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We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a
bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a
confined one-dimensional geometry, and apply the Dynamic mode decomposition (DMD) in order
to characterize the evolution of the wave field as the bath’s vibrational acceleration is increased
progressively. DMD provides a regression framework for adaptively learning a best-fit linear dy-
namics model over snapshots of spatio-temporal data. Thus, DMD reduces the complex nonlinear
interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD
modes characterizing the wave field. In particular, it provides a low-dimensional characterization
of the bifurcation structure of the pilot wave physics, wherein the excitation and recruitment of
additional modes in the linear superposition models the bifurcation sequence. This DMD charac-
terization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links
with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as
the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations
that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave
field and the droplet statistics allows us to characterize the evolution of the emergent statistics with
increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical
framework with the same basic structure as quantum mechanics, specifically a wave theory that
predicts particle statistics.

I. INTRODUCTION

Pilot-wave theories have been developed to describe
particle-wave interactions on both the microscopic and
macroscopic scales. In quantum mechanics, the double-
solution pilot-wave theory of Louis de Broglie [1, 2]
was proposed in the 1920s on the premise that micro-
scopic particles have an associated internal vibration at
the Compton frequency that generates waves. The res-
onant wave-particle interaction was posited to result in
the particle being propelled by its guiding or ‘pilot’ wave
with the de Broglie wavelength, giving rise to statistical
behavior consistent with the standard formalism. Hydro-
dynamic pilot-wave theory [3, 4] has been developed to
describe the motion of millimetric droplets self-propelling
on the surface of a vibrating liquid bath, a system discov-
ered by Yves Couder and Emmanuel Fort in 2005 [5, 6].
By virtue of a resonant interaction between the bouncing
droplets and the underlying wave field, the droplet is pi-
loted by a quasi-monochromatic wavefield with the Fara-
day wavelength. The periodic bouncing of the droplet
thus plays the role of the particle vibration in de Broglie’s
mechanics, the Faraday wavelength that of the de Broglie
wavelength [3]. This walking-droplet system is remark-
able in that it represents a macroscopic realization of the
type of pilot-wave dynamics envisaged by de Broglie, and
all the more remarkable in that it has yielded a growing
list of hydrodynamic quantum analogs (HQAs) [3, 4, 7].
These include analogs of single-particle diffraction and
interference [8–10], orbital quantization [11–15] tunnel-
ing [16–18], quantum corrals [19, 20], Friedel oscilla-
tions [21], spin lattices [22] and long-range correlations

in bipartite systems [23–25]. In several of these systems,
wave-like statistical forms emerge that are strikingly sim-
ilar to those arising in their quantum counterparts [19–
21]. HQAs thus suggest that a pilot-wave dynamics of
the form engendered in the hydrodynamic system might
plausibly underlie quantum statistics [3, 4].

The walking-droplet system is complex and strongly
nonlinear, being governed by a wave equation for the
fluid bath and a trajectory equation for the droplet. The
waves are governed by a system of partial differential
equation with a nonlocal Fourier operator and a nonlin-
ear forcing induced by the walking droplets. The droplet
bounces vertically, and so interacts intermittently with
the bath surface, and is propelled by a force proportional
to the local slope of the interface during impact. Despite
this dynamical complexity and nonlinearity, we proceed
by showing that by leveraging the dynamic mode decom-
position (DMD), the mean pilot-wave field and droplet
statistics can be well characterized by a low-rank linear
dynamics. Specifically, the DMD model shows that lin-
ear superposition allows for a reconstruction of the mean
wavefield, from which we recover the probability density
function of the particle. In quantum mechanics, the par-
ticle statistics is governed by a linear Schrödinger equa-
tion. Here, DMD extracts from a nonlinear system of
coupled dynamical equations the linear features of the
particle statistics. DMD also allows for a characteriza-
tion of the corresponding bifurcation diagram, specifi-
cally the period-doubling route to chaos arising as the
vibrational forcing is increased progressively. Our analy-
sis of the walking-droplet system is the first to focus on
the dynamics of the waves rather than the particle, and
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provides a simple spatio-temporal modal analysis of the
underlying low-dimensional wave interactions that char-
acterize the overall pilot-wave physics and emergent par-
ticle statistics.

