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Magnetized target fusion (MTF) approach to inertial confinement fusion (ICF) involves the for-
mation of strong shocks that travel along a magnetized plasma. Shocks, which play a dominant
role in thermalizing the upstream kinetic energy generated in the implosion stage, are seldom free
from perturbations, and they wrinkle in response to upstream or downstream disturbances. In Z-
pinch experiments, significant plasma instability mitigation was observed with pre-embedded axial
magnetic fields. In order to isolate effects, in this work we theoretically study the impact of per-
pendicular magnetic fields on the planar shock dynamics for different equations of state. For fast
magnetosonic shocks in ideal gases, it was found that the magnetic field amplifies the intensity of
the perturbations when v > 2 or it weakens them when v < 2. Weak shocks have been found to be
stable regardless of the magnetic plasma intensity and gas compressibility; however, for sufficiently
strong shocks the magnetic fields can promote a neutral stability /SAE at the shock if the adiabatic
index is higher than 1 + v/2. Results have been validated with numerical simulations performed

with the FLASH code.

I. INTRODUCTION

The recent remarkable breakthrough of the inertial
confinement fusion (ICF) ignition on the NIF laser fa-
cility at Lawrence Livermore National Laboratory [1, 2]
“puts to rest questions about the capability of lasers to
ignite thermonuclear fuel”. [2] This achievement sheds
new light on the benefits of magnetizing ICF targets for
achieving Magneto-Inertial Fusion [3-9]|, a concept that
stems from the well-established research field of Magne-
tized Target Fusion, which first introduced the principle
of inertial confinement of fusion plasma. More recent in-
carnations of the original Linhart’s cylindrical-liner-on-
magnetized plasma scheme [10] promise high fusion en-
ergy gains and multi-MJ yields in next-generation pulsed
power facilities. This refers in particular to the Magne-
tized Liner Inertial Fusion (MagLIF) concept, which is
now actively developed in the US, see Ref. [11-15] and
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references therein. Among its alternatives, we note the
Staged Z Pinch (SZP) approach [16-22] that generated
interest and some controversy [23-27]. Following Jones
and Mead [28], the magnetization of ICF targets spher-
ically imploded by X-rays or direct laser irradiation has
also attracted considerable interest, particularly for the
indirect drive [29]. It has already been demonstrated in
the NIF experiments that target magnetization increases
the ion temperature at stagnation and the fusion neutron
yield [30]. Simulations for ignition-scale layered cryo-
genic targets predict that magnetization can make the
NIF indirect-drive ignition more robust and increase the
fusion energy gain [31, 32].

In indirect- [1, 2, 33] and direct-drive [34] laser fusion,
the propagation of shock waves in the early stages of im-
plosion plays an essential role in determining its outcome.
Similarly, for magnetically assisted indirect-drive laser fu-
sion [28-32], the shock waves conventionally set the shell
to the desired adiabat and preheat the hot spot while
seeding some of the target perturbations/nonuniformities
to be later amplified by the Rayleigh-Taylor instability
[35-37]. In MagLIF [11-15], a blast wave launched by the



laser preheat of the cold gaseous fuel determines the ini-
tial temperature and density profiles, as well as the uni-
formity of the DT plasma compressed by the liner. It has
been observed that the unstable flute modes related to
the magnetic Rayleigh-Taylor instability diminished, but
a different helical-type instability may rise due to the ef-
fect of the magnetic field [38] . In SZP [16-27] converging
shocks play an even more significant role in shaping the
converging plasma and ensuring compression stability.
In all these examples, the early shock waves propagate
through magnetized gases or plasmas with 8 = 8mp/B?
of order unity, which makes them MHD rather than gas-
dynamic shocks. Since the uniformity of compression is
the key to success for all kinds of ICF, achieving a clear
understanding of the stability of these MHD shocks and
confident modeling of their response to small perturba-
tions is very important. This is the subject of the present
article.

The theory of stability of gasdynamic shock fronts de-
veloped from the 1940s-50s [39-41] is now a mature field
of compressible fluid dynamics whose main results are
summarized in monographs and textbooks [42—44]. Pla-
nar shock fronts in most materials, including ideal gases
with any adiabatic exponent +, are super-stable for any
shock strength, which means that their shape perturba-
tions decay as a power of time ¢; specifically, as t—3/2
for moderate-strength shocks and ¢~'/2 in the strong-
shock limit [45-48]. For some non-ideal equations of
state (EoS), in specific ranges of shock strengths, neu-
tral stability is possible under conditions elucidated by
D’yakov [40] and Kontorovich [41] (DK), with the per-
turbed shock front exhibiting non-decaying oscillations
that produce spontaneous acoustic emission (SAE) down-
stream. Planar shock fronts can be exponentially un-
stable [41-44] when a single-shock solution of the Rie-
mann/piston problem is not unique. In this case, the
theory [49, 50| predicts that an unstable shock splits into
a multiwave flow, see a numerical example in Ref. [51].
The presence of a rigid piston as the boundary condition
driving the planar shock does not change the character
of the solution [52, 53] yet additional frequencies may
emerge due to the reflection of sonic waves on the piston
surface, subsequently reaching the shock. If the shock
driving mechanism is not steady and the associated ex-
ternal excitation frequency aligns with the self-induced
oscillation frequency in the SAE regime, the shock can
exhibit unstable behavior [53].

Gardner and Kruskal [54], who extended the formal-
ism developed by Erpenbeck [55] for gasdynamic shocks,
started stability studies of MHD shock waves in the
1960s. For fast MHD shocks propagating in parallel
and perpendicular directions to the shock front, they
demonstrated the absence of exponential instability for
an ideal-gas conducting fluid (plasma) with v < 3. Later
studies, mostly reported in the mathematical literature
(cf. Ref. [56] and references therein), were performed ex-
clusively for ideal-gas EoS. They found the DK ranges
of neutral stability and SAE for fast MHD shocks. In

Ref. [57] the propagation of fast magnetosonic waves
in an inhomogeneous medium with planar flow is in-
vestigated. In addition, the study explores the exis-
tence of eigenmodes in a steady flow containing a shock.
The eigenmodes are used to derive the reflection coeffi-
cient of a fast magnetosonic wave from the shock. Re-
cently, particle-in-cell (PIC) simulations have been used
to model high-frequency processes in fast magnetosonic
shocks, with a particular emphasis on electron dynamics.
However, the long-time shock dynamics remain inacces-
sible due to computational constraints [58].

In this paper, we revisit the MHD shock-front stabil-
ity problem and construct an analytical model to solve
the initial-value problem (IVP) for isolated-shock bound-
ary conditions. Besides, a numerical analysis of perpen-
dicular MHD shocks is carried out. We focus on the
perpendicular shocks, which can only be of the fast va-
riety, [59] the kind of particular practical importance for
all the above ICF applications. Moreover, we limit our-
selves to the usually most unstable interchange instabil-
ity modes, which do not bend the magnetic force lines.
Then, the presence of the frozen-in magnetic field in the
shock-compressed fluid translates into a modification of
its EoS (cf. Ref. [59] §52), which makes possible a di-
rect application of the gasdynamic theoretical techniques
and stability criteria [40-42]. Our stability analysis is
carried out for three equations of state: 1) ideal gas,
with the adiabatic exponent ~ varied in a broad range;
2) van der Waals (vdW) fluid; 3) a model EoS for sim-
ple metals, such as aluminium, used in Ref. [60] to ana-
lyze the stability of spherical and cylindrical expanding
shock waves. Our results can be summarized as follows.
We found a DK range of neutral stability for sufficiently
strong shocks in a low-3 ideal plasma with v > 1 4+ v/2,
the magnetic field thereby acting as a destabilizing fac-
tor, enabling the SAE. A similar high-v, low-3 neutral
stability range is also found for a vdW fluid, which also
manifests SAE at low +, as discovered in Ref. [61]. In the
latter case, however, the magnetic field acts as a stabi-
lizer, suppressing the SAE unless S is small enough. The
model EoS for simple metals offers a realistic case of high
effective v: metals are nearly incompressible at low shock
pressures. However, the DK neutral stability conditions
require a finite shock strength, which results in -« decreas-
ing to low values, insufficient to satisfy the DK conditions
for neutral stability. This is why the perpendicular MHD
shocks in aluminium were found to be stable across the
entire range of parameters explored. Our analytical pre-
dictions for the perturbation evolution for the ideal-gas
EoS were cross-checked with MHD fluid simulations done
with the FLASH code [62]. (For more information on the
FLASH code, visit: http://FLASH.rochester.edu ).

