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ABSTRACT 

 

Nonlocal electron transport is important for understanding laser-target coupling for laser-direct-

drive (LDD) inertial confinement fusion (ICF) simulations. Current models for the nonlocal 

electron MFP in radiation-hydrodynamic codes are based on plasma-physics models developed 

decades ago; improvements are needed to accurately predict the electron conduction in LDD 

simulations of ICF target implosions. We utilized time-dependent density-functional-theory (TD-
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DFT) to calculate the electron stopping power (ESP) in the so-called “conduction zone” plasmas 

of polystyrene in a wide range of densities and temperatures relevant to LDD. Compared to the 

modified Lee–More model, the TD-DFT calculations indicated a lower SP and a higher stopping 

range for nonlocal electrons. We fit these ESP calculations to obtain a global analytical model 

for the electron stopping range as a function of plasma conditions and the nonlocal electron 

kinetic energy. This model was implemented in the 1-D radiation-hydrodynamic code, LILAC, to 

perform simulations of LDD ICF implosions, which are further compared to simulations by the 

standard modified Lee–More model. Results from these integrated simulations are discussed in 

terms of the implications of this TD-DFT based mean-free-path model to ICF simulations.  

 

I. INTRODUCTION 

Inertial confinement fusion (ICF) research has reached significant milestones in the past 

few years including achieving a burning plasma state [1,2] and obtaining a target gain 𝐺 >  1 [3] 

using the indirect-drive scheme. The ICF community suggests that laser direct drive (LDD) is a 

viable method to obtain a high gain with inexpensive targets. In the LDD scheme of ICF, target 

acceleration relies on the thermal conduction of electrons which absorb laser energy in coronal 

plasmas and then transfer these energies to the ablation front of the target. The plasma region 

between the location of critical electron density and the ablation front is called the “conduction 

zone” in LDD. Nonlocal electrons (Ek = 10 to 20 keV) heated by intense laser light in the 

coronal plasmas will transverse the conduction zone to provide the ablation pressure for ICF 

target implosions. Understanding how these nonlocal electrons lose energy in the conduction-

zone plasma is crucial for understanding laser–target coupling in LDD ICF modeling [4]. In 

LDD, a typical ICF target consists of deuterium-tritium (DT) gas, enclosed by a solid mixture of 
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DT, and encapsulated by a thin ablative shell of polystyrene (CH). As intense laser beams 

illuminate the ICF target, the CH layer is heated and ablated; shocks are launched to compress 

the DT layer; the continuous laser ablation accelerates the target to implode up to a high velocity 

of vimp > 3.7 × 107 cm/s [5]. 

During this laser-ablation process, the laser energy is absorbed in the coronal plasma 

below the critical surface and carried to the ablation front in the form of high-energy electrons; 

the critical surface is the radius that coincides with the critical electron density (in CH, this 

corresponds to a mass density, ρc ≈ 0.04g/cm3) [6]. As these energetic and nonlocal electrons 

move through the conduction zone, they interact with and lose energy to the background CH and 

DT plasmas. In some cases, the electrons reach thermal equilibrium with the CH or DT. In this 

paper, we define the stopping range or mean free path (MFP) of a nonlocal (projectile) electron 

as the distance it travels before its velocity drops to the electron thermal velocity of the 

background plasma. Thus, understanding and calculating the nonlocal electron MFP is crucial for 

accurate simulations of ICF experiments and understanding laser–target energy coupling.  

Over the past few decades, different models based on traditional plasma physics have 

been developed to model the nonlocal thermal transport for high-energy-density (HED) plasmas 

[7-10]. For instance, the current model for nonlocal electron thermal conduction in the 1-D 

radiation-hydrodynamic code LILAC [11], is a modified version of the Lee–More method 

[10,12]. As shown in Ref. [12], the conduction model inaccurately predicts the optical depth 

modulation, among other quantities, compared to experimental results performed on OMEGA. 

More recently, experimental evidence has also indicated that the CH–DT interface retreats 

differently between experiments and LILAC simulations [13,14]. These observations have 
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motivated us to seek a more-accurate model of the nonlocal electron MFP to improve the 

predicative capability of LDD implosion simulations.  

Stopping power, SP = (–dE/dx), is directly related to the nonlocal electron stopping 

range; the nonlocal electron is treated as the projectile stopping in a given material [12]. There 

are many analytical formulas that model the SP of ions in classical and quantum materials 

including the Li–Petrasso method [15], the Brown–Preston–Singleton method [16,17], and the 

dielectric function formalism [18]. These models, although computationally inexpensive, are 

established by the homogeneous electron gas and generally neglect any partial ionization effects. 

They also fail to incorporate phenomena including the Barkas effect [19,20] and Z1 oscillation 

[21]. The former accounts for the fact that SP is dependent on the sign of the projectile’s charge; 

meaning under the same conditions, a proton and an antiproton would exhibit distinct SPs 

[19,20]. The latter accounts for the oscillations of the SP due to the projectile’s charge [21]. 

Thus, we turn to ab initio methods such as the time-dependent density-functional-theory (TD-

DFT), including the orbital-free (OF) and stochastic Kohn–Sham schemes, to calculate the 

nonlocal electron SP and MFP.  

In this paper, we will outline the TD-OF-DFT algorithm [22], in Sec. II, accompanied by 

a brief discussion of the time-dependent stochastic DFT. In Sec. III, we present the SP and MFP 

results from direct TD-DFT calculations of nonlocal electron stopping in conduction-zone CH 

plasmas relevant to LDD ICF. We then fit these TD-DFT results to obtain our global, analytical 

model with numerical coefficients for the nonlocal electron MFP. These results are compared to 

other SP models as well as the modified Lee–More model currently used in LILAC [12]. In Sec. 

IV, we implement this global and TD-DFT based MFP model into LILAC and demonstrate its 

effect on LDD implosions through LILAC simulations. The simulation results are also discussed. 
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Finally, we summarize these findings in Sec. V, and include additional discussions and plans for 

improvement. 