The feature of the walking-droplet system responsible
for the emergent quantum features is ‘path-memory’ [26],
as renders the drop dynamics non-Markovian, and results
from the persistence of the pilot wave on the bath sur-
face. The drop is propelled by its wave field, whose form
is prescribed by the droplet’s history and environment.
The critical control parameter is the bath’s vibrational
acceleration, Γ, as prescribes the bath’s proximity to the
Faraday threshold, ΓF , above which waves would form
even in the absence of the droplet. While Γ is always
less than ΓF in the laboratory, the closer Γ is to ΓF ,
the more persistent the waves generated by the droplet,
and the longer the path-memory. The manner in which
the droplet dynamics changes as the vibrational accel-
eration (or ‘memory’) is increased progressively towards
the Faraday threshold has been characterized and ratio-
nalized for the free droplet [27–29], droplet pairs [30–
32], confined rings [33, 34] and free rings [35]. Tran-
sitions from steady orbital motion to chaotic dynamics
have been reported and characterized in a number of set-
tings, including motion in a rotating frame [11–13, 36],
motion confined by a central force [14, 15, 37] and mo-
tion confined by boundaries [19, 20, 38]. Rich dynamical
properties have been revealed, including period-doubling
cascades to chaotic trajectories [12, 36, 39, 40]. The dy-
namical systems aspects of the walking-droplet system
have been highlighted in the recent review of Rahman
and Blackmore [41].

In characterizing the bifurcation structure of the
walking-droplet system, prior work has focused primar-
ily on the droplet dynamics, specifically, how the particle
trajectory changes with increasing memory. However, for
confined walker motion, connections between the mean
pilot-wave field and the emergent statistical forms have
been both reported [20] and rationalized [38, 42]. As the
resulting mean pilot-wave is expressible in terms of the
droplet’s statistical behavior, Bush & Oza [4] propose
that it may play a role similar to that of the quantum
potential in Bohmian mechanics. While the mean walker
dynamics is thus effectively non-local, as is Bohmian me-
chanics, the time-resolved walker dynamics is entirely
local. The current work will be the first to focus on
the bifurcation structure of the pilot wave as the sys-
tem memory is increased progressively. By leveraging
the dynamic mode decomposition (DMD), the underly-
ing pilot-wave field can be characterized, revealing its
own period-doubling cascade to chaos. The analysis pro-
vides a spatio-temporal modal analysis of the underlying
low-dimensional wave interactions that characterize the
overall pilot-wave physics.

DMD originated as a modal analysis method in the
fluid dynamics community. Introduced as an algo-
rithm by Schmid [43, 44], it has rapidly become a com-
monly used data-driven analysis tool and the standard

algorithm to approximate the Koopman operator from
data [45]. Specifically, DMD was used to identify domi-
nant spatio-temporal coherent fluid structures from high-
dimensional time-series data. The DMD analysis of-
fered an alternative to standard dimensionality reduc-
tion methods such as the proper orthogonal decomposi-
tion (POD), which highlighted low-rank features in fluid
flows using the computationally efficient singular value
decomposition (SVD) [46]. The advantage of using DMD
over SVD is that the DMDmodes are linear combinations
of the SVD modes that have a common linear (exponen-
tial) behavior in time, given by oscillations at a fixed
frequency with growth or decay. Specifically, optimized
DMD [47, 48] is a regression to solutions of the form

x(t) =

r∑
j=1

bjϕje
ωjt, (1)

where x(t) is an r-rank approximation to a collection of
state space measurements xk = x(tk) (k = 1, 2, · · · , n).
The algorithm finds the DMD eigenvalues ωj , DMD
modes ϕj and their loadings bj . The ωj determines the
temporal behavior of the system associated with a modal
structure ϕj , thus giving a highly interpretable represen-
tation of the dynamics. Such a regression can also be
learned from time-series data [49]. DMD may be thought
of as a combination of the SVD/POD in space with the
Fourier transform in time, combining the strengths of
each approach [50, 51].
DMD also provides a natural mathematical connec-

tion with pilot-wave hydrodynamics. Specifically, the
emergent steady-state statistics of the walking droplets
have been shown in certain instances to be comparable to
solutions of the time-independent Schrödinger equation
of quantum mechanics [4, 19, 20]. The time-dependent
Schrödinger equation takes the general form

iψt = −ψxx + V (x)ψ (2)

where ψ(x, t) is the wavefunction, V (x) is a potential and
the coefficients have been normalized to unity. The so-
lution of the Schrödinger equation is given by a linear
superposition of modes each of which has a characteris-
tic oscillation frequency. In quantum mechanics, these
frequencies are the energy levels of the quantum system.
Although the interpretation of these solutions is quite
different from that of the fluidic system under consid-
eration, the representation of the systems in terms of a
linear superposition of modes oscillating at characteristic
frequencies is the same. Thus despite the complexity of
the fluidic system, its approximate DMD solution gener-
ates the canonical Sturm-Liouville solution form. Specif-
ically, the state-space variable x(t) (1) is the vectorized
version of the Schrödinger wavefield ψ(x, t). The general
solution to the discretized Schrödinger equation is given
by the DMD approximation (1) where the modes and fre-
quencies are determined by regression in order to model
the complex nonlinear and nonlocal interactions between
wavefield and droplet. In this case, the DMD modes and
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FIG. 1. Wave-droplet dynamics over 150 Faraday periods in a
cavity of width 1cm. The vibrational forcing takes the values
Γ = (a) 4.8, (b) 5.0, (c) 5.3 and (d) 5.4. For this geometry
the Faraday threshold is approximately ΓF = 6.15. All other
parameters are kept unchanged, including the droplet’s initial
position at X = −0.35. The wavefield η(x, t) is denoted in
blue while the horizontal droplet position X(t) is indicated in
red.