The paper is structured as follows. The mathematical
formulation of the fast MHD shock, both base-flow condi-
tions and perturbation variables, is given in Sec. II. The
stability limits are presented and discussed in Sec. ITI
for different EoS and shock B intensities. The transient
evolution of the shock front and the perturbed variables



downstream are described in Sec. IV for an ideal gas EoS,
with the former being contrasted against numerical sim-
ulations in Sec. V. This section also presents snapshots
for the simulated pressure and density fields. Finally, the
main conclusions are summarized in Sec. VI.

II. PROBLEM DESCRIPTION

A. Base-flow MHD shock

Let a planar shock front move with velocity u; = u1é,
in a uniform medium with known pressure p;, density
p1, and internal energy F. Let us consider a magnetic
field ahead of the shock El = Bjé, that is perpendicular
to the shock propagation direction. In a reference frame
attached to the shock front, the conservation equations
across the shock discontinuity read as

lou] = 0, (1a)

b fi} —0, ()

[Byu] = 0, (1c)

[pu (e + % + u;) + ufﬂ =0, (1d)

provided that the normal component of the magnetic
field, which must be continuous across the shock front,
is zero: By1 = Bgo = 0. In what follows we identify
post-shock flow variables with the subscript 2.

The formulation benefits from the introduction of the
dimensionless functions P = py/p; and R = pa/p1, which
measure the pressure and density jumps across the shock,
respectively. Likewise, the characteristic Mach numbers
are defined in relation to the characteristic velocities of
the linear MHD waves, namely

B2

= Irp (2a)
Ip

= (% . (2b)

for the Alfvén (magnetic) and sonic (thermal) velocities,
respectively, with ¢% = % + ¢4 being used to define
the fast magnetosonic velocity. As derived in the follow-
ing, only the fast magnetosonic velocity is allowed (see
Sec. IIB for further details), thereby being the charac-
teristic speed to define the shock Mach number. Then, a
fast and evolutionary MHD shock is determined by the
conditions Mgy = ui/cp1 > 1 and Mpy = ug/cpe < 1
on the fast magnetosonic Mach numbers. It is conve-
nient, however, to define the Alfvén Mach numbers as
Mar = ur/ca1 and Mas = us/caz, where the former
can be written, with the aid of (1a)-(1c), as

B(P—-1)+R*-1
20-R-Y)

M,241 = (3)

where 3 = 87p; /B? stands for the pre-shock plasma beta
parameter, which measures the thermal pressure relative
to the magnetic pressure.
With use made of (1d), the Hugoniot adiabat reads as
‘H = 0, where
(P+1)(R-1) 1(R-1)3

H::g'— R _’B R 9 (@

and where £ = p;(F2 — E1)/p1 is appropriately intro-
duced to represent the dimensionless variation of the in-
ternal energy across the shock. Therefore, the RH adia-
bat H = 0 is closed upon determination of the internal
energy function, & = £(R,P), which ultimately renders
the RH curve in the form P = P(R).

Anticipating that M g is a needed function to describe
the shock dynamics, an explicit definition is given:

M3 2
My = =5 % (5)
CBP-1)+R*-1 P -t
T 2R(R-1) g TR

where the polytropic index is conveniently introduced for
an arbitrary EoS p = (p, T') and internal energy function
of state E = (p, T):
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B. Linear perturbation analysis

The problem continues with the formulation of the lin-
earized ideal MHD equations that govern the unsteady
post-shock flow, namely

%-ﬁ-ngﬁU:O, (7a)
pz%f—l—V(Sp—(VX(sg) xiﬁ:o, (7h)
% - c%g% =0, (7c)

a;té—Vx (5q7>< ég) —0, (7d)

written in a reference frame co-moving with the fluid par-
ticles. They correspond to the equation of continuity,
the conservation of linear momentum, the conservation
of energy for an isentropic and adiabatic flow, and the
magnetic induction equation. The parameter cpy corre-
sponds to the speed of sound in the shocked gas. The
formulation assumes that the base-flow is uniform, that
the medium is a perfect conductor, and that all pertur-
bations are of the same order

b _ 165 _dp _ |67]

== ek 1, (8)
P2 |By| P2 Cr2



FIG. 1. Sketch of the corrugated perpendicular shock moving
through the magnetized medium whose magnetic field points
perpendicular to the shock propagation direction and to the
velocity disturbances. Velocities are measured in the post-
shock gas reference frame (72 = 0).

with € being the small parameter that identifies the am-
plitude of the perturbations. In our case, it is deter-
mined by the initial small shock corrugation amplitude
eX = Ps(t = 0) = 150 scaled with the corrugation wave-
length (see sketch depicted in Fig. 1).

For the particular case considered in this work, the
magnetic field points in the direction perpendicular to
the plane 6B/|6B| = By/|By| = é., while velocity per-
turbations sit on the plane {é,, é,}. Then, with use made
of §v(x,y) - B, (z,y) = 0, the governing equation for the
perturbed velocity field reads as

0267
ot?

= o (V200 + V x V x 67), (9)

where 60(x, y, t) accounts for both fast magneto-acoustic
0Ur and rotational d7,. contributions, which satisfy V x
00 = 0 and (07,)/(0t) = 0, respectively. Note that (9)
can be written for each velocity component (longitudi-
nal and transverse) independently, a simplification that
is not possible when §9(z,y) - Eg(x,y) # 0 because the
three modes of propagation (Alfvén, slow and fast mag-
netosonic waves) involve coupled information of the three
dimensions.

Simple manipulation allows to write (9) in terms of the
total pressure p = py + B3 /(87), which accounts for the
thermal plus the magnetic contributions, in the following
form:

d*op* 2 25 %
75%2 - CF2V 6p 5 (10)
where
* B2
op —5p+47T5B (11)

indicates the total pressure perturbation. It is readily
seen that (10) corresponds to a conventional sound wave
equation, with the distinctiveness that information trav-
els at the so-called fast magnetosonic velocity in the com-
pressed medium, namaly cgo. Therefore, owing to the

relative orientation between the shock and the magnetic
field, our linearized MHD equations only involve the char-
acteristic velocity cgo, which is used to non-dimensinalize
the spatiotemporal variables in the form 7 = kcpot and
(Z,9) = k(z,y), where k = 27/ is the wavenumber fre-
quency. Likewise, the dimensionless order-of-unity shock
ripple amplitude is defined, along with the corresponding
post-shock perturbation variables, as follows:
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to be used, along with (7) or (10), to write

’pr_Ppr
or? = 0z —P (13)

as a parameter-free transverse-periodic sound wave equa-
tion that calls for two initial conditions and two boundary
conditions in the streamwise direction.