 

II. METHODOLOGY 

A. Time-dependent density functional theory  

The first principle TD-DFT has been applied to perform calculations for different 

dynamic properties of plasmas [23-26]. Thus, TD-DFT has been used to reproduce and obtain SP 

results in warm dense matter [27-31]. Our SP calculations are performed using the OF approach 

to TD-DFT [32]. While the Mermin-Kohn-Sham (MKS) approach to DFT [33,34] is more 

accurate than the OF method; the MKS method has computational costs that scale cubically with 

volume and temperature [28,33]. Moreover, the temperature regime we consider for an ICF 

polystyrene plasma (100 to 1000 eV) is extreme enough that the orbital-free treatment becomes 

reasonably accurate [22]. Thus, for the sake of computational resources and time, we mostly 

utilized TD-OF-DFT for our simulations. We benchmarked some of our calculations using time-

dependent stochastic density-functional-theory (TD-sDFT). Overall, our TD-DFT results of 

nonlocal electron SP (and stopping range) are obtained using the recently developed stochastic 

and hybrid representation electronic structure by density functional theory (SHRED) code [19]. 

The OF method for DFT follows a similar approach to the Kohn–Sham approach to DFT. 

However, in the OF-DFT method, the electron density, ρ(r), is represented using a single, 

collective orbital    
2

, r r  while in the Mermin–KS approach, the density is defined as a 

sum of many noninteracting orbitals 𝜌(𝒓) = ∑ 𝑓𝑛𝜓𝑛
∗ (𝒓)𝜓𝑛(𝒓)𝑛  for Fermi–Dirac occupations, fn. 

We can extend this OF approach to include time-dependent effects by defining the orbital using 
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the scalar velocity field ∇S(r,t) such that 𝜓(𝑟, 𝑡) = √𝜌(𝒓) ⋅ 𝑒𝑖𝑆(𝒓,𝑡); we write the time-dependent 

version of the single particle Schrodinger-like equation as [22,30]: 

 

 
 
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In the above equation, the effective potential [for ρ = ρ(r,t)] is defined as 

 𝑉̂eff(𝒓, 𝑡) = 𝑉𝐻(𝜌, 𝒓) +
𝛿𝐹s−v𝑊

𝑇𝐹 [𝜌]

𝛿𝜌
+

𝛿𝐸xc[𝜌]

𝛿𝜌
+ 𝑉ext (2) 

and is the sum of the contributions from the mean field Hartree potential, VH(ρ,r), the Thomas–

Fermi plus von-Weizsacker non-interacting free-energy, 
𝛿𝐹𝑆−𝑣𝑊

𝑇𝐹 [𝜌,𝑇]

𝛿𝜌
  [35,36], the exchange 

correlation potential, 
𝛿𝐸xc[𝜌]

𝛿𝜌
, and the external potential, Vext, for electron–ion interactions. 

Equations (1) and (2) give the typical TD-OF-DFT algorithm, which is called Thomas–Fermi–

von-Weizsacker approach to TD-DFT. To better catch the time-dependent response, however, 

we include the addition of current dependent energy density potential VCD(r,t) based on the 

Lindhard response and defined in [22], to the overall effective potential, eff
ˆ V . As discussed in 

Ref. [22], the addition of this term is shown to improve the SP calculations near the Bragg peak; 

moreover, including this dynamic term creates a nonadiabatic version of TD-OF-DFT [22,30].  

In addition to the TD-OF-DFT method used for most MFP calculations for nonlocal 

electrons in conduction-zone CH plasmas, we have also applied TD-sDFT to benchmark some of 

our TD-OF-DFT calculations. The details about the TD-sDFT method have been given in a recent 

paper, see Ref, [28,37], here we briefly outline the basics. TD-sDFT calculations [28,38-40], are an 

extension of the typical MKS method; this method enables high-temperature calculations viable for 

T ≫ TF (with TF being the Fermi temperature for a given electron density). TD-sDFT, as 
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described extensively in [28,38,39], uses the Hutchison method to estimate the initial electron 

density using stochastic Rademacher vectors [40]. When converged, TD-sDFT reaches the same 

accuracy as the typical KS approach, but as it scales linearly with size and inversely with 

temperature, it costs much less computationally for the high energy density (HED) systems 

described in this article.  

 

B. TD-DFT calculations for nonlocal ESP  

We use the above TD-DFT algorithm to set up our SP simulations in polystyrene. 

Equations (1) and (2) are self-consistently solved for both the incoming electron and the 

background CH plasma using the split operator method [41]. For our simulations we take a 

single, high-energy electron with different kinetic energies up to 25 keV, and project it along the 

z-axis into a box of CH plasmas with a given temperature and mass density. To account for 

relativistic effects, we use the Einstein relation for kinetic energy, 𝐾 = ((𝑝𝑐)2 + (𝑚𝑐2)2)1/2 −

𝑚𝑐2, to determine the corresponding input velocity from the momentum, 𝑝 = 𝛾𝑣𝑚 with 𝛾 being 

the Lorentz factor.  