eigenvalues correspond to the eigenstates and their corre-
sponding energy levels respectively of the quantum sys-
tem. Thus, DMD provides not only a valuable approx-
imation method, but a regression to the solution form
that is standard in quantum mechanics.

II. PILOT WAVE PHYSICS

The walking-droplet system is modeled theoretically
through a trajectory equation for the droplet and a
partial differential equation that describes the spatio-
temporal dynamics of the accompanying waves [27–29].
The wave model may be obtained from an asymptotic
simplification of the linear, free surface, Navier-Stokes
equations [52]. The Helmholtz decomposition of the ve-
locity field yields, in the weakly viscous regime, an irro-
tational velocity potential perturbed by a weak shearing
component, arising through the streamfunction. The pi-
lot wave along the undisturbed free surface z = 0, is
expressed through a weakly diffusive Bernoulli law as
well as a weakly diffusive kinematic condition, as detailed
below. The velocity potential is denoted by ϕ(x, z, t),
where we note that in the formulation that follows, the
dynamics are constrained to the x− z plane. The veloc-
ity field components in the bulk of the fluid are given by
(u, v) = ∇ϕ. The wave elevation is denoted by η(x, t).
The fluid parameters are ρ, the fluid density, σ, the sur-
face tension and ν, the kinematic viscosity. In the refer-
ence frame of the fluid bath, that oscillates at frequency

ω0, gravity takes the form g(t) = g(1 + Γ sin(ω0t)). The
free surface wave equations are given by [52, 53]:

∂ϕ

∂t
(x, 0, t) = −g(t)η+σ

ρ
ηxx+2ν ϕxx−

1

ρ
Pd(x−X(t)), (3)

∂η

∂t
(x, t) = DtN [ϕ] + 2ν ηxx. (4)

The diffusive terms, in both the Bernoulli law and the
kinematic condition, are the leading order terms from
the vortical component of the Helmholtz decomposition.
The presence of the droplet is felt through the pressure
term Pd, centered at the droplet’s position X(t), which
acts as a wave-maker. This pressure term is compactly
supported in space, over the droplet’s diameter, and is
discontinuous in time, being activated periodically at
each bounce. The velocity potential satisfies Laplace’s
equation which enables one to define the Dirichlet-to-
Neumann (DtN) operator that maps the Dirichlet data
ϕ(x, 0, t) onto the free surface’s normal speed, at time t:

DtN [ϕ] = ϕz(x, 0, t). (5)

The DtN operator is defined as a Fourier integral op-
erator and is computed in a straightforward manner us-
ing a conformal mapping and the Fast Fourier Transform
(FFT) [53].
To complete the wave-particle model, the above wave

system is coupled to the droplet’s horizontal trajectory
equation [28]:

m
d2X

dt2
+ c F (t)

dX

dt
= −F (t)∂η

∂x
(X(t), t). (6)

The drop is propelled by the wave force, as is proportional
to the local gradient of the wave field, and resisted by a
linear drag. The magnitude of the propulsive wave force
transmitted during the contact time, here prescribed as
Tc = TF /4 where TF is the Faraday period, is denoted
by F (t) . This time-dependent coefficient also appears in
the drag term, since drag is also imparted during impact.
Further modeling details can be found elsewhere [52, 53].
The evolution of the PDE model is shown in Fig. 1. As

the forcing amplitude is increased, the walking-droplet
system undergoes a bifurcation sequence. For low-
amplitude forcing, Γ = 4.8, the droplet bounces in place
in the middle of the well (Fig. 1a). As the forcing am-
plitude is increased, the droplet begins to oscillate pe-
riodically in the well (Fig. 1b). Further increase of Γ
generates larger oscillations until eventually period dou-
bling occurs, which is detailed in Sec. V. The dynamics of
the droplet can also be plotted in phase-space using the
droplet position, denoted by X, and the droplet speed,
denoted by V = Ẋ. Figure 2 shows the underlying at-
tractors associate with the dynamics illustrated in Fig. 1.
Increasing Γ leads to a chaotic motion of the droplet, as
further detailed in Fig.3. The center of oscillation varies
in a chaotic fashion. As will be detailed in Sec. V, the
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FIG. 2. Phase space dynamics. The droplet position is de-
noted by X and the droplet speed by V = Ẋ. Panels cor-
respond to extensions of the sequences illustrated in Fig. 1,
for which Γ = 4.8, 5.0, 5.3 and 5.4, and the initial particle
position X(0) = −0.35. The total time for the simulations is
t = 4000TF for (a-b) and t = 8000TF for (c-d).