One boundary condition is determined by the lin-
earized shock conservation equations, written in dimen-
sionless form as

¢, 1+h* R

= D 14
dr  2Mp R —17® (142)
1—h*
U = e, 14b
u 2MF2pS ( )
Vg = —MFQ(R — 1)%, (14(3)
where
* * % —1
« _ D5—pi (dp;
hW=—=——1|—=—= 1
Vi—Va <dV2>H (15)

corresponds to the redefined DK parameter, which mea-
sures the slope of the RH curve as relative to the
Rayleigh-Michelson line in the {p*,V = 1/p} plane. Note
that, as with regular non-magnetized shocks, the formu-
lation of the linear problem is described in term of three
dimensionless parameters: the shock compression ratio
R, the post-shock Mach number Mgy and the RH slope
parameter h*. The perturbation in the magnetic field
intensity is dictated by the conservation of the magnetic
flux across the shock Biu; = Bous to yield p, = B,
where density perturbations behind the shock follows:
h*

ps = =5 P> (16)
My



as dictated by the perturbation of the RH curve. The
other boundary condition is determined by the support-
ing mechanism. For the isolated-shock condition consid-
ered in this work, the condition reduces to omitting the
effect of the magnetosonic waves reaching the shock from
behind, which is a valid assumption when the shock is
sufficiently far from the supporting mechanism. As for
the initial conditions, we can assume that the shock is
initially distorted: {50 —1 = pgo = 0.

Note that for our perpendicular shock geometry, as
noted in §52 of Ref. [59] citing [63] (see also [64]), the one-
dimensional MHD equations reduce to the equations of
the ordinary fluid dynamics, with a modified equation of
state in which the thermal pressure p is replaced by p* =
p+ B%/(87) = p + const p2. This simplification remains
valid in our two-dimensional MHD stability problem for
the interchange perturbation modes that do not bend the
magnetic force lines. In the following, we demonstrate
how the above modification of the equation of state due
to the frozen-in magnetic field affects the stability of the
shock front.

III. STABILITY LIMITS

A shock wave is said to be stable if any perturbation
at the shock front decays with time. The condition for
stability is typically written in terms of the DK param-
eter h through the inequality —1 < h < h,, where h,
corresponds to its critical value [59]. The stability con-
dition can be easily extrapolated from non-conducting
shocks to fast magnetosonic shocks, with the magnetic
field being parallel to the shock front, by just redefining
the parameters h = h* and

b = 1—Mz2,(1+R)

FSICMEA-R) 1

The DK parameter is conveniently rewritten as a function
of dimensionless variables as

. (P-1B+R*-1 (dP*\
=G (%) "
 (P-1)B+R2-1(dP 2R\ '
T BR(R-1) <d73+ﬂ> ’
where
. ps _ BP+R? (19)

Pl B+1

represents the ratio of the total pressures across the
shock. The slope of the dimensionless thermal pressure
with respect to the density compression ratio can be ob-
tained using the Hugoniot expression (4), namely

dP M (OH\
7= ="o% (o)
1+ 2R?* 4 B4 PB — R*(3+ 2ErP)
B RB+ (=14 2EpRA) '

(20)

where &g = 0E/OR|p and Ep = IE/IP|r correspond
to the partial derivatives of the internal energy variation
function. Equation (20), and therefore the DK parameter
h*, requires the information about the internal energy
function of state. On the other hand, the function A}
calls for information on the equation of state through the
definition of the post-shock magnetosonic Mach number.

In the stable regime, —1 < h* < A}, perturbations at
the shock front experience a decay that follows a 7—3/2
pattern in the long-time 7 > 1. However, there exists
a sub-regime where perturbations experience an expo-
nential decay in the early-time stages 7 < 1, although
the long-time is still being dominated by the power law
773/2 see Refs. [65, 66]. This is given by the condition
—1 < h* < h}, where

(1-M2) P VT—RT - RMZ,
1+ M3, (R-1) '

hg = (21)

In the context of this study, it is important to investi-
gate whether the magnetic field can be used to induce
an initial strong damping of perturbations in the shock,
h* < h}, placing it in the regime where perturbations
are subsequently effectively suppressed. Recall that such
strong damping is impossible in a non-magnetized ideal
gas EoS for any «. In the following, the parameters de-
fined above are evaluated with different EoS associated
with an ideal gas, a vdW gas and an aluminium three-
term EoS.

A. Ideal gas equation of state

The particularization to an ideal gas is relatively sim-
ple. The corresponding constitutive equations for pres-
sure and internal energy (assumed to be calorically per-
fect) are p = RypT and E = ¢,T respectively, where
R, = ¢, — ¢, is the gas constant and v = ¢,/c, is the
specific heats ratio. Simple manipulation renders

1 P

which allows to write the RH curve in explicit form

CRGAD-(-1) 1 (R-1y-1)
P=G+D-rO-D "B +D-RG-1 P

where the first term on the right hand side is easily rec-
ognizable as the adiabatic non-magnetized pressure jump
across the shock. The second term accounts for the mag-
netic contribution that drops to zero when 8 — oc.

The effect of the magnetic field in the pressure jump is
better analyzed with the aid of Fig. 2, which shows the
Rankine-Hugoniot curves for a MHD shock with different
values of the transverse magnetic field intensities. Both
thermal P (a) and thermal-plus-magnetic P* (b) pressure
ratios are represented on the left and right panels, respec-
tively. Note that R™* = (y+1)/(v—1) does not depend
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FIG. 2. Rankine-Hugoniot curves for an MHD shock in an ideal gas with different values of transverse magnetic field intensities.

The adiabatic index is v = 5/3.

on the plasma parameter 3 and it yields (R ™), = 1/4
for v = 5/3. It is also observed that the thermal con-
tribution dominates for sufficiently strong shocks as a
result of the bounded limit of the magnetic contribu-
tion, given by the maximum density compression ratio
(B2/B?)max = (R?*)max = 16 for v = 5/3.

From a simple inspection of Fig. 2, it is difficult to an-
ticipate the possibility of DK instability since the slope of
the RH curve for P* does not exhibit any peculiar behav-
ior: the curve monotonically approaches the asymptote
predicted by the the maximum density compression ra-
tio. Similar computations for lower and higher values of

J

Bt =—

[-1+R(-1+7) -

~v do not change this qualitative behavior. To compute
the DK parameter h* that ultimately determines the sta-
bility we must specify the value of the partial derivatives
of the internal energy function, namely

R[-24+2R(2+R)+ v+ (2—-3R)Ry + 28y + (-1 + R)?~?)]

o€ P
Er :ﬁ p:_R2(’Y*1), (24&)
o€ 1
e (24)
to provide

as an explicit function of v, 5 and R. The critical parameter i}, on the other hand, calls for the determination of the

fast magnetosonic Mach number

2
Mo

22R + v — Ry + 37v)

to be used in (17) to yield

T 2R2(1+ R) + 4+ 3RI(B5/3-R)R— 1]+ (R~ 132 + B[y + Ry + (R— 1)’
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h: =

CTORRB+R) -2+ [RIA-3R-1DR+38)—B+D]v+(R—-1)[(R—-1)2+p8]92

The DK stability can be determined by evaluating the

(

function A* — A%,

which depends on v, $ and R. When



h* — h’ > 0, the shock front, assumed to be isolated,
will oscillate with constant amplitude and constant fre-
quency in the long time regime. Figure 3 shows h* — A}
as a function of the inverse of the density compression
ratio R~! for different values of the adiabatic exponent
~v and the pre-shock plasma parameter 3. We vary -y
from a low value of v = 4/3, which in the shock sta-
bility studies is physically associated with strongly radi-
ating gases [67, 68] to the high value of v = 4 indicat-
ing low shock compressibility; ~’s in this range are used
for a simplified theoretical description of shocks in con-
densed materials, from v = 3 in Refs. [39, 69] to v =7
in Ref. [70]. The plasma parameter is varied between
B = 10% and 8 = 1073 which correspond to the limits
of negligible and dominant, respectively, contributions of
the magnetic pressure to the pre-shock value of p*.
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FIG. 3. Function h* — h% as a function of R~ for different
values of the transverse magnetic intensity 8 and the adiabatic
index 7.

