χ and L, but instead S(0) and N . For 3D, the
Binder formula becomes

S(0, N) = S(0) + bN−1/3, (7)

and, for 2D, it is

S(0, N) = S(0) + bN−1/2. (8)

Here, S(0) ≡ S(0, N → ∞) is the asymptote for large
N . To obtain Eqs. (7) and (8), we combined Eqs. (6)
and (1), motivated by the way Eq. (1) theoretically re-
lates two properties of an infinite system, χ and S(0).
We converted the L-dependence of Eq. (6) to the N -
dependence of Eqs. (7) and (8) using L = (N/n)1/3 and
L = (N/n2D)

1/2, for 3D and 2D, respectively, where n2D

is the areal number density.
The coefficient b will in general depend on the physical

system and its temperature. One can obtain the value
of b by fitting data for various values of N , as we will
demonstrate later.
For studies of hyperuniformity, the value of S(0) is

especially important. For that purpose, we can rewrite
Eqs. (7) and (8) with S(0) on the left side, so that for
3D we have

S(0) = S(0, N)− bN−1/3, (9)

while for 2D we get

S(0) = S(0, N)− bN−1/2. (10)
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In Eqs. (9) and (10) the last terms are the first-order
correction terms. We note that the power law for the
correction term obviously depends on the dimensionality
of the system. The power law in that correction term is
unfortunately weak, meaning that obtaining good preci-
sion with a simulation might require an enormously large
particle number N , especially in 3D with an exponent of
only −1/3, unless one corrects the simulation result us-
ing the Binder formulas, Eq. (9) for 3D and Eq. (10) for
2D. This correction requires knowledge of the coefficient
b, which as we mentioned depends on the substance and
its temperature. As a demonstration, we will obtain this
coefficient in Sec. V for a 2D Yukawa liquid.

B. Finite-size effects for the first peak of S(k, N )

Here we will propose an empirical formula to model
finite-size effects for the height of the first peak,
Speak(N). We found no previous reports of such a for-
mula in our literature search, perhaps because the finite-
size effects were studied mostly for another quantity,
isothermal compressibility, which is only related to S(0),
not Speak. We anticipate that other researchers may wish
to correct the first peak’s height for finite-size effects, for
example in calculating the hyperuniformity index using
Eq. (2).

In constructing our empirical formula, we are moti-
vated by the use of a power law in the Binder formula
for S(0, N). Thus, we seek an expression for Speak(N)
that includes a power law. Moreover, the formula must
converge to an asymptotic value as N increases, as in
the Binder expression, but with a different trend, since
Speak(N) increases instead of decreases with N . A simple
formula meeting these requirements is

Speak(N) =
Speak

1 + (N/N0)−α
. (11)

The numerator Speak ≡ Speak(N → ∞) is the asymptotic
value.

The empirical formula, Eq. (11), has a power-law expo-
nent α and a coefficient 1/N0. We consider both of them
as free parameters for fitting, for our test of Eq. (11)
using data from our 2D Yukawa liquid simulation. Fur-
ther work would be needed to determine how α and 1/N0

depend on other choices of the temperature, density, di-
mensionality of the physical system, and the interparticle
potential. Once the exponent α and the coefficient 1/N0

are known, the desired quantity Speak can be obtained

Speak = Speak(N)
[
1 + (N/N0)

−α
]
, (12)

which is simply Eq. (11) rewritten with Speak on the left
side.

III. 2D YUKAWA LIQUID

In this paper, we will consider a 2D Yukawa liquid.
The binary interaction potential for such a system is(
Q2/4πǫ0r

)
exp(−r/λ), where Q is the particle charge

and λ is a screening length for the medium between two
particles separated by distance r. One reason for inter-
est in 2D Yukawa liquids is that they model experiments
with dusty plasmas.