η(x, t) X(t)

FIG. 3. Simulation of particle-wave dynamics with Γ = 5.4,
displayed over a longer time interval than in Fig. 1d. The
wavefield η(x, t) is denoted in blue while the droplet position
X(t) is indicated in red.

bifurcation sequence exhibits a period-doubling bifurca-
tion sequence to chaos, which is canonical for damped,
driven systems [54–57].

The corresponding pilot-wave dynamics of Fig. 2 is
highlighted in Fig. 4. As Γ takes on the values 4.8, 5.0,
5.3 and 5.4, the pilot wave evolves from a steady field,
to a periodic wave to a doubly periodic wave to spatio-
temporal chaos. In what follows, we will illustrate that
the spatio-temporal dynamics can be completely char-
acterized by the DMD decomposition. Indeed, DMD ex-

(a) (b)

x x
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t

tt

(c) (d)

η(x, t) η(x, t)

η(x, t) η(x, t)

FIG. 4. Pilot-wave dynamics corresponding to Fig. 1, where
Γ takes on the values (a) 4.8, (b) 5.0, (c) 5.3 and (d) 5.4,
respectively. The pilot wave field is shown for t ∈ [2000, 2080]
after the droplet behavior has settled onto its long time dy-
namics, as illustrated in Figs. 1 and 2.
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FIG. 5. Low-rank structure of the pilot-wave dynamics cor-
responding to Fig. 4, where Γ takes on the values (a) 4.8, (b)
5.0, (c) 5.3 and (d) 5.4. The singular value decomposition
shows the percentage of variance in each SVD mode, i.e. the
jth mode variance is equal to 100σj/

∑
σk. The variance of

only the first 20 modes are shown, with the magenta modes
depicting the number of modes required for accurate DMD
reconstruction.

ploits the low-rank structure of the wave field as shown in
Fig. 5. Truncation of the SVD modes is typically done in
a heuristic fashion. Often, a prescribed variance, such
as 99%, is sought for the truncation criterion. Here,
the truncated modes selected are prescribed by cross-
validation of the reconstruction error. Thus, modes aside
from the dominant zero background mode, are selected as
complex conjugate pairs until the reconstruction error is
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only marginally improved by the inclusion of additional
modes. Ultimately, the smallest number of modes capa-
ble of accurately reconstructing the solution is sought.
Thus, in Fig. 5, the number of modes used as Γ takes on
the values 4.8, 5.0, 5.3 and 5.4 is one, three, five and nine,
respectively. The addition of more modes in any of these
dynamical regimes has little impact on the reconstruction
error.

III. DYNAMIC MODE DECOMPOSITION

The DMD algorithm can be best understood from the
so-called exact DMD [58], which is simply a least-square
fitting procedure. Specifically, the exact DMD algorithm
seeks a best fit linear operator A that approximately ad-
vances the state of a system, x ∈ Rn, forward in time
according to the linear dynamical system

xk+1 = Axk, (7)

where xk = x(k∆t), and ∆t denotes a fixed time step
that is small enough to resolve the highest frequencies in
the dynamics. Thus, the operator A is an approximation
of the Koopman operator K restricted to a measurement
subspace spanned by direct measurements of the state
x [45, 59]. One can work directly with the measured vari-
ables x, or construct alternative observables via a number
of different methods [59]. Time-delay embeddings, for in-
stance, often offer an improved characterization of non-
linear systems [60–63]. However, the fluidic wave-particle
system considered here is well characterized by a linear
DMD model from measurements of the wavefield alone.
Thus there is no need to seek improved observables for
the system.

Bagheri [64] first highlighted that DMD is particularly
sensitive to the effects of noisy data, with systematic bi-
ases introduced to the eigenvalue distribution [65–68].
The optimized DMD algorithm of Askham and Kutz [47],
which uses a variable projection method for nonlinear
least squares to compute the DMD for unevenly timed
samples, provides the best and optimal performance of
any algorithm currently available. This is because it di-
rectly solves the exponential fitting problem of DMD.
Consider the data matrix

X =

x(t1) x(t2) · · · x(tm)

 . (8)

The optimized DMD algorithm directly solves the expo-
nential fitting problem in order to produce the the matrix
decomposition Thus, the data matrix X may be recon-
structed as

X ≈ Φdiag(b)T(ω)

=

 | |
ϕ1 · · · ϕr

| |


 b1 . . .

br


 e

ω1t1 · · · eω1tm

...
. . .