The stability properties of non-magnetized shock
fronts in ideal gases are independent of the adiabatic ex-
ponent . In particular, ideal-gas shock fronts do not
exhibit the DK instability, which produces spontaneous
acoustic emission (SAE), at any 7. Similarly, the time
evolution of shock ripples does not include the early phase
of fast exponential decay, as predicted by [65] for the DK
parameter sufficiently close to —1, see in the following.
Here we demonstrate that the effective modification of
the EoS of the shocked material by the frozen-in mag-
netic field changes this. Depending on the values of v, 3
and the shock strength, the magnetization can act either
as a destabilizing factor, enabling the SAE, or as a stabi-
lizing factor, producing the early-time exponential decay
of the shock-front ripples.

The DK instability condition h* > h} is found to oc-
cur in low compressible, highly magnetized plasma. Note
that, for v = 2, the magnetic field does not influence
the shock conditions for any compression ratio. In par-
ticular, h*(y = 2) = (R — 3)/(2R) and hi(y = 2) =
(R —3)/(5R — 3). This is indeed indicative of a change
in the character of the solution, since for v > 2 the curve

with lower (3 takes higher positions, as opposed to cases
where v < 2. However, v > 2 is not a sufficient condition
for instability, as shown in Fig. 3. Although the magnetic
effect towards instability changes its character for v > 2,
its contribution must overcome the stabilizing acoustic
counterpart. This is better analyzed by evaluating the
slope of the function h* — R} in the strong-shock limit,
namely

R = diifL(;z—_lh)Q o _ (28)
_ (A4 244480 -1 —29]y
Ay =1) 2+ By = 1)y ’

which is found to approach zero in a strongly magnetized
plasma 8 < 1 when v = 1 + /2. Since the slope /_”L;"z isa
monotonic function of 3, the stability regimes are easily
identified in a ideal gas: for v > 1 + /2, a sufficiently
small value of 8 will render SAE in the strong-shock limit,
while stability is ensured for v < 1+ /2.

Akin to 2} in (27), the DK parameter value that distin-
guishes the regime in which perturbations may decay ex-
ponentially in the early time, A}, can be easily expressed
in terms of the parameters R, v and [ by direct substi-
tution of (26) into (21). However, since this expression is
objectively long, we omit writing the explicit relationship
of b} for an ideal gas EoS.

The distinguished regimes that characterize the long-
time response of the perturbed shock are better analyzed
by looking at Fig. 4, which shows the isocontours h* = h};
(a) and h* = h% (b) as a function of the shock compres-
sion ratio R and the parameter § for different values
of the adiabatic index . Observing first the isocurves
h* = h}, the state in which a perturbed shock initially
develops with rapid exponential damping (h* < hj) is
characterized by the region below the inverted U-shaped
curve, namely for any shock strength below R™** when
the magnetic field is sufficiently strong. We recall that
the magnetic field has a stabilizing effect only for val-
ues of v that are less than 2. Examining panel (b) and
focusing on the isocurves where h* = h} instead, it is
evident that the region of neutral stability/SAE regime
(h* > h%) is located beneath the L-shaped curve associ-
ated with magnetic fields of significant strength within a
limited range of shock compression ratios. Note that this
phenomenon occurs in cases where the adiabatic indices
are high, as the magnetic field only has a destabilizing
effect for values of + greater than 2. For clarity pur-
poses, Fig. 4 also displays, with the diamond and star
symbols, the conditions under which Fig. 8 and Fig. 11
are computed.

B. Van der Waals equation of state

The vdW EoS provides a more accurate description
of real fluid behavior than the ideal gas law. It takes
into account the effect associated with the non-contact
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interaction between particles and the finite volume they
occupy. This EoS is particularly interesting because it
is known to lead to DK instability for sufficiently com-
pressible flows, as found in Ref. [60, 61, 71| for a regular
gasdynamic shock. In order to study the stability bound-
ary of the vdW magnetized gas, we need to explicitly de-
fine the corresponding EoS p(p,T) and internal energy
relationship F(p, T'), namely

pRgT /2

Py, (29a)
R,T

E=-9_¢ 29b
o i (29b)

respectively. With respect to the ideal gas FoS, the term
involving the constant a’ corrects for the intermolecular
attraction, while b’ represents the volume occupied by
the gas particles (co-volume). It is readily seen that (29)
reduces to the ideal gas model when o’ and b’ approach
zero, namely p = pR,T and E = R/T/(y — 1).

To solve the RH equations, it proves convenient to
write the internal energy and the speed of sound as func-
tions of p and p by direct combination of the two rela-
tionships in (29) and the definition of the speed of sound,

J

P:

Riy+1-=2b(a+1)—2a(y—2)] — (y— 1)+ 2aR? (y — 2+ bR)

resulting in

(p+p*a)A=Vp)

E= —a'p, 30a
ply—1) P (302)

2 (p+pid) ,
A=LETE 20 9y, 30b
p(L—="p) (300)

respectively. Simple manipulation of (30) provides ¢? =
vR,T = vp/p as the square of the speed of sound for an
ideal gas FoS, i.e., @’ = I’ = 0. In dimensionless form,
the gain of internal energy reads as:

P+ R%a)(1 - bR) —R(1 +a)(1—b)

_(
£= R(y-1)

—a(R -1),

(31)
and the polytropic index needed to define the post-shock
Mach number Mpo in (5) is

P+ R?%a R?
’YT—’Y.P(l_bR) aP ) (32)
where a = a’p?/p; and b = b'p; are dimensionless pa-
rameters of the vdW EoS.

The RH relationship for a magnetized vdW gas can
be expressed explicitly using the dimensionless internal
energy gain factor £, as follows:

(R-1°(y—1)

(33)

(v+1)—R(y—1+2b)

1
BOY+1)—R(y—1+2b)’
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FIG. 5. Rankine-Hugoniot curves for an MHD shock in a vdW gas with different values of transverse magnetic field intensities.

The vdW gas parameters are vy = 31/30, a = 1/2 and b = 1/9.

which is appropriately expressed as the sum of the non-
magnetic and magnetic contributions.

Figure 5 shows the Rankine-Hugoniot curves for an
MHD shock in a vdW gas with different values of trans-
verse magnetic field intensity. The selected values for the
pre-shock and vdW EoS parameters correspond to those
used in Refs. [60, 61] for non-magnetic shocks associated
with high gas compressibility v = 31/30, non-negligible
vdW parameters, a = 1/2 and b = 1/9, since they render
the DK instability h > h. within an interval of shock
strengths corresponding to 2.2586 < R < 3.1482. Both
thermal P (a) and thermal-plus-magnetic P* (b) pres-
sure ratios are represented in the left and right pan-
els, respectively. The effect of the magnetic field is
qualitatively similar to that observed in Fig. 2 for an
ideal gas: the thermal contribution dominates for suf-
ficiently strong shocks, since the magnetic contribution
is bounded by the maximum density compression ratio
(B2/B?)max = (R*)max ~ 63, although this contribu-
tion is now higher than that found in the previous case
due to the high compressibility of the gas chosen for the
computation.

The two partial derivatives required to define the DK
parameter h*, according to (18), take the form

P+ R2(2Rb+v —2)

Er = R2(1 ) , (34a)
1-Rb
EP - m, (34b)

for the isochoric and isobaric derivatives, respectively.