A dusty plasma is a mixture of solid charged particles
and an ionized gas consisting of electrons, ions, and neu-
tral gas atoms [46–49]. In laboratory experiments [50–
52], the dust particles are typically of a few microns in
size with a negative charge of thousands of elementary
charges. The interactions among the dust particles are
governed by a screened Coulomb repulsion, which is a
soft interparticle interaction that is often modeled as the
Yukawa potential [53].

The large charge of the dust particles allows them to
be electrically levitated so that they are not in contact
with any solid surface [54–56]. When they are levitated
in a single horizontal layer [57–64], they can all be imaged
using a video camera, which allows the measurement of
their positions in each video frame [65]. The large charge
also causes the interparticle potential energy of dust par-
ticles to be so large that it dominates over their ther-
mal kinetic energy. This condition [66, 67], known as
“strong coupling,” leads the particles to self-organize in
a crystalline structure [68–71]. Such a crystal can then
be melted, using rastered laser beams, to sustain a steady
liquid condition [72–74].

In Zhuravlyov et al. [42], particle-position data were
analyzed for the dusty plasma experiment of Haralson
and Goree [75, 76], as well as for data from a Yukawa
molecular dynamics simulation. The results from the
simulation and experiment were found to be consistent,
indicating that even though it had simplified physics, the
simulation was able to capture the most important as-
pects of the static structure factor for the experiment.
These simulation data were also used in an initial assess-
ment of finite-size effects for measurements of the static
structure factor at long wavelengths, i.e., at small k.

In this paper, we explore the finite-size effects more
comprehensively. The same simulation method was used,
as in Ref. [42], but with a much larger system size. More-
over, we also test two formulas for finite-size effects: the
Binder formula, Eq. (8) for S(0, N), and our empirical
formula, Eq. (11) for Speak(N).

IV. SIMULATION

We summarize the simulation details briefly here. The
LAMMPS code [77] was used to perform a molecular dy-
namics simulation of identical particles in a microcanon-
ical ensemble. The particles interacted via the Yukawa
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potential with a cut-off radius of 20a, where

a ≡ (πn2D)
−1/2

is the 2D Wigner-Seitz radius. The dimensionless pa-
rameters describing the Yukawa system are the Coulomb
coupling parameter Γ and the screening parameter κ de-
fined as in Ref. [42], which were chosen to be 130 and
0.719, respectively. For the corresponding number den-
sity, the kinetic temperature had a value that exceeded
the melting point Tm for a 2D Yukawa system [78] by
a factor of 1.19. The system was equilibrated to the
target temperature by a thermostat [79], with the same
time constant and integration time step as in Zhurav-
lyov et al. [42], and then the thermostat was turned off.
Particle positions were recorded at intervals of 10ω−1

0

over a duration of 5000ω−1
0 , where ω0 ≡ ωpd/

√
2 as in

Ref. [42]. Here ωpd =
(
Q2/2πǫ0Ma3

)1/2
= 89 s−1 is a

2D dust plasma frequency, where M is the particle mass.
The boundary conditions for the simulation were peri-
odic. Further details of the simulation method can be
found in Zhuravlyov et al. [42].
To study the finite-size effects of the static structure

factor S(k,N), we varied the size of a circular analyzed
region centered within a large simulation box. The sim-
ulation box itself was square, containing a fixed number
of 937 501 particles, much greater than in Ref. [42]. The
analyzed regions were smaller and did not strictly con-
tain a fixed number of particles, as they could leave or
enter the region randomly. Hence, we will report time-
averaged values of the number N of particles, ranging
from N = 70 up to N = 736 771, according to the chosen
diameter of the circular analyzed region. Example snap-
shot of particles in some of the smaller analyzed regions
is shown in Fig. 1. Data for S(k,N), for the analyzed
regions reported in this paper, can be found in Ref. [80].