...
eωrt1 · · · eωrtm

 .(9)

The variable projection method for this approxima-
tion [47] determines the parameters of the matrix com-
ponents. Thus the optimization is formulated as

argminω,Φb
∥X−ΦbT(ω)∥F , (10)

where Φb = Φdiag(b). Thus optimized DMD provides
a direct approximation to the solution (1), which is a
regression to the form of the modal solution expansion
to the vectorized Schrödinger equation. This has been
shown to provide a superior decomposition due to its
ability to optimally suppress bias and handle snapshots
collected at arbitrary times. DMD approximations do
not constrain the DMD eigenvalue to the imaginary axis.
However, the optimized DMD regression can be modi-
fied to fit eigenvalues on the imaginary axis, or to con-
strain eigenvalues to the left half plane for stability [47].
These constraints are not enforced in what follows. More-
over, with statistical bagging, the BOP-DMD algorithm
(bagging, optimized DMD) also provides robust models
with uncertainty quantification in the presence of noise,
corruption and outliers [48]. Physically motivated con-
straints can also be embedded into the DMD architec-
ture [69], further enhancing the algorithm. The disad-
vantage of optimized DMD is that one must solve a non-
linear optimization problem, which can fail to converge.

IV. INFERRING PARTICLE STATISTICS
FROM WAVE DYNAMICS

Durey et al. [38] deduced a simple relation between
the mean pilot-wave field and the droplet statistics for
walker motion in a statistically steady state, either peri-
odic or ergodic. For a particle moving in a bounded re-
gion (for example, when constrained by a central force),
the mean wave field η may be expressed as the convolu-
tion of the wave field of a stationary bouncer ηB and the
droplet’s histogram, µ(x), normalized to have total mass
one. Note that in this instance, where boundary effects
are negligible, ηB is independent of the droplet position
but does depend on the system memory. For a domain
with variable bottom topography relevant for the cavity
considered here, the result was generalized by Durey et
al. [42] through incorporation of the spatial dependence
of the bouncer wave field resulting from the influence of
boundaries. The convolution is thus generalized to an
integral operator, where the kernel ηG(x, y) is given by
the wave field of a bouncer located at position y. In this
case, the statistics of the particle and its pilot wave are
related by [42, Eq. 3.2]:

η(x) =

∫ ∞

−∞
ηG(x, y)µ(y) dy (11)

where η(x) = limN→∞
1
N

∑N
k=1 η(x, tk), is the time-

averaged wave field and tk = kTF . We note that nu-
merical verification of (11) was not presented in [42]. In
panel (e) of Figures 6-9 we compare the time-averaged
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wave field, computed directly from the numerical simula-
tions, with that predicted by expression (11). The agree-
ment is excellent, even for the cases where the phase-
space orbits indicate complex cycles. To be explicit, the
time-averaged wave field is the DMD mode associated
with the zero eigenvalue. Moreover DMD shows that the
inferred particle statistics are expressible in terms of a
very few eigenmodes of the respective spectrum.

We proceed by exploring relation (11) in a novel fash-
ion. Inverting the integral operator allows us to infer
particle-statistics from the mean wave field (as may be
viewed as an effective potential) computed over the time
interval of interest. The particle statistics is thus ob-
tained with no specific knowledge of the particle dynam-
ics, a step that evokes quantum mechanics. Numerical
aspects of the operator inversion are presented in the
Appendix. Panel (f) in Figures 6-9 compare the par-
ticle’s probability density function, as deduced directly
from particle tracking, with that produced by inverting
equation (11). The agreement between the two is satis-
factory in all cases. Thus, without having recorded the
particle dynamics, we obtain a good approximation to
the particle statistics from the time-averaged wave field
η.

V. DYNAMICS AND BIFURCATIONS

The optimized DMD algorithm is used on the wave
data shown in Fig. 4 using a low-rank truncation sug-
gested by Fig. 5. Specifically, as the forcing parameter
Γ takes on the values 4.8, 5.0, 5.3 and 5.4. the low-rank
structure is well-captured by one, three, five and nine
modes respectively. As will be detailed below, the num-
ber of modes used was dictated by the minimum number
of modes required to reproduce an accurate representa-
tion of the dynamics.