The functions P, £, vr, Eg and Ep are used to define
h* and h} as a function of the density compression ra-
tio R and the constitutive gas parameters v, a and b,
and the pre-shock beta parameter 8. For example, Fig. 6
shows the difference h* — h} as a function of R~! for dif-
ferent values of the transverse magnetic intensity 8 and
the adiabatic index . The vdW parameters are fixed at
a = 1/2 and b = 1/9 respectively. For these particular
conditions, the perturbed shock can lead to DK instabil-
ity for two different reasons: purely acoustic instability
(solid orange curve), previously found in Refs. [60, 61],
and magnetosonic instability (dashed green curve).

As shown previously when studying the ideal gas case,
the effect of the magnetic field is stabilizing for suffi-
ciently low values of 7. In the case shown in Fig. 6 for
~ = 31/30, order of unity values of 3 make the shock sta-
ble. Further computations show that 8 must be less than
63.88 for the shock to be stable for any shock intensity,
which was neutrally stable in a non-magnetized vdW gas
with v = 31/30, a = 1/2 and b = 1/9. The effect of the
magnetic field is reversed for higher values of v. Qualita-
tively similar to what is found in ideal gases, the magnetic
field promotes instability in gases with high adiabatic in-
dex, see the case with v = 7/2 in Fig. 6. One evident
distinction is that, for a vdW gas, there is no possibil-
ity to get a S-independent configuration, as occurred for
~ = 2 in an ideal gas. Another marked difference is that,
since h* — h} is not zero in the strong-shock limit, the
instability prerequisite obtained for ideal gases, E;‘z > 0,
does not apply in this case, since hr > 0 and h* —h} < 0
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is still possible for 1 < R < R™ax,

C. Three-term equation of state for simple metals

In the previous section it was shown that magnetic
fields can promote instability under strong-shock condi-
tions for gases whose adiabatic index is sufficiently high,
v > 1+ +/2 for an ideal gas EoS. It corresponds to char-
acteristic values for metallic materials, so it is advisable
to compute now the stability limits with a more accurate
description of the EoS. Recall that ideal-gas equations of
state with high ~ are often used to approximate the real-
istic EoS of condensed materials [39, 69, 70] whose shock
compression is low compared to ideal gases. However,
the assumption of a constant v independent of the shock
strength may be an oversimplification for our shock-front
stability studies. In reality, the effective v defined by (6)
as v = 0lnp/dlnp |, in condensed materials can be large,
indicating near-incompressibility for relatively low shock
pressures, see the inset in Fig. 7. However, it decreases
rapidly with increasing shock compression. Since the DK
instability is only possible for finite shock strengths, in
this Section we check if the high « required for the DK in-
stability range in a magnetized material can be produced
in shock-compressed solid materials.

For this purpose, we use, as an example, a convenient,
analytically tractable three-term EoS based on the cold-
pressure approximation developed by [72]. This model is
reasonably accurate in describing the shock compression
of simple metals, such as Al and Cu (in this example, we
use the parameters for Al, see Appendix A), for shock
compressions up to ~ 2.5 and pressures up to ~ 5 Mbar.
We do not seek higher EoS model accuracy, which can
be achieved with more elaborate approximations, such
as the seven-parameter model used by [73]. The reason
is that the magnetic fields required to affect the shock
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compression significantly are too large to be practically
compatible with a uniform magnetization of a material
in a cold-metal state. The Mbar shock pressure range
required for substantial shock compression corresponds
to magnetic fields above 5MG, only produced in the lab-
oratory with magnetocumulative generators [74, 75]. In-
teraction of a conducting metal sample with a magnetic
field rapidly increased to a multi-MG level results in the
explosion of the skin layer, converting the metal into a
plasma. Our goal is more straightforward: to check if the
increase in effective v compatible with a realistic EoS of
metal can enable SAE in magnetized but otherwise DK-
stable materials [60]. We demonstrate in the following
that this is not the case.

In condensed materials, the equation of state and the
internal energy function are typically written in terms
of density p and temperature T, as described in (A2) in
the appendix. Then the definition of the parameter h*
through the RH slope dP/dR is conveniently expressed
in the form

ap oM (aa)l_ . OH| OH

AR~ 9R \oP ROOR|;OT

-1
P%q (35)
-

where T = T5/T; is the temperature ratio across the
shock and the functions of the partial derivatives for the
EoS and the internal energy are

, 0P , 0P

Pr = R |, Pr = 77| (36a)
0 o
Er = R |, T o7 o (36D)

respectively, with the latter two being used to define the
partial derivatives along the Hugoniot, namely

OM| _2RER—(R-1)Pg
OR |, 2R
1+ B —38P —3R?+2R3
+ SR , (37a)
OH|  2REF—(R-1)P%
oT |m 2R ' (37b)

The prime symbols are used here to distinguish £,
applied along the isothermal condition, from the one pre-
viously defined, £, applied along the isobar. The rest of
the primed symbols are kept for consistency. To compute
the fast magnetosonic Mach number M gy needed for the
definition of A}, the polytropic index must be provided.
It can be computed with the aid of

_ ePe + YD1 + VePe
Pe + y4i + Pe

(38)

which accounts for the cold, lattice and electronic contri-
butions: ., v; and 7. respectively. They are provided in
(A11). Note that 7 diverges in cold conditions, but it
tends to 5/3 if temperature is sufficiently high, as occurs
in the gas behind high-intensity shocks.
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Figure 7 shows that the shock is stable for all condi-
tions considered: from weak to intense magnetic fields,
from low to high compression factors and for different
upstream temperatures. Although the effect of the mag-
netic field seems to increase the function h* — h} in the
least cold conditions, its effect is not sufficiently strong to
lead to SAE. The apparent contradiction with the ideal
gas is resolved if we take into account that - is a variable
function. In weak-shock conditions, the value of + is high,
but ideal gas theory dictates that stability is ensured for
any magnetic intensity and any adiabatic index for suf-
ficiently weak shocks. In strong-shock conditions, where
ideal gas theory predicted instability for the high + and
low B, the adiabatic index of the compressed material is
lowered below 1++/2, thereby indicating stability. We re-
fer to the inset in Fig. 7, where the rapid approach of v
towards the asymptotic value 5/3 < 14 1/2 is observed.

IV. SPATIOTEMPORAL EVOLUTION OF THE
PERTURBED FLOW

The previous section has been devoted to the specifi-
cation of the DK stability limits that distinguish the ab-
solutely stable regimes from the neutrally stable regime,
the latter being associated with constant-amplitude os-
cillations of the shock ripples at late time and SAE. The
analysis then provides no information on the transient
evolution nor on the long-time perturbation amplitudes.
In order to properly describe the effect of the magnetic
field intensity in the shocked gas perturbations, which
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is a problem of great importance in MagLIF schemes,
we theoretically calculate the transient evolution of the
shock ripple and the post-shock variables.

A. Shock ripple amplitude

Since the evolution of the isolated planar shock, either
in the DK neutrally stable regime or not, has been ex-
tensively studied in previous works [76-78], we do not
reproduce the derivations here, but only present the final
results. For the decaying-amplitude case h* < R}, the
evolution of the shock ripple amplitude is given by

el )= 2 [ Y
slh<n\T) T 4 0 (0c—0p22)2 +22(1 — 22)

Cos (z\ /1— M2F2T> dz, (39)

which involves the parameters

1—h*
b 2Mps’ ( a)
_ RMpz 1407
Oc = I VER M, 2 (40Db)

The asymptotic behavior is (1) ~ 773/2 for 7 > 1.
When oy, > 0.+ 1/(40,) (or h* < h}), the mathematical
expression governing the evolution of the shock ripple re-
mains the same, although the initial exponential damping
serves as a clear distinguishing factor for this regime.