V. RESULTS

A. Assessing the finite-size effects

We now present the results of our analysis of the 2D
Yukawa simulation. The static structure factor S(k,N)
curves were obtained for various finite values of N . Ex-
ample curves are presented in Fig. 2(a). The shape of
the curves is typical of simple liquids [15, 81, 82], with
just a few peaks that rapidly diminish in height as k is
increased. The first peak of S(k,N) exhibits a finite-size
effect of tens of percent, as seen in Fig. 2(a).
At small k, the finite-size effect is more substantial

than for the first peak. Instead of tens of percent, S(k,N)
changes by much more than a factor of two asN is varied,
as seen in Fig. 2(b), where we have magnified the low-k
portion of the curves.
Since we are especially interested in the static structure

factor at k = 0, we will extrapolate S(k,N) to k → 0.
This extrapolation is done by fitting S(k,N) data points

FIG. 1. A tiny portion of the simulation box, showing in-
dividual particle coordinates at one time. Also shown are
quarters of the three circular analyzed regions, which con-
tained in total on average N = 70, 492, and 9163 particles.
The entire simulation box, which is too large to show here, is
a square containing 937 501 particles, with periodic boundary
conditions. Distances are normalized by the 2D Wigner-Seitz
radius a = (πn2D)

−1/2, for an areal number density n2D. This
snapshot reveals the degree of microscopic disorder for this 2D
Yukawa liquid, at a temperature above the melting point Tm

by a factor of 1.19.

to a parabola,

S(k,N) = S(0, N) +Ak2, (13)

as in Huang et al. [83]. We note that the fit coefficient
A may depend on temperature and the nature of the
physical system. More importantly for our analysis, the
intercept S(0, N) is the desired estimate, for a finite N .
Because Eq. (13) fits our simulation data well in Fig. 2(b),
for ka 6 1, we will use the parabola of Huang et al. to
estimate S(0, N).
We note that our simulation data for S(k,N) vary

monotonically with k, as can be seen in Fig. 2(b).
However, there are other physical systems where the
static structure factor is not monotonic with k, so that
Eq. (13) could not be used directly. In some physical
systems [36, 83–89], the static structure factor exhibits
an upturn feature at small k, where the static structure
factor increases instead of decreases at the smallest val-
ues of k. Huang et al. called such a feather an “en-
hancement,” and they found that for water they could
generalize Eq. (13) by adding an “anomalous” term, in
the fit to the static structure factor data points. For such
a physical system, that generalized fitting scheme would
still allow obtaining S(0, N).
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FIG. 2. Static structure factor S(k,N) data. Here the wave
number k is normalized by the 2D Wigner-Seitz radius a. The
S(k,N) data were obtained using Eqs. (3-5) with an input
of particle positions from 500 snapshots of the simulation.
We varied the size of the analyzed region over 20 values of
N , three of which are shown here, as in Fig. 1. The same
S(k,N) data are shown as curves in (a) and data points in (b).
Semilogarithmic axes in (b) help reveal the finite-size effects
at small k. The smooth curves in (b) are parabolas, Eq. (13)
obtained by fitting the data points in the range ka 6 1. That
fit also yielded the extrapolated values of S(0, N) shown as
dotted lines.

Finite-size effects for S(0, N), which are noticeable
even over a limited range of N in Fig. 2(b), are even
more profound over a wider range of N , as we show in
Fig. 3. In particular, S(0, N) is reduced by nearly an
order of magnitude over the wide range of N .
Finite-size effects for the height of the first peak

Speak(N) are weaker than those for S(0, N), as shown
in Fig. 4. There is at most 25% reduction in Speak(N)
over the range of N that we investigated. Since the peak
height has this weak dependence on N , we needed to ob-
tain the values of Speak(N) in Fig. 4 with good practical
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10-1
 

S
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,N
)

number of particles N

fit to 
Binder formula, Eq. (8)

asymptote S(0, N )

