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Shear flows cause aspherical colloidal particles to tumble so that their orientations trace out com-
plex trajectories known as Jeffery orbits. The Jeffery orbit of a prolate ellipsoid is predicted to
align the particle’s principal axis preferentially in the plane transverse to the axis of shear. Holo-
graphic microscopy measurements reveal instead that colloidal ellipsoids’ trajectories in Poiseuille
flows strongly favor an orientation inclined by roughly π/8 relative to this plane. This anomalous
observation is consistent with at least two previous reports of colloidal rods and dimers of colloidal
spheres in Poiseuille flow and therefore appears to be a generic, yet unexplained feature of colloidal
transport at low Reynolds numbers.

I. INTRODUCTION

Dispersions of aspherical colloidal particles flow dif-
ferently than dispersions of spheres because shear forces
cause aspherical particles to tumble [1, 2], and tum-
bling influences interparticle interactions [3]. How shear-
mediated tumbling affects colloidal transport has rami-
fications for such diverse application areas as filtration
[4], drug delivery [5], and food processing [6]. Tumbling
also influences the behavior of active particles that propel
themselves through shear flows, including motile bacte-
ria and artificial swimmers [7–10]. Despite more than a
century of study, the kinematics of colloidal tumbling are
incompletely understood, even for comparatively simple
particle shapes and flow profiles, and even when inertial
and viscoelastic effects may be ignored.

The present study uses holographic video microscopy
to explore anomalous tumbling of axisymmetric ellip-
soids in simple shear flows. Such particles are predicted
[1, 2, 11] to align preferentially in the plane transverse to
the shear direction. Recent experimental studies, how-
ever, show that colloidal rods [12] and bound pairs of col-
loidal spheres [13] tend instead to be inclined at θ ≈ π/8
relative to the predicted plane when they are entrained
in plane Poiseuille flows. Here, we show that prolate col-
loidal ellipsoids also tend to be anomalously inclined in
steady Poiseuille flows, in quantitative agreement with
previous experimental studies [12, 13] and in qualitative
disagreement with theoretical predictions.

II. JEFFERY ORBITS IN POISEUILLE FLOWS

Figure 1 schematically depicts the system used for this
study. An aqueous dispersion of colloidal ellipsoids is
transported down a rectangular channel by a pressure-
driven flow. Particles in the stream pass through a colli-
mated laser beam. The light they scatter interferes with
the rest of the beam in the focal plane of a microscope
that magnifies the interference pattern and relays it to a
camera. The image in Fig. 1 is a region of interest from
a typical video frame that captures the hologram of one

FIG. 1. Schematic representation of colloidal ellipsoids tum-
bling as they are transported by the Poiseuille flow in a mi-
crofluidic channel. The particles’ positions and orientations
are recorded by an in-line holographic microscope that illu-
minates them with a collimated laser beam. Light scattered
by an ellipsoid interferes with the remainder of the beam in
the microscope’s focal plane. The magnified intensity pat-
tern is recorded by a video camera. A region of interest from
one such video frame captures the hologram of a typical el-
lipsoid, and can be analyzed using the Lorenz-Mie theory of
light scattering to measure the ellipsoid’s three-dimensional
orientation.

ellipsoidal particle. Such holograms can be analyzed to
estimate the inclination angle, θ, for each particle passing
through the observation volume [13].
In the absence of shear, a colloidal ellipsoid would un-

dergo free rotational diffusion, its orientational unit vec-
tor tracing out a random walk on the unit sphere. The
associated distribution of observed inclination angles is

P0(θ) = cos(θ) (1)

over the experimentally accessible domain, θ ∈ [0, π/2].
This distribution is peaked at θ = 0, which means that
the ellipsoid is most likely to be observed with its major
axis aligned with the observation plane.
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The Poiseuille flow profile in the channel has a height-
dependent shear rate, γ̇(z) = −8v0z/H

2, that causes the
ellipsoids to tumble as they travel downstream (along
x̂). For convenience, we define z = 0 to lie along the
midplane of the channel, where the flow speed is v0. The
flow’s vorticity is directed along ŷ. For simplicity, we
assume that the height of the channel, H, is large enough
compared to particles’ dimensions that the shear may
be treated as if it were uniform across the volume of a
particle.