For each density–temperature condition, we perform convergence tests for the time step, 

grid size, and box size. For the sake of computational and time resources, we have converged our 

TD-DFT calculations to ∼10% accuracy. Our simulations are run for boxes between 256 to 

320 atoms and a ratio of [1:1:(4 to 5)] for the simulation box lengths of Lx, Ly, and Lz. Thus, the 

length of the box along the direction of motion (z) ranges from 44.22 Å  to 96.03 Å . The time 

step for TD-DFT calculations is 3 × 10–3 atomic units ≅ 7.26 × 10–5 fs. Moreover, the grid 

points in the x-direction are between 128 and 320. The grid spacing is directly related to the 

energy cutoff, [28] which defines the max energy of the plane-wave basis.  
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We have used the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functionals [42] 

implemented through the LibXC package [43]. For our calculations, pseudopotentials are used; for 

carbon we use an all-electron Hartwigsen-Goedeker-Hutter (HGH) pseudopotential and for 

hydrogen we utilize the Goedecker pseudopotential [44-47]. Furthermore, for the electron 

projectile we utilize the same pseudopotential as the hydrogen (proton); however, we take the 

charge to be “–1” and, in our simulation, set the mass to be the electron mass. Thus, the incoming 

electron is treated as a classical particle with a negative charge and mass of an electron, while the 

background electrons are treated quantum mechanically. The approximation that the electron 

projectile is treated classically in our current TD-DFT calculations, should be reasonable as 

nonlocal thermal transport is mainly concerned with energetic electrons (~6kT), significantly 

more energetic than the background plasma electrons (~kT). 

We have used orbital-free density-functional theory molecular-dynamics (OFMD) 

simulation to generate different configurations of the background CH plasma. Namely, for a 

given mass density, plasma temperature, and box size, the C and H atoms are randomly 

positioned into the simulation box; finite-temperature DFT calculations determine the mean-field 

electron density for a given ionic configuration, from which the Hellman-Feynman theorem will 

tell you the electronic force acting on each ion. Combining the electronic force with the ionic 

forces, the total force will move each ion to its new location for a given time step by classical 

Newton’s equation. Such a MD process is repeated thousands of time steps to sample different 

configurations of the background CH plasma. This ab initio DFT-MD method [48-50] has 

extensively been used to simulate plasmas ranging from warm-dense matter to ideal plasmas in 

the past two decades. For the results presented here, the CH plasma density varies from 0.05-

g/cm3 to 1.0-g/ cm3 and temperature ranges from 100-eV to 1000 eV, corresponding to plasma 
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types varying from partially ionized non-ideal ones to ideal plasmas. As shown in Fig. 1, since 

OFMD simulations go beyond the homogeneous electron gas, we see slight fluctuations in the 

electron density. With the OFMD-generated configurations, we take evenly spaced time 

snapshots of the background plasma for TD-DFT calculations through which the nonlocal 

electrons propagate. For each TD-DFT simulation, the positions of the ions are held constant 

because the time of projectile passing through the plasma is short (∼fs). The stopping power is 

then computed using TD-DFT as the average TD mean field force on the electron projectile at a 

given time using the Hellman-Feynman theorem [22,28] such that : 
𝑑𝐸

𝑑𝑠
=< 𝐹𝑝𝑟𝑜𝑗(𝜌, 𝑹, 𝑡) >, 

where the vector 𝑹 is the position of the projectile computed using classical equations of motion. 

The full force equation given in [22,28]. 

Moreover, the average force on the projectile is directly related to the SP defined as:  

−
𝑑𝐸

𝑑𝑧
= −

𝑑𝐸

𝑑𝑠
𝑐𝑜𝑠(𝜃𝐷)      (3) 

where 𝜃𝐷 is the electron’s angle of deflection (discussed below) and 𝑑𝐸/𝑑𝑠 is defined above. 

There are two ways to compute the stopping power in TD-DFT calculations: one where the 

projectile is propagated through the plasma at a constant velocity and the other where the 

projectile can change velocity as it propagates causing deflection/scattering to occur. For heavy 

ion projectiles, both methods will give similar results as the deflection effect is negligible. 

However, for a light electron projectile we must incorporate this deflection angle.  To obtain 

𝑑𝐸/𝑑𝑠, we run the above simulation with the projectile’s momentum fixed solely in the z-

direction. We then run a second simulation to allow the electron to scatter to obtain the 

deflection angle, θD, discussed below. Combining these two results we obtain our SP given in 

equation (1). To improve our statistics, we allow the electron projectile to pass through the z 

direction of the box multiple times (10 passes); starting at the time it takes for the electron to 



10 

 

reach 𝐿𝑧/8, we continuously calculate the rolling average force, <
𝑑𝐸

𝑑𝑠
>, on the electron. After 

the simulation has ended, we take the mean of the rolling average measurements as the value, 
𝑑𝐸

𝑑𝑠
, 

for the given conditions; we exclude the rolling average measurements from the first 2 passes (up 

to 2𝐿𝑧) in our second average to avoid extremes caused by the initial oscillatory behavior of the 

SP. For most results presented here, we have averaged over at least two snapshots of the 

background CH plasma. Because the conduction zone plasmas are approaching a weakly coupled 

case, we find that different snapshots yield very similar SP results. 

To give an example of these TD-DFT calculations, Fig. 1 shows time snapshots of the 

difference between the instantaneous and initial electron density in the y–z plane for a single 

electron stopping in CH at 0.50 g/cm3, 500 eV. In this figure, we allow the electron to change 

velocity as it moves through the plasma. The white dotted line shows the undeflected path of the 

electron; each box contains 320 atoms with a 1:1:5 ratio between Lx, Ly, and Lz. Figs. 1(a)–1(c) 

show time snapshots for an electron projectile with 6 keV initial kinetic energy; Figs. 1(d)–1(f) 

are time snapshots for an electron with an initial kinetic energy of 20 keV. For every run, the 

electron projectile starts from the location  2, 2,0 .x yL L  We see the trajectory of the 

nonlocal electron as it propagates along the z axis and interacts with the background CH plasma.  