FIG. 3. Finite-size dependence of S(0, N). We found that
S(0, N) can vary by an order of magnitude, as N is varied
from 70 to 736 771. The S(0, N) data points shown here were
obtained as in Fig. 2(b); their error bars are smaller than the
symbol size. The solid line is a fit to the Binder formula,
Eq. (8), which has two free parameters: the asymptotic value
S(0, N → ∞) and a coefficient b. For our 2D Yukawa liquid at
T = 1.19 Tm, we obtained S(0, N → ∞) = 3.99× 10−3 as our
estimate of S(0) for an infinite system, while the coefficient b
was found to be 0.260. The good fit gives us confidence that
the Binder formula is useful for this 2D liquid.

precision. We do this by using a quadratic fit of several
data points of S(k,N) near its first peak.

B. Formulas for finite-size effects

1. S(k, N) at small k

We used our simulation data to test the Binder for-
mula, Eq. (8), for the finite-size effect for S(0, N). This
test is shown in Fig. 3. With two free parameters, we
find that it is possible for the Binder formula to fit the
simulation data very well. The difference between the
individual data points and the fit was only 0.56%, on
average.
Having found that the Binder formula fits the data

well, we can exploit the fit parameter that has a special
physical significance, the asymptotic value S(0, N → ∞).
We found this value to be 3.99×10−3 for our 2D Yukawa
liquid at the simulated temperature. This asymptotic
value serves as our best estimate for S(0) for an infinite
system.
Another use of the asymptotic value S(0, N → ∞) is

quantifying the finite-size effect for the static structure
factor at k = 0. We define a discrepancy as the per-
centage difference between a data point S(0, N) and the
asymptotic value S(0, N → ∞). This discrepancy

[S(0, N)− S(0, N → ∞)] /S(0, N → ∞) (14)
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FIG. 4. Finite-size dependence of the height of the first peak
of S(k,N). The data points were obtained by a quadratic fit
at the first peak. The solid line is the fit to Eq. (11), which
has three free parameters, an exponent α, an asymptotic value
Speak ≡ Speak(N → ∞), and a coefficient N0. The exponent
and the coefficient were found to be 0.57 and 9.6, respectively,
while the asymptotic value, i.e., Speak for an infinite system,
was found to be 4.0 for our simulated liquid. The error bars
are shown where they are bigger than the symbol size. These
error bars, and the scatter in the data points, became bigger
at large N due to random errors that arose from the quadratic
fit to a first peak that became narrower, and, therefore, more
difficult to fit, at large N .

is plotted in Fig. 5, where we see that it can be very large,
unless N is closer to a million than to a thousand for this
2D system. Moreover, the discrepancy diminishes rather
slowly with N , with a −1/2 power-law scaling found in
Fig. 5, as one would expect from examining the Binder
formula, Eq. (8).

We note that there would be an even more unfavorable
−1/3 power law for a 3D system. Thus, a large simula-
tion would be required to obtain a reasonable estimate of
S(0), for a simulation of 3D system using a single value
of N . To improve upon this situation, one could exploit
the Binder formula as an extrapolation, as we suggest
later.

Since the asymptote S(0, N → ∞) is a particularly
useful result from fitting to the Binder formula, we in-
vestigated whether there is an alternative formula that
would offer a further improvement in obtaining the value
of this asymptote. In our literature search for the isother-
mal compressibility, we found that there is a lesser-known
formula that extends the Binder formula by adding a
higher-order expansion term. This formula, which was
proposed by Rovere et al. [3] for isothermal compressibil-
ity, can be rewritten for static structure factor of a 2D
system, as

S(0, N) = S(0) + bN−1/2 + cN−1, (15)
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FIG. 5. Percent discrepancy in S(0, N). Data points were
obtained by using Eq. (14), which simply defines the discrep-
ancy as the difference S(0, N)−S(0, N → ∞), obtained from
Fig. 3, normalized by the asymptotic value S(0, N → ∞).
The error bars, obtained by propagation of errors, are shown
only if they are bigger than the symbol size. The dashed line
that we drew through our data points has a slope correspond-
ing to the power law predicted for 2D by the Binder formula,
N−1/2. For 3D, we would expect a weaker scaling of N−1/3,
which might therefore require a larger simulation than for our
2D liquid.