When subjected to a uniform shear flow, an axisym-
metric ellipsoid traces out a Jeffery orbit that is most
naturally expressed in terms of the polar angle, θ′, rela-
tive to axis of vorticity, ŷ, and the azimuthal angle, ϕ′,
around that axis. We adopt the convention that ϕ′ = 0
is aligned with the gradient direction, ẑ. The experimen-
tally accessible angle of inclination, θ, is related to θ′ and
ϕ′ by

sin θ = sin θ′ cosϕ′. (2)

Neglecting both inertial effects and diffusion, the orien-
tation of a tumbling ellipsoid is predicted [1, 11] to trace
out a trajectory, (θ′(t), ϕ′(t)), that is described by

tanϕ′(t) = λ tan(Ωt) and (3a)

tan θ′(t) =
Cλ

(λ2 cos2 ϕ′ + sin2 ϕ′)1/2
, (3b)

where λ = a/b is the ratio of the major axis, a, to the
minor axis, b. The orientational trajectory is periodic
with a frequency

Ω =
λ

1 + λ2
γ̇, (3c)

that depends on the shear rate and the ellipsoid’s aspect
ratio. Different orbits are distinguished by the orbital
constant, C. Values around C = 0 correspond to log-
rolling motion in which the ellipsoid’s major axis is ori-
ented predominantly along ŷ, so that θ ≈ 0. Large values
of C correspond to cartwheeling motion in which the el-
lipsoid tumbles with its major axis predominantly in the
x-z plane. Even in this limit, the ellipsoid is most likely
to be observed near θ = 0 because its orientation ad-
vances most slowly as the major axis passes through the
x-y plane. More generally, the distribution of observed
orientation angles, P (θ|C), is peaked at θ ≪ π/8 for all
values of C.

Rotational diffusion causes a Brownian ellipsoid’s tra-
jectory to wander stochastically among orbits with dif-
ferent values of C [14]. A slender ellipsoid in a simple
shear flow, for example, has values of C drawn from the
probability distribution [15, 16],

p(C) =
4RC

(4RC2 + 1)3/2
, (4)

where R is the ratio of the ellipsoid’s rotational diffu-
sion coefficients and therefore depends on λ. Weak iner-
tial effects at non-vanishing rotational Reynolds numbers

FIG. 2. Scanning electron microscope image of colloidal el-
lipsoids deposited onto a graphite substrate and dried. Inset:
typical ellipsoid, illustrating ground-truth measurement of the
major and minor axes, a and b, respectively. Scale bars indi-
cate 5 µm.

destabilize log-rolling and stabilize cartwheeling, favoring
larger values of C than is predicted by Eq. (4) [17–19].
The thermally-averaged distribution of inclination angles
follows as

P (θ) =

∫ ∞

0

P (θ|C) p(C) dC (5)

and is peaked at θ = 0 because P (θ|C) is peaked near θ =
0 and p(C) > 0. We conclude from this that the observed
distribution of orientation angles should be peaked at
θ = 0, regardless of the form of p(C) and independent
of the shear rate, γ̇. Surprisingly, this does not appear
to be consistent with experimental observations [12, 13],
including those reported here.

III. HOLOGRAPHIC TRACKING OF
COLLOIDAL ELLIPSOIDS

The monodisperse colloidal ellipsoids used for this
study are created by uniformly stretching [20, 21] custom-
synthesized polymethyl methacrylate spheres (NYU Col-
loid Synthesis Facility, batch CSF02-139-C) [22, 23].
Scanning electron microscopy images such as the exam-
ple in Fig. 2 yield a population-averaged major axis of
a = (4.80±0.21)µm and an aspect ratio λ = 3.96±0.25.
As has been reported previously [24], stretched colloidal
spheres differ slightly in shape from ideal ellipsoids. They
are closer to ideal, however, than the right-circular rods
[12] and bound pairs of spheres [13] that have been stud-
ied previously.
Sterically-stabilized colloidal ellipsoids are dispersed