The projectile electron leaves a clear wake as it progresses through the CH plasma. This kind of 

plasmonic behavior, as discussed in [51], induces a “drag” force on the projectile due to dynamic 

response that contributes to the overall stopping power and is included in our TD-DFT 

calculations. Furthermore, as the incoming electron moves along the z direction of the box, it is 

scattered in the x and y directions. This deflection is apparent for low-velocity projections [see 

Figs. 1(a)–1(c)], but when the electron projectile velocity is much larger than the thermal 
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velocity of the background electrons (vproj ≫ vth), the deflection is less significant to the overall 

stopping [see Figs. 1 (d)–1(f)]. For all incoming electrons, we calculate this angle of deflection, 

𝜃𝐷 , such that: 𝑐𝑜𝑠(𝜃𝐷) =
𝛥𝑧

√𝛥𝑥2+𝛥𝑦2+𝛥𝑧2 
,   where ∆x, ∆y, and ∆z are the distances the electron 

projectile has moved from its initial point. To calculate this deflection angle for a given set of 

plasma conditions, we run the same simulation as discussed above, however we allow the 

electron to accelerate/decelerate as it travels through the polystyrene. We look at the trajectory of 

the electron, to calculate the angle of deflection. Similar to our calculations of dE/ds, we take the 

rolling average of cos(θD); however, we only calculate θD until either the electron is deflected 

past the length of Lx or Ly, or until one complete pass in the z direction. Again, we take the mean 

of the rolling average values as the final value of θD. Different from the dE/ds measurements, we 

generate θD using only one ionic configuration for each set of distinct (ρ, T, K). Finally using our 

obtained values for 𝜃𝐷 and dE/ds, we calculate the SP defined in Equation (3).  

 

C. The modified Lee–More model for the mean free path of nonlocal electrons  

To investigate the implications of our TD-DFT results to LDD implosion simulations, we discuss 

the current nonlocal electron conduction model used in radiation-hydrodynamic codes for ICF 

target design and simulations in this subsection. A modified version of the Lee–More model 

[10,12]  has been used to calculate the nonlocal electron transport in the 1-D hydrocode LILAC; 

the general algorithm for this previously established method is discussed below. Moreover, we 

note that by fully examining the formulation, the velocity scaling of the collective Coulomb 

logarithm can properly approach the classical Bohr (~𝑣3) or the quantum Bethe  (~𝑣2) limit 

[52,53]. With this model, the general electron penetration depth is given as [12]:  
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are the electron deposition path and 90° scattering path defined as a function of the non-local 

(projectile) electron kinetic energy, K, the total and free-electron densities  f
e e, ,Tn n  and the 

specified Coulomb logarithm (CL). The electron–ion and electron–electron CLs are defined as, 
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Above, λD is the Debye length, ni is the ion density, and γ is the Lorentz factor. Each of the 

above parameters reflects a physical limit; bmax is determined by either the Debye length or the 

average ion radius to account for screening. The parameter bmin is defined as a function of the 

particle energy; at low energy it is the minimum impact parameter by a classical electron, while 

at high energy it is the minimum distance constrained by the uncertainty principle [10,12]. 

Furthermore, the CL due to collective effects is defined as 

 

  c p maxlog 1.123 ,b  v  (10) 

for plasma frequency ωp and projectile velocity v. For highly ionized plasmas this effectively 

replaces 𝑏𝑚𝑎𝑥 with a velocity-dependent cutoff.  

The original Lee–More method is based upon the kinetic Boltzmann equations and 

neglects electron–electron scattering, thus the algorithm becomes inaccurate for low-Z materials; 

however, the modified version, although still based on the Boltzmann equations, has been 

updated to include electron–electron collisions as shown in Eqs. (4)–(6)  [10]. This method, 

while computationally simple, does not accurately predict the MFP of nonlocal electrons, as 

evidenced by experimental soft x-ray self-emission images in cryogenic DT implosions on 

OMEGA [14]. Our ab initio TD-DFT calculations are intended to examine if there is any 

deviation from the modified Lee–More model for nonlocal electrons traversing the conduction-

zone CH plasmas in LDD implosions.  

 

III. RESULTS 

A. Electron stopping power in “conduction-zone” polystyrene plasmas 
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Using the above TD-OF-DFT methodology, we obtain SP results for a high-energy electron 

traversing the CH plasma for ICF conditions. Prior to developing our global model for the MFP, 

we looked directly at our SP data obtained from TD-OF-DFT calculations. We probed seven 

unique density–temperature conditions on CH plasmas at mass densities of 0.05 g/cm3 to 1.0 

g/cm3 and temperatures of 100 eV to 1000 eV, with nonlocal electron (“projectile”) kinetic 

energy values up to 25 keV. These unique plasma conditions span the necessary “conduction-

zone” regime. Since TD-DFT calculations are computationally expensive, we computed (–dE/ds) 

for 10 to 12 distinct nonlocal electron kinetic energy values for each unique plasma condition. 

Fig. 2 shows the SP (–dE/dz) distributions for each of these plasma conditions. The individual 

points represent the exact TD-OF-DFT calculations with the deflection angle considered; the 

corresponding curves are the individualized fits. Each of the points in Fig. 2 corresponds to the 

stopping power averaged over two snapshots, meaning that for each projectile kinetic energy 

value we have repeated the TD-OF-DFT calculations with two different configurations of the 

background CH plasma. The two-snapshot calculations generally resulted in distinct, but similar 

SP results. Here, we interpolate/fit each set of data using the sum of multiple, (i), weighted 

Gaussian distributions: 
 

2 22
SP e i iK b c

i ia
 

  with numerically determined coefficients 

(ai,bi,ci) to interpolate the data. Such fitting serves solely as an interpolation of each TD-DFT 

data set, which enables the numerical integration for calculating the mean free path of nonlocal 

electrons. The small inaccuracy near the high-energy endpoint would not significantly affect the 

mean-free path calculations, shown by the integration in Eq. (11).  