which has three fit parameters instead of two. We tested
this Rovere formula by fitting to our simulation data and
found that the difference between the individual data
points and the fit was only 0.62% on average, which is
comparable to the 0.56% difference for the Binder for-
mula. The asymptote S(0) ≡ S(0, N → ∞), which is one
of the fit parameters, was 3.96× 10−3 for our 2D simula-
tion data. This asymptote differs from that of the Binder
formula by less than one percent, so that we judge, for
our 2D system, there is no great advantage in the addi-
tional complexity of the Rovere formula.

2. Height of the first peak of S(k, N)

Another result is the finite-size effect for Speak(N) in
Fig. 4. We tested our empirical formula, Eq. (11), by
fitting to our simulation data. There is a good agree-
ment between the fit and the data, as seen in Fig. 4. We
found only a 0.17% difference, on average, between the
individual data points and the fit.

From the fit to Eq. (11), one can obtain the asymp-
totic value Speak(N → ∞). This value serves as our best
estimate of Speak for an infinite system. The asymptotic
value was found to be 4.0 for our 2D Yukawa liquid.

To quantify the finite-size effect for Speak(N), we can
define a discrepancy similar to the one for S(0, N). This
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FIG. 6. Percent discrepancy in Speak(N). The discrepancy
was obtained by using Eq. (16), with an input of the data
points Speak(N) and the asymptotic value Speak(N → ∞)
from Fig. 4. The dotted line indicates 0% discrepancy. The
error bars, obtained by propagation of error, are bigger at
large N for the same reason as in Fig. 4.

percent discrepancy is defined as

[Speak(N)− Speak(N → ∞)] /Speak(N → ∞), (16)

which is plotted in Fig. 6. It can be seen from the figure
that the finite-size effect for Speak(N) is at most a 25%
effect.

3. Hyperuniformity index H

We now quantify the finite-size effect for the hyperuni-
formity index H for our 2D Yukawa liquid. We obtained
the hyperuniformity index H(N) ≡ S(0, N)/Speak(N)
over the same range of N that was investigated. The
result is shown in Fig. 7.

As a practical approach of estimating H , corrected for
finite-size effects, we simply divide our two asymptotic
values, S(0, N → ∞) and Speak(N → ∞) that were ob-
tained by fitting to the Binder formula and our empirical
formula, respectively. The result, which is our estimate
of the hyperuniformity index for an infinite system, is
H ≡ H(N → ∞) = 1.0× 10−3.

We can also quantify the finite-size effect for H(N).
This can done as above by defining the percent discrep-
ancy

[H(N)−H(N → ∞)] /H(N → ∞). (17)

This discrepancy is plotted in Fig. 8, where we see about
the same percent discrepancy as for S(0, N) in Fig. 5.
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corrected for finite-size effects

FIG. 7. Finite-size dependence of the hyperuniformity in-
dex H . Each data point was calculated as S(0, N)/Speak(N).
The error bars are smaller than the symbol size. The dot-
ted line is the result of the quotient of asymptotic values,
S(0, N → ∞)/Speak(N → ∞) = 1.0 × 10−3, which were ob-
tained from Figs. 3 and 4. This quotient is our best estimate of
the hyperuniformity index for an infinite system H(N → ∞).
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FIG. 8. Percent discrepancy in H(N) obtained from Eq. (17).
The inputs to the calculation of this discrepancy were the data
points H(N) and our estimate of H(N → ∞) from Fig. 7.
This result is for a 2D Yukawa liquid; we expect that the
percent discrepancy would diminish more weakly with N for
a 3D system. Only those error bars that are larger than the
symbol size are shown.