When h* = h}, the parameters o, = 0., and then
£(1) ~ 7Y%, For the case h* > h the shock ripple
evolution must include the non-decaying contribution, so
that

&s |h>hc (7-) =&s |h§hc (T)

+ £ sin <§, /1-— M%QT> , (41)

where the normalized frequency is

1/2
_ | 2040 —1— /1 +4doc(0. — 0p)
e

satisfying ¢ > 1, and the asymptotic amplitude

_EUC_UbCQ—i_CVCQ_l. (43)

£ =
s ¢? 1+4o.(0.— op)

It can be easily demonstrated that £2° is a monotonic
function of h* bounded by £*° = 0 and £ = R/(1 +
2R M po— M ps), corresponding to the limits h* = h* and
h* = 142M g, respectively. Note that, for h* = h%, the
frequency agrees with the shock fundamental frequency
¢ =1, while it diverges for h* =1 4+ 2M po.

It is of interest to evaluate these functions in the con-
text of MHD shocks. To simplify the analysis, this section
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and R = 1.8), with the magnetic field being stabilizing (a)
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position coordinate is zs/A = Ma/(27)T.

is restricted to the ideal gas EoS, so that the parametric
domain is reduced to «y (gas compressibility), 5 (magnetic
field intensity) and R (shock strength). For example,
Fig. 8 shows the temporal evolution of the shock ripple
as a function of the dimensionless temporal variable 7.
Panel (a) is computed for an ideal gas with v = 1.1,
with density compression ratio R = 10 and two differ-
ent magnetic field intensities 3 = 1072 (blue curve) and
B = 10% (red curve). As expected, the two cases decay
in time with the power law 773/2 since h* < h%. Given
that v < 2, the magnetic field exerts a stabilizing effect,
promoting the damping of the oscillations. There is an
important difference between the two chosen cases, with
this v and R the strong magnetic field causes the case
in blue to have h* < h};. These cases are marked in red
in Fig. 4 (a), where the h}, behavior is best seen. Com-
paring both oscillations, we can see how, although they
have the same decay characterizing their asymptotic be-
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FIG. 9. Iso-contours of the asymptotic shock ripple amplitude
£° for the DK neutrally stable conditions associated with
highly magnetized shocked ideal gases with v = 3 (orange-
yellow) and v = 7/2 (blue-yellow).

havior, the blue curve (h* < h};) undergoes an initial ex-
ponential damping. This reduces the order of magnitude
of the amplitude substantially in the first oscillations in
comparison to the case with h* > hJ.

On the other hand, Fig. 8 (b) shows the case for a high
value of the polytropic index y =3 > 1++/2 for R = 1.8
and the same dimensionless magnetic intensities. In this
case, the magnetic field plays an amplifying role, with the
case B = 1073 (green curve) displaying a DK neutrally
stable shock, and therefore asymptotically approaching a
constant non-zero amplitude.

A switch in the stabilizing role of the magnetic field
has also been reported for other instabilities of inter-
est for high-energy density systems, such as the abla-
tive Rayleigh-Taylor instability, by Garcia-Rubio et al.
[79, 80]. Returning to Fig. 8, it is found that it takes
several wavelengths for the shock to travel to reach the
constant-amplitude asymptotic state, where the ampli-
tude of the non-decaying contribution is much larger
than the amplitude of the oscillations associated with
the decaying counterpart. This characteristic distance
will therefore depend on the shock value of £2°. Fig-
ure 9 shows the asymptotic shock ripple amplitude £°
as a function of R and @ for v = 3 (orange-yellow) and
~v = 7/2 (blue-yellow), corresponding to sufficiently high
adiabatic indices: v > 1 + V2. Tt is observed a region
where £2° is maximum, corresponding to the conditions
at which h* — b} > 0 peaks, given in Fig. 3 for an ideal
gas. It is also noteworthy that, for the parametric do-
main considered, which includes relatively high magnetic
intensities (8 > 1073), the maximum asymptotic ampli-
tude £€° < 107! is one order of magnitude smaller than
the initial shock perturbation amplitude.



B. Magnetosonic, magneto-entropic and vortical
perturbation field

In the context of the MHD linear waves studied in
this problem, Kovasznay’s decomposition [81] can ef-
fectively segregate downstream perturbations, consid-
ering the specific magnetic field orientation that ren-
ders no magnetic lines bending. Then the downstream
perturbations then split into vortical, magneto-entropic
and and fast magneto-acoustic modes. In this case,
the divergence-free vorticity perturbations generated at
the shock are decoupled from the density and magnetic
field perturbations. In addition, the alteration in den-
sity caused by magnetosonic and entropic perturbations
is directly proportional to the perturbations in mag-
netic field intensity, as represented by the relationship
8p/p2 = |6B|/|Ba|. It is important to note that only the
latter perturbation corresponds to steady disturbances
that would persist in the shocked gas in the absence of
dissipation effects.

On the other hand, since the change in density associ-
ated with the magnetosonic and entropic perturbations
is proportional to the perturbations in the magnetic field
intensity, where only the latter correspond to steady dis-
turbances that would remain in the shocked gas in the
absence of dissipation effects. In what follows, the am-
plitude of the steady perturbations is analyzed. In what
concerns the fast magnetosonic mode, the perturbations
induced by the shock ripple dynamics are

P*(Z > 1) = ppcos(kpZ — wpT), (44)

where the dispersion relationship of the fast magne-
tosonic wave equation w? = k2 +1 and the compatibility

condition at the shock (/1 — M2, = (wp — M p2kp) al-

low us to write

b= CMe2 = V1

, 45
1— M3, (45a)
_ 2 _
wp = S M VE L (45h)
1— M5,

that correspond to the longitudinal wavenumber and fre-
quency in the shocked gas reference frame. The asymp-
totic magnetosonic amplitude is readily given by the lin-
earized RH equation (14a):

_*_O'do'bC27087<\/<2717 (46)

Pr= ¢ 1+ 4o.(0. — 0
where o4 is defined as
2R -1
1— M3,

for conciseness.
Akin to the previous asymptotic expression for the
shock ripple £2°, the asymptotic shock pressure ampli-
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tude in (46) is zero when h* = h*, yet it grows un-
bounded as h* — 1+ 2Mpy. The propagating fast mag-
netosonic waves involve changes in the velocity pertur-
bations. In particular, they correspond to potential flow
disturbances that can be derived with the aid of (9) by
imposing V x dvp = 0. However, it is simpler to with-
draw the acoustic velocity perturbations (both longitudi-
nal and transverse components) from the Euler momen-
tum conservation equations to yield

k
Up(z>>1) = wip; cos(kp® — wpT), (48a)
F
1
U5(2 > 1) = — phsin(kp® — wpt). (48b)

WF

The post-shock perturbation variables of interest also
include the vorticity and the magneto-entropic field, since
they remain frozen to the fluid particles in the absence
of dissipation effects. For example, the steady-rotational
perturbations, which are isobaric in the linear limit, are
governed by

27
88;2" — g, = Q, (49a)
0%v,  _ o0
2 Uy = 5 (49Db)
where the function
v,
Qz>1)= 81;‘: + Uy (50)

1+h*)(R-1) , . [ - -
:(2./\)4(172)]3175111( MF§—1Cx>

represents the dimensionless vorticity field. When dis-
sipation effects are not present, and the Alfven mode is
absent, the generation of vorticity-entropy perturbations
in the shocked gas is exclusively confined to the distorted
shock front. Along with the vorticity perturbations,
the oscillating shock generates density-entropic pertur-
bations that are not related to the fast magnetosonic dis-
turbances. These steady disturbances come along with a
change in the magnetic field, so that the post-shock gas
leaves behind a modulated magneto-density field in the
form:

—h* (I+1) + M7,
h*l + M3,

P COS (\/MFS — 1C:v> , (51)

with the auxiliary parameter [ defined as

f)e(j > 1) =

2RM?Z,

"= eet )

(52)
for conciseness. The density field is composed by the
sum of the acoustic and entropic modes. The acoustic
component is equal to the pressure component through
(7¢), and the entropic one is imprinted in space with the
equally perturbed magnetic field.