Moreover, in Fig. 3 we compare our TD-DFT results for a CH plasma at 0.50 g/cm3, 500 eV 

to the Brown–Preston–Singleton (BPS) [16,17], Li–Petrasso (LP) [15], and dielectric function 

(DF) [18] methods for SP. We note that while the three analytical models assume a uniform 
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electron density, the TD-DFT results, as shown in Fig. 3, allow for fluctuations in the electron 

density along the trajectory of the electron. Overall, we see that for the highly energetic 

electrons, TD-DFT predicts considerably smaller stopping power compared to all three analytical 

models by a factor of ∼2. We note that previous results of ion stopping in warm dense matter, 

showed that TD-DFT exhibited lower stopping power by ~15%-25% compared to traditional 

plasma models [22,27,30]. Furthermore, previous experimental results on proton stopping, [29, 

30, 31] showed that TD-DFT calculations (in both the KS and OF formulation) not only aligned 

well with experimental data but outperformed analytical models including BPS, LP, and DF. 

To understand what causes this lower SP, we have explored the background electron density 

along the projectile’s trajectory in TD-OF-DFT simulations. The resulting distribution, however, 

averaged out to the uniform electron density assumed by the usual plasma models. The Barkas 

effect can partially explain the large discrepancy between TD-DFT calculations and analytical 

models. The Barkas effect considers that a negatively charged projectile has a lower SP 

compared to a positively charged projectile of the same mass. Traditional plasma models for SP 

typically assume the projectile is positively charged, or that the sign of the projectile’s charge 

does not matter if the first-Born approximation is invoked; however, TD-DFT goes beyond this 

assumption [19,20,54]. To quantify this effect, we performed TD-OF-DFT calculations for a 

high energy positron moving in a CH plasma of 0.50 g/cm3 and 500 eV temperature. We tested 

the positron projectile energies of 2keV, 6keV, and 12keV. The results showed, compared to the 

electron projectile case, the positron exhibited a ~17-42% relative increase in stopping power. 

Thus, this Barkas effect can partially explain the lower SP using TD-DFT calculations compared 

to the traditional plasma models.  
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Finally, in Fig. 3 we benchmark our SP results to TD-sDFT [28,38-40], briefly described 

above and fully derived in Ref [28]. For our TD-sDFT calculations, shown in orange, we use 200 

stochastic orbitals and keep all remaining parameters (time step, box size, ion configuration, etc.) 

the same as our TD-OF-DFT calculations. For the sake of computational resources, we only 

validate a few points. Again, we take the rolling average SP with respect to time starting at the 

time for the electron to progress to 8.zL  We take the average of the rolling average SP, 

beginning at the time it takes the electron to progress to 3Lz; then remove the first three passes to 

minimize the contribution of the initial stochastic fluctuations to the overall stopping. For the 

stochastic points, we allow the electron to accelerate/decelerate while it progresses through the 

plasma and take the SP shown in Eq. (3), where θD is the same angle determined by the TD-DFT 

calculations. Fig. 3 indicates that the stochastic results align well with the TD-OF-DFT results, 

indicating that the TD-OF-DFT algorithm is in fact valid in this extreme temperature regime 

(degeneracy parameter: θ ≫ 1, T ≥ 100 eV).  

 

B. Nonlocal electron mean free path  

We utilize our generalized SP data to derive a global model for the nonlocal electron 

deposition path (range) based on our plasma parameters and initial nonlocal electron kinetic 

energy. The SP calculations are directly related to the MFP, λE using the integral 
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where E0 is the initial kinetic energy of the electron, T is the temperature of the background 

plasma, and –dE/dz is our SP. We denote the MFP as the distance before the nonlocal electron 

loses enough energy to the plasma that it reaches thermal equilibrium [E0 < (3/2)kbT] with the 

background electrons. Thus, the low-energy limit for integration in Eq. (11) is taken to be 

(3/2)kbT rather than zero. Moreover, we take the MFP to be zero for any nonlocal electrons with 

[E0 < (3/2)kbT]. Using this integral, and our interpolated SP data, we obtain mean-free-path data 

for all the CH plasma densities and temperatures examined. Then, we fit the overall mean-free-

path data set to a single, analytical model with numerically determined coefficients. 

Our model is dependent on the plasma temperature, T, density, ρ, and initial nonlocal 

electron kinetic energy, K. We normalize the plasma parameters, (T, ρ) with values within the 

“conduction zone,” and use numerically determined coefficients [55]; the coefficients a0, b0, c0, 

e0, f0, α, β, γ, δ, ε, ζ, ω, ϕ1,2 and ψ1,2 are given in Table I to four significant figures. In general, 

the TD-OF-DFT based model takes the form: 
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for, λE = λE (ρ,T,K). The temperature is given in units of eV and the incoming electron kinetic 

energy K is given in keV. The mass density, ρ, electron density, ne, elementary charge, e, and 

any remaining physical constants are in CGS units. Moreover, the coefficient d0 is dependent on 

the average ionization state ⟨Z⟩ of the background plasma  



18 

 

 

 

1 1

2 2

max
0

max
0

0

0.05
400 0.450

else
400 0.450

Z ZT
f

Z
d

T
e

 

 





    
    
    

 
    

   
   

 (13) 

 

such that d0 is evaluated one way if Z  falls within 5% of the completely ionized state, Zmax = 

3.5, and another otherwise. We keep the same initial pre-factor as the modified Lee–More 

method, shown in Eqs. (4)–(6); the average ionization,  ,Z Z T , is defined using the 

first-principles approach introduced in Ref. [56]. 

Fig. 4 shows the global model (solid curves) and the corresponding TD-DFT data 

(individual points) for each of the seven density/temperature conditions probed. We see the 

model reaches overall agreement for the higher nonlocal electron energies (5 to 20 keV), which 

are closely relevant to the nonlocal transport in LDD conduction-zone conditions. Using this 

model obtained from our TD-DFT data, we can predict the nonlocal electron MFP for a wide 

range of plasma conditions relevant to ICF polystyrene plasmas in LDD implosions. 