VI. SUGGESTED PROCEDURES FOR
CORRECTING S(k) DATA TO OBTAIN S(0)

AND Speak

We now suggest procedures to obtain S(0), Speak, and
the hyperuniformity index H , all corrected for finite-size
effects. These procedures start with S(k,N) curves that
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were obtained from particle-position data, either from
simulation or experiment.
To obtain S(0), corrected for finite-size effects, there

are two steps. The first step yields S(0, N), which is an
input to the second step that yields S(0).
The first step in finding S(0) starts with the S(k,N)

curve for a given value of N . One then fits that curve
to an appropriate expression. The expression we used
was the parabola of Eq. (13), since there was no upturn
in our S(k,N) data at small k. This fitting will yield
S(0, N), as one of the fit parameters. This is essentially
the asymptotic value at small k. For an experiment or
simulation which, unlike ours, has a static structure fac-
tor with an upturn at small k, the fitting formula can be
modified by adding a term to Eq. (13), for example the
term in Eq. (2) of Ref. [83].
The second step is to use S(0, N), from the first step, as

an input to the Binder formula. This formula is Eq. (10)
or Eq. (9), for 2D or 3D, respectively. If the coefficient b
is already known for a given substance and temperature,
this can be done with S(0, N) for just a single value of
N . Otherwise, one must use S(0, N) data for multiple
values of N and fit to the Binder formula to obtain that
coefficient, as we did in Sec. V. The result of using the
Binder formula is the asymptotic value S(0, N → ∞),
which is the same as the desired quantity S(0), corrected
for finite-size effects.
To obtain Speak, we use our empirical formula,

Eq. (12). The input for this formula is the height of that
peak, for multiple values of N , i.e., Speak(N). The result
of this step is the asymptotic value Speak(N → ∞), which
is the same as the desired quantity Speak, the height of
the first peak corrected for finite-size effects. An artifact
of small N is that the first peak tends to be lower and
broader than for large N . This tendency has the counter-
intuitive consequence that error bars for the height of the
first peak are bigger for large N , due to random errors
arising from quadratic fitting to a narrow peak.
The hyperuniformity index can then be obtained

simply by using Eq. (2). For example, for our
2D Yukawa liquid simulation data, we obtained
H ≡ S(0)/Speak = 1.0× 10−3. This value is lower than
the estimate 3.7× 10−3 that was reported by Zhuravlyov
et al. [42] for a simulation with N = 791, without cor-
recting for finite-size effects. We note that lower values
of H indicate a condition closer to hyperuniformity, and
that some authors consider the value of 1.0 × 10−3 at-
tained in our simulation to be the threshold for effective
hyperuniformity [20, 21, 24, 90].

VII. SUMMARY

We have identified two finite-size effects for the static
structure factor: at small k and at the first peak of
S(k,N). We have shown that the finite-size effect for
S(k,N) at small k can be quite significant, up to an or-
der of magnitude, while the finite-size effect for the height

of the first peak is weaker.

To model the finite-size effect for S(k,N) at small k,
one can use the Binder formula, which was originally in-
tended for the finite-size effect for isothermal compress-
ibility. The Binder formula expresses S(0) for an infinite
system as compared to that for a system of finite size N
as a simple difference which scales as a power law of N .
That power law, for the correction, is N−1/2 or N−1/3,
for 2D or 3D systems, respectively.

Modeling the finite-size effect for the height of the first
peak, Speak(N), required that we devise our own formula,
as we found none in the literature. This empirical expres-
sion, Eq. (11), has a correction factor that asymptotically
approaches unity.

We identified two challenges arising from finite-size ef-
fects that might be unfamiliar to researchers who ob-
tain values Speak and S(0), for example in calculating
the hyperuniformity index. For Speak, we encountered a
counterintuitive tendency that the uncertainty in Speak

increased, instead of decreased, with larger N , due to
the practical issue of measuring the height of a peak that
narrows at large N . For S(0), there is a very slow con-
vergence in this value as N is increased, especially in
3D where the finite-size correction scales very weakly as
N−1/3. This problem means that calculating S(0) from
the positions of a finite number of particles can have a
substantial error, even if the number of particles might
seem to be rather large. To correct S(0) for this finite-
size effect, we devised the second step of our two-step
procedure.