Figures 6-9 illustrate the dynamics as the dynamics
transitions from the lowest value of Γ = 4.8 to the high-
est value of Γ = 5.4. Each of the four figures have six
panels which illustate the characteristics dynamics as the
forcing parameter Γ takes on the values 4.8, 5.0, 5.3 and
5.4. Panel (a) shows the wave dynamics after the de-
cay of all transients in the system (Fig. 2). Recall that
the wave-field has been strobed to remove oscillations at
the Faraday frequency. Panel (a) shows the evolution
of the full PDE simulations, while panel (b) shows the
low-rank DMD reconstruction. The accompanying DMD
eigenvalue and DMD eigenfunction are shown in panels
(c) and (d). Note that the eigenvalue at the origin cap-
tures a stationary behavior while the complex conjugate
pairs of eigenfunctions capture the periodic dynamics of
the wavefield. Panel (e) shows the mean pilot-wave field
(solid blue line) and that deduced from Durey’s convolu-
tion theorem [38, 42] (red dashed line). Panel (f) shows
the particle probability distribution as computed directly
from particle tracking (solid blue line) and inferred from
the mean pilot wave by inverting equation (11) (dashed
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FIG. 6. Pilot-wave dynamics for the lowest forcing value con-
sidered, Γ = 4.8. The simulation was run for 4000 Faraday
periods (or droplet bounces). Figure 5 shows that a rank one
decomposition is sufficient to model the steady-state wave dy-
namics. In panel (a), the full PDE evolution is shown while in
panel (b) the one-mode DMD approximation is shown. Panel
(c) shows the DMD eigenvalue while panel (d) shows the DMD
eigenfunction used for reconstruction of the spatio-temporal
dynamics. Note that the DMD eigenvalue is at the origin
which is consistent with the steady-state behavior in this pa-
rameter regime. (e) The time-averaged pilot-wave field calcu-
lated directly (solid blue line) and deduced from the measured
particle probability distribution via (11) (dashed red line). (f)
The particle probability distribution as computed via parti-
cle tracking (solid blue line) and inferred from the mean pilot
wave by inverting equation (11) (dashed red line).

red line).

Note that as the bifurcation sequence progresses, a pe-
riod doubling bifurcation is observed with the genera-
tion of harmonics in the DMD spectra (See Figs 7-8).
Specifically, we note that the simulations reported were
executed just beyond the bifurcation point at which the
period doubling is expected to hold exactly; thus, the
frequencies in normalized units are 0.17 and 0.32. The
period doubling of the pilot wave corroborates the well
characterized period doubling behavior of the droplet it-
self as reported in a number of settings involving orbital
dynamics [12, 36, 39, 40]. Once the forcing is suffi-
ciently large, the complex conjugate pairs are no longer
harmonics, thus producing the observed spatio-temporal
chaos. The overall period doubling route to chaos is thus
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FIG. 7. Pilot-wave dynamics for Γ = 5.0. The simulation was
run for 4000 Faraday periods. Figure 5 shows that a rank
three decomposition is adequate to model the spatio-temporal
periodic behavior observed. In panel (a), the full PDE evo-
lution is shown while in panel (b) the three-mode DMD ap-
proximation is shown. Panel (c) shows the DMD eigenvalues
while panel (d) shows the DMD eigenfunctions used for re-
construction of the spatio-temporal dynamics. (The black
line shows the steady-state background mode of Fig.6). Note
that the DMD eigenvalues are manifest in complex conjugate
pairings typical of an underlying Hopf bifurcation. (e) The
time-averaged pilot-wave field (solid blue line) and that de-
duced from the measured particle probability distribution via
(11) (dashed red line). (f) The particle probability distribu-
tion as computed via particle tracking (solid blue line) and
inferred from the mean pilot wave by inverting equation (11)
(dashed red line).

evident in the simulations. Moreover, as the forcing be-
comes sufficiently large, the DMD spectrum generated
from the optimized DMD regression produces eigenval-
ues with small but non-zero real parts in the spectrum
of (9). This is expected since the regression is not forced
to find eigenvalues constrained to the imaginary axis.

The evolution from Figs. 6 to 9 shows the underly-
ing onset of instability in this pilot-wave hydrodynamic
system. This period-doubling is canonical for damped,
driven systems, from optics to combustion [54–57]. The
optimized DMD algorithm provides a data-driven algo-
rithm that provides a regression to the exponential solu-
tion form (1) commonly used to model physical systems,
from quantum mechanics to electrodynamics. Thus,

(a) (b)

x

x
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x
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0

3
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0

5
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-3

(e) (f) µ(x)η(x)

x x

FIG. 8. Pilot-wave dynamics for Γ = 5.3. The simulation
was run of 8000 Faraday periods. Figure 5 shows that a rank
five decomposition is adequate to model the spatio-temporal
periodic behavior observed. In panel (a), the full PDE evo-
lution is shown while in panel (b) the five-mode DMD ap-
proximation is shown. Panel (c) shows the DMD eigenvalues
while panel (d) shows the DMD eigenfunctions used for recon-
struction of the spatio-temporal wave dynamics. (The black
line shows the steady-state background mode). Note that the
DMD eigenvalues appear in complex conjugate pairs whose
frequencies are approximately harmonics, leading to the sec-
ondary period-doubling dynamics manifest in the pilot wave
field. (e) The time-averaged pilot-wave field as computed di-
rectly (solid blue line) and deduced from the particle proba-
bility distribution via (11) (dashed red line). (f) The parti-
cle probability distribution as computed via particle tracking
(solid blue line) and inferred from the mean pilot wave by
inverting equation (11) (dashed red line).