  

IV. MODEL COMPARISON 

To see the effects of our TD-DFT-based nonlocal electron mean-free-path model on ICF 

simulations, we compare our results directly to the modified Lee–More method and implement it 

into a 1-D radiation-hydrodynamic code LILAC. The modified Lee–More method, defined by 

Eqs. (4)–(10), has been used for the past decades in  LILAC, to predict nonlocal thermal 

transport. As an illustrative example, our nonlinear model fits of TD-OF-DFT results [Eq. (12)] 

of 𝜆𝐸 are compared with the Lee–More results [Eq. (4)] [12] in Fig. 5 as a function of the 
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nonlocal electron kinetic energy. Fig. 5 shows the TD-OF-DFT data (points), the corresponding 

nonlinear model fit, and the modified Lee–More method for a single electron stopped in CH 

plasma at 0.10 g/cm3 and at temperatures of (a) 300 eV or (b) 1000 eV. Evidently, we see a large 

difference when we compare our model to the modified Lee–More method; similar to what we 

saw in Fig. 3, we note that this difference is a factor of ∼2. This indicates that highly energetic 

electrons (>5 keV) will penetrate the same CH plasma further than currently predicted, thus 

carrying more laser energy deeper into the conduction-zone plasma. For low-energy electrons, 

<5 keV), their mean free paths are smaller than what the modified Lee–More predicts. This will 

evidently change the prediction of laser–target coupling since it is heavily dependent on thermal 

conduction [14,57] as discussed below. 

With the fitted model of TD-OF-DFT results being implemented into LILAC, we can 

further examine how this new model affects simulations of LDD implosions. Specifically, by 

comparing LDD target simulations using either our TD-DFT based model for the nonlocal 

electron MFP or the traditional modified Lee–More model for nonlocal electron transport, we 

can identify its effects on the laser–target coupling and the overall implosion dynamics. For our 

simulations shown in Fig. 6, the target consists of an 8.0-µm thick CH shell with an initial 

density ρ0 = 1.05 g/cm3 and outer radius, r =438 µm. The layer of DT ice is 50-µm thick with an 

initial mass density of ρ0 = 0.254 g/cm3, while the capsule is filled with DT gas. The target is 

shown in Fig. 6 and the inset gives the schematic of the OMEGA scale target. The total laser 

energy is ∼26 kJ, which drives the shell to implode with a maximum velocity of vimp∼400 

km/s. In our simulations, we utilize the nonlocal thermal transport model, iSNB [9], for which 

the electron MFP takes either our TD-OF-DFT-based model or the original modified Lee–More 

model based upon the material. Moreover, the crossbeam energy transfer (CBET) model [40] for 
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laser energy absorption is invoked. We utilize the first-principles equation-of-state and opacity 

tables given in Refs. [58-61] to describe the CH and DT target materials. 

To understand the effects of MFP models (the TD-OF-DFT–based model developed in 

this work versus the modified Lee–More model), we directly compare the density profile and 

ablation pressure at 2.1 ns from the two LILAC simulations in Fig. 7. In Fig. 8 we show the 

comparison of overall implosion performance. In both Figs. 7 and 8, the red curves represent the 

LILAC simulation using the TD-OF-DFT–based model, while the blue curves are the LILAC 

simulations using the standard modified Lee–More model to describe the nonlocal electron 

thermal conduction. In Fig. 7 we observe that the TD-OF-DFT model gives an ∼12% relative 

increase in ablation pressure from the standard LILAC simulation, implying the shell has been 

accelerated further inward. This is consistent with the fact that TD-OF-DFT model predicts a 

larger MFP for nonlocal electrons, leading to higher nonlocal thermal conduction. The density 

profile of the shell is very similar for both simulations; however, the density shell in the standard 

LILAC simulation peaks at a larger shell radius compared to the one using the modified Lee–

More model.  

Fig. 8(a) shows both the shell velocity (left axis, solid curves) and the compression ρR 

(right axis, dashed curves) as a function of time for the two LILAC simulations. We note a clear 

time shift to earlier bang for our model when compared to the traditional Lee-More model. This 

is because the TD-DFT predicted mean-free path of nonlocal electrons is larger than the Lee-

More model for projectile electron energies above 3-keV, as indicated by Fig. 5. Thus, these 

nonlocal electrons in the TD-DFT model travel further in the conduction-zone CH plasmas and 

closer to the ablation front, thereby delivering more energy to drive the target with a higher 

ablation pressure (Fig. 7). Furthermore, as we predict an increase in laser energy penetrating the 
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shell, the target is compressed to its peak areal density earlier compared to the traditional model, 

thus causing this leftward shift. Consequently, the imploding shell accelerates faster in TD-DFT 

based simulations than the Lee-More case, resulting in a higher implosion velocity [Fig. 8(a)]. 

That explains the earlier stagnation and bang time in the TD-DFT based simulation shown in Fig. 

8. Using our TD-OF-DFT model for the nonlocal stopping range, we observe a nearly 40% 

relative increase in the neutron yield from the traditional Lee-More model. In general, we 

observe significant differences in ICF implosion dynamics when we compare 1-D LILAC 

simulations using our TD-DFT based model with the current modified Lee–More method for 

electron stopping range. Radiation-hydrodynamic simulations of ICF implosions are highly 

integrated, meaning they involve many interconnected physics models. This updated nonlocal 

thermal conduction model will provide a basis for further calibrating other physics models in the 

code, such as laser absorption, CBET, equation-of-state (EOS), and radiation transport. Aligning 

these improvements with experiments will be the ultimate goal to improve the predictive 

capabilities of radiation-hydrodynamic codes for reliable ICF target design and simulations. 