in dodecane (nm = 1.42) at a concentration of
106 particles/mL. A 30 µL aliquot is transfered to the
input reservoir of a commercial microfluidic channel
(xCell8, Spheryx, Inc.) with a rectangular cross-section
that nominally is H = 60µm high and and 500 µm wide.
The 10:1 aspect ratio allows us to neglect transverse
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FIG. 3. (a) Effective-sphere properties of 1712 colloidal ellipsoids, with each point representing the holographically measured
diameter, d∗p, and refractive index, n∗

p, of a single particle. The dashed (red) curve is a fit to Eq. (6). Each data point is colored
by the angle of inclination, θ, associated with its position along the parametric curve. (b) Distribution of ellipsoid inclination
angles, P (θ), obtained from the data in (a), compared with independent results for colloidal rods [12] and dimers [13]. The
theoretical prediction for Brownian ellipsoids is obtained from Eqs. (3) through (5).

shear. The microfluidic channel is installed in a com-
mercial holographic particle characterization instrument
(xSight, Spheryx, Inc.) that creates a pressure-driven
flow in the channel with a nominal mid-plane speed of
v0 = 3mms−1.
The instrument analyzes each single-particle hologram

[25] with the Lorenz-Mie theory of light scattering [26–28]
to obtain the diameter, d∗p, and refractive index, n∗

p, that
describes an effective sphere encompassing the particle
[13, 29–31]. These effective-sphere parameters are related
to an ellipsoid’s angle of inclination through Maxwell
Garnett effective-medium theory [32]. An ellipsoid ly-
ing in the focal plane, θ = 0, has an effective diameter
somewhat smaller than its major axis. Because the ac-
tual ellipse fills only a fraction of this enclosing sphere,
however, its effective refractive index in this orientation
is only slightly greater than that of the medium [13]. An
ellipsoid aligned with the optical axis, θ = π/2, scatters
light in much the same way as a small dense sphere. The
dependence of effective properties on ellipsoid orientation
is captured by the phenomenological relationship [13]

d∗p(θ) = (dmin − dmax) sin θ + dmax (6a)

n∗
p(θ) = n0

[
1 +

L

d∗p(θ)− d0

]
, (6b)

where dmax = 3.27 µm and dmin = 1.57 µm are the max-
imum and minimum observed values of d∗p. Figure 3(a)
presents experimental results for 1712 colloidal ellipsoids
obtained from the sample in Fig. 2. Each data point
reflects the effective diameter and refractive index of a
single ellipsoid captured at a random point in its ori-
entational trajectory. The (red) dashed curve is a fit

of those data points to Eq. (6b) for L = (65 ± 2) nm,
d0 = (1.24 ± 0.01)µm and n0 = 1.40. The points then
are colored according to the inclination angle, θ, of the
closest point along that curve.

The random sampling of inclination angles in Fig. 3(a)
is compiled into a probability distribution P (θ), that is
plotted Fig. 3(b). Whereas the theory summarized in
Eqs. (3) through (5) predicts that Brownian ellipsoids are
most likely to be aligned with the imaging plane, θ = 0,
the measured distribution is clearly peaked around θ =
π/8. The same anomalous inclination has been observed
in measurements on colloidal dimers [13] and colloidal
rods [12], both of which are reproduced in Fig. 3(b).

The qualitative discrepancy between the predicted and
observed distribution of inclination angles was noted in
[12] and was emphasized in [13]. This discrepancy is
unlikely to result from an experimental artifact because
the same result is obtained with orthogonal measurement
techniques [12, 13].