DMD provides interpretable models and a clear quan-
tification of the evolution of the pilot-wave field accom-
panying the droplet dynamics.

VI. CONCLUSIONS

Particle-wave interactions arise throughout the phys-
ical sciences. The specific example considered here of
the pilot-wave hydrodynamic system has generated sig-
nificant interest due to its connection to quantum me-
chanics. Indeed, pilot-wave hydordynamics has provided
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TABLE I. Comparison of the quantum description of a particle in a one-dimensional well, and the pilot-wave system considered
here.

Quantum mechanics Pilot-wave hydrodynamics
Driving parameter Particle energy Memory parameter γ

Waveform Quantum wave function Ψ Faraday pilot wave h(x, t)
Statistical inference Born’s Rule Integral Operator Inversion [42]

(a) (b)

x
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(e) (f) µ(x)η(x)

x x

FIG. 9. Pilot-wave dynamics for the highest forcing value con-
sidered, Γ = 5.4. The simulation was run for 8000 Faraday
periods. Figure 5 shows that a rank nine decomposition is
adequate to model the spatio-temporal chaotic behavior ob-
served. In panel (a), the full PDE evolution is shown while
in panel (b) the nine-mode DMD approximation is shown.
Panel (c) shows the DMD eigenvalues while panel (d) shows
the DMD eigenfunctions used for reconstruction of the spatio-
temporal wave dynamics. (The black line shows the steady-
state background mode as computed over the limited time
interval shown). Note that the DMD eigenvalues appear in
complex conjugate pairings whose frequencies are incommen-
surate, which is responsible for the relatively complex dynam-
ics. (e) The time-averaged pilot-wave field computed directly
(solid blue line) and that deduced from the measured par-
ticle probability distribution via (11) (dashed red line). (f)
The particle probability distribution as computed via parti-
cle tracking (solid blue line) and inferred from the mean pilot
wave by inverting equation (11) (dashed red line).

a compelling example of well-resolved, classical particle-
wave interactions producing quantum-like statistics. To
date, the particle dynamics has received the bulk of the

mathematical attention, and the emergent statistics have
been seen as a compelling feature of the system that is
not always simply rationalized. Here, we have instead fo-
cused on the evolution of the pilot-wave and the inference
of system statistics. By leveraging the Dynamic mode de-
composition, the pilot-wave dynamics has been shown to
execute a period-doubling cascade typically observed in
damped-driven systems ranging from detonation waves
to mode-locked lasers. DMD provides a low-rank ap-
proximation of the pilot wave dynamics into a set of spa-
tial modes with associated temporal frequencies. The
regression framework of DMD provides a best-fit linear
dynamics model over snapshots of spatio-temporal data.
The DMD characterization of the wave field yields a new
perspective on the walking-droplet problem that forges
valuable links with quantum mechanics. In particular,
it naturally decomposes the wave field into modes of the
form prevalent in standard quantum theory.

Our analysis has shown that as the vibrational accel-
eration is increased progressively, the pilot wave under-
goes a series of Hopf bifurcations in which new modes
at approximately harmonic frequencies emerge, culmi-
nating in a period-doubling cascade to spatio-temporal
chaos. Such a period-doubling route to chaos is a canon-
ical feature of damped-driven systems, which can be re-
lated to the logistic map in which the same canonical
bifurcation structure is evident. The simplicity of the lo-
gistic map belies the rich and complicated behavior that
it captures [70]. Given the diversity of models capable
of producing this same bifurcation structure [54–57], it
is highly suggestive that energy balance considerations
alone can dictate the overall physics in such damped-
driven systems. Specifically, the gain and loss dynamics
in the hydrodynamic pilot-wave system produce a map-
ping between the driving energy input and the damping
losses that generate a period doubling cascade [40].