In the common scenario that one has particle-position
data from a simulation, or an imaging experiment, the
static structure factor curve obtained from those data
will be limited by a finite value of N . One might wish
to correct those data, especially for S(0) and Speak, to
obtain a best estimate of their values for an infinite sys-
tem. For that purpose, we proposed a two-step correction
procedure. The first step, applicable only to S(0), is an
extrapolation of the S(k,N) data to k → 0. This extrap-
olation must be repeated for various values of finite N ,
to obtain the coefficient b in the Binder formula for the
given substance and temperature. The second step is an
extrapolation using the Binder formula for S(0) and our
empirical formula for Speak.

We tested this two-step procedure using particle-
position data from a 2D molecular dynamics simulation.
This simulation had 937 501 particles, allowing us to re-
peat our analysis of S(k,N) for analyzed regions contain-
ing various N , number of particles. Our simulation was
for a liquid with the Yukawa potential, which is a soft
potential that models dusty plasmas, among other phys-
ical systems. The temperature was above the melting
point by a factor of 1.19. For this liquid, we calculated
the static structure factor curve for various values of N .
The extrapolation to k → 0 in the first step was done
by fitting to the parabola of Eq. (13). For the second
step, we found that our data for various N closely fit the
Binder formula for S(0) and our empirical formula for
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Speak, yielding values 3.99 × 10−3 and 4.0, respectively.
Calculating their ratio, which is the hyperuniformity in-
dex H ≡ S(0)/Speak, we found for our 2D Yukawa liquid
that H = 1.0× 10−3, which has been corrected for finite-
size effects using our two-step procedure.
We have so far demonstrated our suggested procedure

for only one set of parameters. We can suggest that fur-
ther tests would be useful for different temperatures, den-
sities, interparticle potentials, and for three dimensions.
Those parameters would affect the value of the coefficient
b, as we noted in Sec. II.
In addition to obtaining values of S(0), Speak, and H

by considering finite-size effects, our approach can be ex-
tended to other material parameters as well. Obviously,
this approach will be useful for isothermal compressibil-
ity, because of Eq. (1). Other physical quantities that
have been identified as being subject to finite-size effects,
when they are estimated from simulation data, include
self-diffusion coefficient [91, 92], chemical potential [93–
95], and molar enthalpy [96]. We expect that the finite-
size correction for such quantities might be obtained by
our approach provided that they have an asymptotic be-
havior with respect to N , analogous to the Binder for-

mula for S(0) or our empirical formula for Speak.

We note that another material description is the pair
correlation function g(r), which like S(k) would have
a size dependence when obtained from an analysis of
particle-position data. As early as 1961, the size depen-
dence for g(r) in this limit was studied theoretically [97],
and it was determined that it has a correction propor-
tional to 1/N . Another correction has also been pro-
posed, Eq. (2) of Ref. [98], for mixtures of methanol with
either water or acetone.
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S. Hüsnügil, M. H. Güneş, E. Yelesti, and S. Ilday, J.
Phys.: Condens. Matter 33, 304002 (2021).

[34] S. Atkinson, G. Zhang, A. B. Hopkins, and S. Torquato,
Phys. Rev. E 94, 012902 (2016).

[35] R. A. Quinn, C. Cui, J. Goree, J. B. Pieper, H. Thomas,



10

and G. E. Morfill, Phys. Rev. E 53, R2049 (1996).
[36] R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403

(2010).
[37] S. Wilken, R. E. Guerra, D. J. Pine, and P. M. Chaikin,

Phys. Rev. Lett. 125, 148001 (2020).
[38] J.-P. Hansen, Phys. Rev. A 8, 3096 (1973).
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