V. NUMERICAL SIMULATIONS

To study a numerical application of the DK insta-
bility we utilize the FLASH code [82, 83]. FLASH
is a publicly available, high-performance computing,
multi-physics, adaptive mesh refinement (AMR), finite-
volume (FV) Eulerian hydrodynamics and magneto-
hydrodynamics (MHD) code, developed at the Univer-
sity of Rochester by the Flash Center for Computa-
tional Science [https://flash.rochester.edu]. The code
scales well to over 100,000 processors and uses a va-
riety of parallelization techniques to optimally utilize
hardware resources. FLASH’s modularity provides users
with a significant degree of flexibility and control that
enables the modeling of problems in a wide range of
disciplines, including fluid dynamics, hydrodynamic and
MHD turbulence, astrophysics, cosmology, combustion,
fusion, and high energy density physics (HEDP). Over
the past decade, FLASH has been augmented with ex-
tensive HEDP and extended-MHD capabilities [83] as
part of the U.S. DOE NNSA-funded FLASH HEDP Ini-
tiative and through direct support by the Los Alamos
National Laboratory (LANL), the Lawrence Livermore
National Laboratory (LLNL), and the Laboratory for
Laser Energetics (LLE). These include multiple state-of-
the-art hydrodynamic and MHD shock-capturing solvers
[84]; three-temperature extensions with anisotropic ther-
mal conduction, heat exchange, multigroup radiation dif-
fusion, tabulated multi-material equations of state and
opacities, laser energy deposition, and numerous simu-
lated diagnostics [83, 85]. The FLASH code and its capa-
bilities have been verified through extensive benchmarks
and code-to-code comparisons and have been validated
through direct application to scores of laser-driven and
pulsed power-driven laboratory experiments, in premier
facilities around the world.

The nature of the DK instability discussed in this
article presents several difficulties for its predictabil-
ity through numerical simulations. Shocks, which are
fronts without thickness, can cause significant changes in
flow variables by several orders of magnitude. Small-
amplitude perturbations occurring at the shock front,
which do not grow in the neutral stability/SAE regime,
are challenging to accurately capture and track over time
using numerical simulations. FLASH includes multiple
state-of-the-art hydrodynamic and MHD shock capture
schemes, among which the HLL solver (Harten, Lax and
van Leer [86]) was found to be the best option for this
study. FLASH’s other, more accurate, solvers generated
noise that was comparable in magnitude to the distur-
bances being studied. HLL-type solvers, on the other
hand, are a class of more diffusive approximate Riemann
solvers that possess high levels of robustness [87, 88].
These solvers have an essential feature that makes them
particularly suitable for handling small amplitude per-
turbations at shock fronts: they do not require the use of
added artificial viscosity, which could dampen the oscilla-
tions that are being investigated. The simulations used in
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this study employ a non-uniform square-box mesh, where
the size of the cells at the front is 1.625 - 1074 cm. The
mesh is used to compute a shock that is initially distorted
with a half-wavelength of 0.5 cm and an amplitude of
0.01 cm. Additionally, an AMR approach is employed
to evaluate any displacement of the shock front as the
amplitude decreases, if required.

0.0 0.2 0.4
2 [cm]

FIG. 10. Sketch of the numerical setup that includes the do-
main limits and the perturbation wavelength and amplitude.

The computational domain is depicted in Fig. 10. The
simulation begins with an initial solution that is pre-
scribed by the Rankine-Hugoniot equations for a fast
MHD shock. The inlet and outlet boundary conditions
are designed to maintain the average shock position static
and are consistent with each another. Symmetric bound-
ary conditions define the upper and lower limits of the do-
main, while outflow (zero gradient) boundary conditions
are used for the inlet and outlet limits. These boundary
conditions are a suitable approximation to non-reflective
conditions, provided that a sufficiently large downstream
domain is defined, as per the isolated-shock boundary
condition specified in the linear analysis. Since shock
perturbations do not affect the upstream flow, the corre-
sponding domain ahead of the shock is reduced to opti-
mize computational efficiency.

The evolution of the shock ripple amplitude is shown
in Fig. 11 (a) for a fast MHD shock in an ideal gas, with
adiabatic index v = 1.2, mass-compression ratio R = 6
and two distinguished cases: low-magnetized (3 = 103)
and high-magnetized (3 = 1073) gas flow. The former,
plotted in red, corresponds to a regular decaying solu-
tion (h} < h* < h); while the latter, in blue, cor-
responds to an initially exponentially damped regime
(=1 < h* < h}%). The plot also displays both the the-
oretical solution given by (39), plotted as a solid line,
and the numerical solution with FLASH (empty circles).
Panel (b) also provides the evolution of the shock rip-
ple amplitude, but this case is computed for v = 4 and
R = 1.5594 with the same magnetic field intensities as
in panel (a): 8 = 10% and 8 = 1073, The former, plot-
ted in red, corresponds to a regular decaying solution
(h* < h%); while the latter, in green, corresponds to a
long-time non-decaying condition (h* > h}), whose the-
oretical solution is given by (41). Stable low magnetized
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FIG. 11. Evolution of the shock ripple amplitude for very low
(8 = 10%) and very high (8 = 10™%) magnetic field intensities
in an ideal gas EoS. Panel (a): v = 1.2 and R = 6; panel (b):
v =4 and R = 1.5594. Solid black lines correspond to linear-
theory results and empty circles to FLASH computations.

solutions have been calculated in FLASH with zero mag-
netic field, but they are very close to 8 = 103. Both
comparisons shown in Fig. 11 are detailed for better un-
derstanding in Fig. 4 (orange), and make use of the same
color code as in Fig. 8.

Along with the shock-corrugation evolution, it is of
interest to numerically investigate the post-shock per-
turbation flow. With this motivation, Fig. 12 displays
the pressure and density fields associated with the case
h* > h¥ in Fig. 11 (a), orange curve: v =4, R = 1.5594
and B = 1073. The color scheme is deliberately satu-
rated to better highlight the disturbed field. It is read-
ily noted that pressure and density exhibit two different
spatial frequencies. In the case of the pressure field, the
only source of perturbations corresponds to the travel-
ling magneto-sonic waves that are radiated downstream
from the shock. The wavelength of these waves can be
determined directly from the equation (45), which pre-
dicts a wavelength of 0.59 cm. This value is in good
agreement with the results of the simulation. As per the
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density field, the numerical solution displays both acous-
tic plus entropic contributions simultaneously. However,
since the theoretical prediction for the entropic wavenum-

ber is \/M;22 —1-(, giving 0.48 cm for the simulation

conditions, we can conclude that the acoustic contribu-
tion is relatively weak. Besides, while the numerical sim-
ulations exhibit a perfectly sinusoidal downstream lobu-
lar pattern, as predicted by the theoretical analysis, the
characteristic lengths are accurately reproduced.