Lacking a definitive explanation for the observed
anomalous inclination, we review factors that are not in-
cluded in the standard formulation of Jeffery orbits that
might affect tumbling transport of aspherical particles
in Poiseuille flows. Figure 4(a) reports the axial posi-
tion, zp, and in-plane flow speed, vp, for each particle
from Fig. 3(a). The (yellow) dashed curve is a fit to the
parabolic Poiseuille flow profile. The resulting estimates
for the channel height, H = (63 ± 1) µm, and midplane
flow speed, v0 = (3.5 ± 0.2)mms−1 are consistent with
the instrument’s specifications. The shear rate experi-
enced by the ellipsoids ranges from γ̇ = 0 at the midplane
to γ̇ >∼ 100 s−1 near the walls. The associated rotational
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FIG. 4. (a) Holographic tracking data obtained simulta-
neously with characterization results from Fig. 3(a). Each
point indicates the axial position, zp, and the flow speed, vp,
of a single particle and is colored by the inclination angle
from Fig. 3(a). The dashed (yellow) curve is a fit to the
parabolic Poiseuille flow profile with a maximum speed of
v0 = 3.5mms−1 at the midplane. Dashed (gray) lines rep-
resent estimates for the axial positions of the channel walls.
Their separation, H = (63 ± 1) µm, is obtained from the fit.
(b) The population-average inclination angle, ⟨θ(zp)⟩, does
not depend significantly on the ellipsoids’ height in the chan-
nel (blue curve) even though the probability distribution for
particle positions, ρ(zp), (red curve) shows a clear tendency
for ellipsoids to travel near the channel’s midplane.

Péclet number therefore varies from zero on the midplane
to roughly 200 near the walls. In this regime, the ellip-
soids’ orientational trajectories should be dominated by
kinematics rather than by rotational diffusion through-
out most of the height of the channel.

The channel’s height is sufficiently large compared with
the ellipsoids’ major axis (H > 10a) that gradients in the
shear rate should not influence the rotational kinemat-
ics of individual ellipsoids beyond creating a distribution
of orbital periods [33, 34]. Recently reported Brown-
ian dynamics simulations on colloidal rods in comparable
Poiseuille flows [12] confirm the prediction [16] that P (θ)
should be peaked at θ = 0, rather than at θ = π/8 as is
observed experimentally.

The ellipsoids’ shear Reynolds number in dodecane is
smaller than Res = 3 × 10−4. Although small, this may
still be large enough for weak inertial effects to have
destabilized log-rolling trajectories near θ = 0 [18]. The
resulting increase in relative probability at steeper incli-
nations would be apparent in the random sampling of
orientations that is captured by our measurement tech-
nique. Because Res is small, however, this effect seems
unlikely to suppress P (θ) near θ = 0 to the extent that
is observed experimentally in Fig. 3(b).

Hydrodynamic coupling to the walls of the channel also

may have influenced the ellipsoids’ trajectories [35]. This
could explain the nonuniform distribution of axial posi-
tions, ρ(zp), that is plotted in Fig. 4(b). Redistribution
of particles away from the channel’s walls and toward
the midplane may be a manifestation of hydrodynamic
lift [36, 37]. Hydrodynamic coupling to the walls might
also have a complementary effect on the ellipsoids’ orien-
tational trajectories. Any coupling-induced orientational
bias appears to depend weakly on position within the
channel, however, because the mean inclination angle,
plotted in Fig. 4(b), has no obvious dependence on zp.

IV. DISCUSSION

The trajectories of axisymmetric colloidal particles in
simple shear flows continue to present conundrums de-
spite more than a century of study. Holographic par-
ticle characterization offers a fast and effective way to
amass large statistical samples that hopefully will be use-
ful for resolving some of these outstanding mysteries. An-
alyzing holographic particle-characterization data in the
effective-sphere approximation yields useful estimates for
elliptical particles’ out-of-plane orientations. The same
measurement also yields each particle’s position in the
three-dimensional flow over a comparatively large axial
range, as well as the drift speed at that position.
Holographic tracking of tumbling ellipsoids confirms

previous reports that aspherical colloids do not behave
as expected in plane Poiseuille flows. Rather than spend-
ing most of their time in the plane defined by the flow
and vorticity directions, these particles actually tend to
be inclined away from that plane. The same angle of in-
clination, θ = π/8, is adopted by dimers with an aspect
ratio of 2 [13], rods with an aspect ratio as large as 10
[12], and ellipsoids with an aspect ratio of 5. The an-
gle of inclination appears not to depend strongly on the
particles’ distance from bounding walls, even when the
particles themselves experience significant hydrodynamic
lift. Interparticle collisions similarly are not likely to ac-
count for these anomalous observations because the typ-
ical inter-particle separation exceeds the channel height
in all available studies.
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