 

V. CONCLUSIONS 

In this work, we devised a global analytical model for the nonlocal electron stopping 

range in polystyrene plasmas for ICF applications based on time-dependent TD-OF-DFT 

calculations. Specifically, our model is applicable for conduction-zone CH plasmas ranging from 

0.05 g/cm3 to 1.0 g/cm3 and 100 eV to 1000 eV. Our TD-OF-DFT results showed lower SP and 

increased stopping range when compared to analytical models. We implemented this model into 

the 1-D radiation-hydrodynamic code LILAC and performed 1-D simulations using a typical 

OMEGA cryogenic DT target to illustrate its effect on ICF implosions. The results show that the 
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TD-OF-DFT model yielded large differences in terms of implosion dynamics and target 

performance when compared to the currently implemented nonlocal transport model of the 

modified Lee–More stopping range. The new TD-OF-DFT model gives ∼12% higher ablation 

pressure due to longer stopping range of nonlocal electrons, which leads to ∼18% faster 

implosion and ∼40% neutron yield than those of the standard LILAC simulation. Reconciling 

these results with experimental observables, such as trajectory measurements and overall target 

performance, will require further “recalibration” of other physics models used in radiation-

hydrodynamics codes, such as the CBET model for laser absorption, EOS, and radiation 

transport. We hope this work provides the nonlocal thermal transport basis for these recalibration 

tasks in future studies. 

 

VI. AKNOWLEDGMENTS 

This material is based upon work supported by the Department of Energy National Nuclear 

Security Administration under Award No. DE-NA0003856, the University of Rochester, and the 

New York State Energy Research and Development Authority. This report was prepared as an 

account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government 

nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, process, or 

service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 

imply its endorsement, recommendation, or favoring by the U.S. Government or any agency 



23 

 

thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 

those of the U.S. Government or any agency thereof. 

This work is supported by the U.S. Department of Energy through the Los Alamos national 

Laboratory, operated by TRIAD National Security LLC for the National Nuclear Security 

Administration (Contract No. 89233218CNA000001).  

REFERENCES 

[1] H. Abu-Shawareb et al., Physical Review Letters 129, 075001 (2022). 
[2] A. B. Zylstra et al., Nature 601, 542 (2022). 
[3] in DOE National Laboratory Makes History by Achieving Fusion Ignition (Department of Energy, 
2023). 
[4] E. M. Campbell et al., Philos Trans A Math Phys Eng Sci. 379, 2189 (2021). 
[5] R. S. Craxton et al., Phys. Plasmas 22, 110501 (2015). 
[6] S. X. Hu et al., Phys. Plasmas 25, 082710 (2018). 
[7] E. M. Epperlein and R. W. Short, Physics of Fluids B: Plasma Physics 3, 3092 (1991). 
[8] G. P. Schurtz, P. D. Nicolaï, and M. Busquet, Physics of Plasmas 7, 4238 (2000). 
[9] D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015). 
[10] Y. T. Lee and R. M. More, The Physics of Fluids 27, 1273 (1984). 
[11] J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L. Henke, Phys. Rev. A 36, 3926 
(1987). 
[12] V. N. Goncharov et al., Physics of Plasmas 13, 012702 (2006). 
[13] R. Shah. 
[14] R. C. Shah et al., Physical Review E 103, 023201 (2021). 
[15] A. B. Zylstra, H. G. Rinderknecht, J. A. Frenje, C. K. Li, and R. D. Petrasso, Phys. Plasmas 26, 
122703 (2019). 
[16] L. S. Brown, D. L. Preston, and R. L. Singleton, Jr, Physics Reports 410 237 (2005). 
[17] R. L. Singleton, Jr, Phys. Plasmas 15, 056302 (2008). 
[18] C. F. Clauser and N. R. Arista, Physical Review E 97, 023202 (2018). 
[19] N. R. Shaffer and S. D. Baalrud, Phys. Plasmas 26, 032110 (2019). 
[20] W. H. Barkas, J. N. Dyer, and H. H. Heckman, Phys. Rev. Lett. 11, 26 (1963). 
[21] M. Pefialba, A. Arnau, and P. M. Echenique, Nuclear Instruments and Methods in Physics 
Research 67, 1 (1992). 
[22] A. J. White, O. Certik, Y. H. Ding, S. X. Hu, and L. A. Collins, Physical Review B 98, 144302 (2018). 
[23] A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen, and R. J. Magyar, Physical 
Review Letters 116, 115004 (2016). 
[24] K. Jiang and M. Pavanello, Physical Review B 103, 245102 (2021). 
[25] N. M. Gill, C. J. Fontes, and C. E. Starrett, Physical Review E 103, 043206 (2021). 
[26] N. Durante, A. Fortunelli, M. Broyer, and M. Stener, The Journal of Physical Chemistry C 115, 
6277 (2011). 
[27] R. J. Magyar, L. Shulenburger, and A. D. Baczewski, Contributions to Plasma Physics 56, 459 
(2016). 



24 

 