To further assess the accuracy of the simulations or
the validity of the theoretical model, we will now turn
our attention to the amplitude of the perturbations. By
simple inspection of the color scale, we find that dp/py ~
2.4-1072 and 6p/pa ~ 9.6 - 1073. These values can be
used to calculate the amplitude of the total pressure field
perturbation (thermal plus magnetic contributions) with
use made of the expression

s 1 (5])2 QRE 632 ’PSRSM%Q
pnum = - D) ) (53)
e P2 Pgﬂ B2 MFl(’Y—FQ/ﬂ)
which yields p},,, = 0.0614 for the conditions simulated

in Fig. 12. The theoretical prediction for the asymptotic
value of the pressure perturbation amplitudes (the lowest
value reached in the long-time regime) is pf, = 0.0547,
which is only slightly lower than the value observed in
the simulations. This is consistent with the fact that
the downstream magnetosonic perturbations decay as the
amplitude of the shock ripple oscillations decreases, as
shown in Fig. 11. It should be noted that this statement
applies to isolated-shock conditions, as the inclusion of
a supporting mechanism would increase the amplitude
of the downstream pressure perturbations compared to
those generated at the shock [53].

VI. CONCLUSIONS

We have presented a linear theoretical analysis of the
stability of fast magnetosonic shocks whose perturba-
tion field plane is perpendicular to the magnetic field
lines. In this setup, the mathematical description is sim-
ilar to that used in a gas-dynamics problem, with the
total pressure (magnetic plus thermal) playing the role
of the thermal pressure field, and the fast magnetosonic
speed being equivalent to the acoustic sound speed in
the gas-dynamics problem. Therefore, by applying the
convenient definitions, the stability limits in terms of the
classic DK parameter h (here conveniently redefined as
h*) agree with those associated with conventional shocks
and initially presented in Refs. [40, 41].

A theoretical model has been developed for any type
of equation of state (EoS) and then applied to three dif-
ferent cases, namely ideal gases, van der Waals gases and
condensed materials related to simple metals (specifically
aluminium in this case) through a three-term EoS. In ad-
dition, numerical simulations have been conducted using
the FLASH code for ideal gases. The agreement between
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FIG. 12. Downstream pressure (a) and density (b) fields for ¢+ = 1.32- 1072 s (7 = 7.11), and annotations for comparison with
the analytical downstream wavelength, in an ideal gas v = 4 with a mass-compression ratio R = 1.5594 and a magnetic field

of =103

the theoretical model and the numerical simulations is
excellent, as can be seen from the comparison of the os-
cillation frequencies and the prediction of the transient
evolution of the shock-ripple behavior. The main conclu-
sions drawn from this study are listed in the following.

i) For an ideal gas EoS, when v < 2, the effect of
the magnetic field is to decrease the amplitude of
the shock ripple oscillations, with the possibility of
exerting an initially exponential damping for suffi-
ciently strong magnetic fields h* < h}. The effect
of the magnetic field reverses for v > 2. Moreover,
when the adiabatic index v > 14+/2, the shock can
enter the DK neutrally stable regime h* > h%, or
SAE, if the magnetic field intensity is sufficiently
large and the shock is sufficiently strong. Weak
shocks are found to be always stable regardless
of the adiabatic index and the magnetic intensity
(h* < hY).

ii) The stability conditions for a van der Waals EoS are
affected by additional factors related to intermolec-
ular attraction and co-volume. In addition to the
magnetic-induced neutral stability/SAE observed
in ideal gases for strong shocks and high adiabatic
indices, a purely acoustic instability exists for weak
magnetic fields and low values of ~. This is equiv-
alent to that found by Bates and Montgomery [61]
and later on studied in similar shock configurations
[52, 60].

We have found that for a three-term EoS describing
aluminium, the shock remains stable over the whole
range of parameters explored. Although neutral
stability /SAE has been predicted for strong shocks
in low-compressible, highly magnetized media (see
previous point i) for ideal gases), the compression
of the shock causes a reduction in the adiabatic
index that keeps it below the instability threshold

iii)

of 1+ /2. We suggest that additional examples
with different metals could be studied to further
explore this phenomenon.

Several future works are planned to extend the current
study. One of them is to examine the effect of magnetic
fields oriented in a direction other than perpendicular to
the perturbation field. This orientation will introduce
additional modes downstream, namely the Alfvén and
slow magnetosonic modes. Another future work aims to
enhance the analysis by utilizing more realistic boundary
conditions that accurately represent high-energy-density
experiments. In addition, non-linear perturbations will
be explored using FLASH simulations in this study.

Another essential extension of the present work involv-
ing FLASH is its generalization for convergent cylindrical
geometry appropriate for ICF and HEDP applications,
including MagLIF and SZP. We cannot simply modify
the analytical stability study [89] of the baseline Guder-
ley’s converging-shock self-similar solution [90] because
such solutions do not exist with non-ideal EoS permit-
ting the DK instability; cf. the discussion in [60, 91-93]
and references therein. We will have to do the stability
analysis numerically, the present work serving as the nec-
essary step of the FLASH code verification for modeling
the evolution of small-amplitude shock-front perturba-
tions.
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Appendix A: EoS for simple metals

In order to describe the shock compression in con-
densed materials, the three-term EoS is employed. The
model, which corresponds to that described in Chapter
X1, § 6, of [94] and used as an example in [60, 95|, provides
a reasonably accurate description in the pressure range

J

3K0m
pe(2) = m 5

<1m4z5/3 —om322/3 _ gm2,—1/3
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up to several Mbar. The pressure and the specific in-
ternal energy are presented as sums of three well-defined
contributions,

p(p, T) = pe(p) + pi(p, T) + pe(p,T), (A1)

E(p,T) = Ec(p) + Ei(T) + Ec(p, T),  (A2)
where the cold or elastic terms p. and E. are related to
the interaction forces between the atoms of the material
at T' = 0 and therefore they depend only on the material
density p. The thermal ion (lattice) terms p; and E; as
well as the thermal electron terms p, and FE, are functions
of both density and temperature.

For the cold metal, we use Molodets’ analytical approx-
imation [72] for the density dependence of the Griineisen
coefficient

g + 2p0m

r=2+——2m
3 mp — pPom

(A3)
where pg,, is the density extrapolated to zero tempera-
ture and pressure and m is a dimensionless constitutive
parameter.

With the aid of the Landau—Slater formula [96, 97| and
the definition of cold energy p. = p?>dE./dp,

1 1 1
+mz 3 2B it omB 4+ 6mE —m + 7) , (Ad)

7 5

E.(2) =

= —6
pom(m "

3Kom 3 4o
10

—1)4 T

3
—ZmzT T 4

Tm?* — 70m3 — 210m? + 35m — 5
3z_1/3+ m m m* + 30m !

9 5 _u3
35 tgme

iz—lo/?) _ 35m* + 280m3 — 105m? + 40m — 7

7 70

where Ky, is the adiabatic bulk modulus extrapolated
to zero temperature and pressure and z = p/pon, is the
normalized density. For the ion lattice (thermal) contri-
butions to the pressure and internal energy are

3
p(z,T) = pOmm—zF(z)k’BT, (A6)

a

E(T) = ichT, (A7)

Mg

where m, is the atomic mass and kg is the Boltzmann
constant. The electron contributions are

1
pe(2,T) = g/3oz1/3T2, (A8)

1
E.(z,T) = §ﬁ0z*2/3T2, (A9)

where [y is determined by the number of free electrons
per unit mass of the material at 7' = 0 and p = pom.-

70 ) ’ (45)

(

In deriving (A9), if the electronic Griineisen coefficient
is taken to be 2/3, then the density and temperature
dependence would correspond exactly to a free electron
gas at a temperature well below the Fermi energy.

The formulation calls for the definition of the speed of
sound which takes the form

2= YePe + ViDL + VeDe B, (A10)

De + P1 + De P
where the term accompanying the factor p/p is the mean
effective value of the adiabatic index. The corresponding

values of 7., 7, and 7, associated with the cold, lattice
and electronic contributions are, respectively,

Kom (mz—1)*
’yc = pc (m — 1)4Z10/3 5 (Alla)
dInl
= dliz +T+1, (Al1b)
Ve = g (Allc)
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