[28] A. J. White, L. A. Collins, K. Nichols, and S. X. Hu, Journal of Physics. Condensed Matter 34, 17 
(2022). 
[29] A. B. Zylstra et al., Physical Review Letters 114, 215002 (2015). 
[30] Y. H. Ding, A. J. White, S. X. Hu, O. Certik, and L. A. Collins, Physical Review Letters 121, 145001 
(2018). 
[31] S. Malko et al., Nature Communications 13, 2893 (2022). 
[32] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). 
[33] N. D. Mermin, Physical Review 137, A1441 (1965). 
[34] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 
[35] T. Sjostrom and J. Daligault, Physical Review B 88, 195103 (2013). 
[36] R. P. Feynman, N. Metropolis, and E. Teller, Physical Review 75, 1561 (1949). 
[37] A. J. White and L. A. Collins, Physical Review Letters 125, 055002 (2020). 
[38] B. Shpiro, M. D. Fabian, E. Rabani, and R. Baer, J. Chem. Theory Comput. 18, 1458 (2022). 
[39] Y. Cytter, E. Rabani, D. Neuhauser, and R. Baer, Phys. Rev. B 97, 115207 (2018). 
[40] M. F. Hutchinson, Communications in Statistics - Simulation and Computation 18, 3 (2007). 
[41] M. D. Feit, J. J. A. Fleck, and A. Steiger, Journal of Computational Physics 47, 412 (1982). 
[42] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996). 
[43] S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX 7, 1 (2018). 
[44] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996). 
[45] C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998). 
[46] M. Krack, Theor Chem Acc 114, 145 (2005). 
[47] S. Zhang et al., Physical Review E 106, 045207 (2022). 
[48] R. Car and M. Parrinello, Physical Review Letters 55, 2471 (1985). 
[49] J. S. Tse, Annual Review of Physical Chemistry 53, 249 (2002). 
[50] L. A. Collins, S. R. Bickham, J. D. Kress, S. Mazevet, T. J. Lenosky, N. J. Troullier, and W. Windl, 
Physical Review B 63, 184110 (2001). 
[51] A. Mazarro, P. M. Echenique, and R. H. Ritchie, Physical Review B 27, 4117 (1983). 
[52] P. Sigmund and A. Schinner, Journal of Applied Physics 128 (2020). 
[53] S. P. Ahlen, Reviews of Modern Physics 52, 121 (1980). 
[54] L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Möller, J. O. P. Pedersen, E. Uggerhöj, K. Elsener, 
and E. Morenzoni, Physical Review Letters 62, 1731 (1989). 
[55] S. Smit, in MultiNonlinearModelFit (Wolfram Research, 
https://resources.wolframcloud.com/FunctionRepository/resources/MultiNonlinearModelFit, 2022). 
[56] S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. McCrory, and S. Skupsky, Phys. Plasmas 
23, 042704 (2016). 
[57] S. X. Hu, D. T. Michel, A. K. Davis, R. Betti, P. B. Radha, E. M. Campbell, D. H. Froula, and C. 
Stoeckl, Physics of Plasmas 23, 102701 (2016). 
[58] S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, Physical Review Letters 104, 235003 
(2010). 
[59] S. X. Hu, L. A. Collins, J. P. Colgan, V. N. Goncharov, and D. P. Kilcrease, Physical Review B 96, 
144203 (2017). 
[60] S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, Physical Review B 84, 224109 (2011). 
[61] S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. McCrory, and S. Skupsky, Physical Review 
E 92, 043104 (2015). 

  

https://resources.wolframcloud.com/FunctionRepository/resources/MultiNonlinearModelFit


25 

 

Figures 

 

FIG. 1. Two-dimensional snapshot in the y–z plane of the difference between the instantaneous 

and initial electron density ∆ne [1/cm3] for a single electron stopping in CH at 0.50 g/cm3, 

500 eV. The panels show the trajectory of the electron as it progresses through the CH and is 

scattered. Figs. 1(a)–1(c) show time snapshots for an electron projectile with 6 keV initial kinetic 

energy; Figs. 1(d)–1(f) are time snapshots for an electron with an initial kinetic energy of 20 

keV. The lengths of the simulation box are given in angstroms. 

. 
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FIG. 2. Electron SP –dE/dz, for a high-energy electron stopped in CH plasma as a function of 

initial electron kinetic energy. The individual points are the TD-OF-DFT calculations; the 

corresponding curves are the individual fits. The plasma conditions assessed are between 0.05 to 

1.0 g/cm3 and 100 to 1000 eV—conditions relevant to ICF conduction-zone plasmas. 
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FIG. 3. ESP in 0.50-g/cm3, 500-eV CH plasma, with a comparison between the Brown–Preston–

Singleton (BPS) (blue), dielectric function (DF) (red), and Li–Petrasso (LP) (gray) analytical 

models for SP and our TD-DFT data. The solid green curve represents the TD-DFT data with the 

deflection angle θD considered, while the dashed green curve is the TD-DFT data without 

deflection/scattering considered.  
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FIG. 4. The nonlocal electron MFP as a function of incoming electron energy. The individual 

points represent the TD-OF-DFT data shown in Fig. 2., while the solid curves are the 

corresponding fit for the given plasma conditions and energy. Here the fitting is a global 

analytical/numerical model as shown in Eq. (12). 
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FIG. 5. CH at either (a) 300-eV or (b)-1000 eV plasma temperature and mass density, 0.1 g/cm3. 

Comparison between the penetration depth E given by the modified Lee–More method (orange) 

to the TD-OF-DFT data (individual points) and corresponding fit (blue and purple curves) 

obtained by fitting the TD-OF-DFT data and given Eq. (12).  
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FIG. 6. Laser power as a function of time. Inset: Breakdown of the cryogenic target used in the 

1-D hydrodynamic simulation. DT gas (380 m), surrounded by DT ice (50 m ) and escalated 

by CH (8 m). The initial mass density of the CH is 1.05 g/cm3. For this work, we focus on 

nonlocal stopping in the CH layer. 

 

FIG. 7. Comparison at t = 2.1 ns between the mass density (left axis, solid lines) and ablation 

pressure (right axis, dashed lines) using the TD-DFT model (red) and the modified Lee–More 

model (blue) for the nonlocal electron transport. 
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FIG. 8. Comparison of LILAC simulation results using the TD-DFT model (red) and the 

modified Lee–More model (blue) for nonlocal electron transport. Time evolution of (a) the shell 

velocity (left axis, solid lines) and compression, ρR (right axis, dashed lines) and (b) the neutron 

yield. 
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Table 

 

Table I: Numerically determined coefficients (rounded to four significant figures) for the mean-

free-path fitting formula given in Eqs. (12) and (13). 

a0 = 2.685 × 10–15 f0 = 0.07317 𝛿 = – 0.4074 ϕ1 = – 0.6181 

b0 = – 0.07709 α = 0.3005 ε = 1.431 ψ1 = 1.068 

c0 = 6.722 × 10–3 β = – 0.8279 ζ = – 0.7680 ϕ2 = –1.068 

e0 = 0.02740 γ = – 0.3695 ω = 0.4547 ψ2 = –1.162 

 