Our study has demonstrated how classical pilot-wave
dynamics, like quantum mechanics, may yield predictions
for the statistical behavior of particles on the basis of a
wave theory. The map between the quantum and clas-
sical pilot-wave descriptions of particle motion in a one-
dimensional well is presented in Table 1. In quantum
mechanics, the relevant wave form is the wavefunction
Ψ, while in our system it is the pilot wave. In quantum
mechanics, the number of modes excited depends on the
particle energy. In our pilot-wave system, the system
memory plays an analogous role. Note that as either of
these control parameters is increased progressively, a dis-
crete set of new wave modes are introduced. In quantum
mechanics, the waves correspond to the complex wave-
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function Ψ; in our system, to the pilot wave. In quantum
mechanics, the statistical behavior of the particles is pre-
scribed by Born’s Rule: the density of states is prescribed
by the square of the wavefunction |Ψ|2. In our pilot-wave
system, the density of states is inferred from the mean
pilot wave via the operator inversion suggested by the
theorem of Durey et al. [42].

In summary, the DMD algorithm is a regression to
exponential solutions of the form (1). In quantum me-
chanics, the solution (1) is typically constructed using
analytical (or semi-analytical) techniques where appro-
priate boundary and matching conditions are imposed for
a given potential. Since Schrödinger’s equation is linear,
such an eigen-decomposition provides a set of linear basis
modes which can be super-imposed to express any solu-
tion. DMD is a regression directly to the solution form
(1), using variable projection to compute amplitudes bj ,
modes ϕj and frequencies ωj of the exponential solutions
directly from data. In the quantum scenario, one must
know the potential in order to construct the solutions. In
contrast, DMD can be used in a completely data-driven
manner without knowledge of the underlying potential.
Thus DMD is advantageous for scenarios where an un-
known, effective potential determines the underlying dy-
namics. Moreover, it provides the best approximation of
the form (1) even when the underlying dynamics are non-
linear, such as is the case with the hydrodynamic analog
system.
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APPENDIX: CALCULATING THE PARTICLE
PDF FROM THE AVERAGE WAVE FIELD

In this section, we detail the practical steps involved
in computing the particle probability density function
(PDF) from the average wave field. We use the full time
window of the simulated system (3–6) to calculate the
average wave field and the true PDF. Discretizing (11)
on a grid of equi-spaced points {x1, . . . , x128} produces
the system

η = Gµ, (12)

where {µ}i = µ(xi), {η}i = η(xi), and {G}i,j =
ηG(xi, xj). Our goal is now to find a µ that solves (12)
for a given Green’s function matrix G and an observed
mean wave field η. The wave field is observed over a

finite time horizon, so the resulting time average invari-
ably contains noise. As such, the observed average wave
differs from the true average wave so we write

η = ηtrue + ϵ

where ϵ is a vector of noise corresponding to the temporal
truncation error. Therefore, we consider a least-squares
optimization problem to find the particle histogram: we
seek the optimal vector µ∗ defined by

µ⋆ = argmin
µ

∥Gµ− η∥22. (13)

Additionally, we are only interested in solutions that rep-
resent probability density functions. In other words, µ⋆

must be non-negative and have unit mass, specifically,

µ⋆ ≥ 0, ∥∆xµ⋆∥1 = 1 (14)

where ∆x = x2−x1 is the equi-spaced quadrature weight.
The above constraints effectively regularize the problem
(13) and remove unphysical solutions. However, the ma-
trixG is ill-conditioned (with condition number O(1010))
so taking an inverse or repeatedly applying G can be
unreliable. Furthermore, G has a large approximate
nullspace so many candidate PDFs produce small resid-
uals in (13).
We deployed several classical methods [71] to solve

the inverse problem in (13). Ultimately, we found that
the non-negative flexible conjugate-gradient least squares
(NN-FCGLS) method of Gazzola and Wiaux [72] pro-
vided the most robust results. NN-FCGLS is a Krylov
subspace method and is implemented in the IR Tools
package [73]. Although NN-FCGLS does not enforce the
unit mass constraint the computed solutions have mass
very close to 1.
It is important to control the number of iterations exe-

cuted by NN-FCGLS, as illustrated in figure 10. Therein,
we plot the least-squares residual (∥Gµ − η∥2) and
the error between the calculated and the true PDFs
(∥µ−µtrue∥1) when µ is calculated after the given num-
ber of iterations. In practice, the true PDF is unavailable
so we include the PDF error here only for the sake of il-
lustration. We select the iteration number that produces
a PDF satisfying two criteria: it must attain a small
residual error in (13), and it must be sufficiently smooth.
Too few iterations can result in large residuals in (13)
and too many iterations result in a jagged (non-smooth)
solution. Since the data is generated from a continuous
dynamical system, we can exclude solutions that are not
smooth. Chapter 2 of [71] suggests alternative criteria for
selecting the number of iterations of conjugate gradient
methods.
Figure 10 shows three candidate PDFs that we eval-

uate according to these two criteria. The first PDF is
produced after 20 NN-FCGLS iterations. It is smooth,
but has a low least-squares residual so we discard it. The
third PDF is produced after 200 iterations. It has a small
residual, but is jagged, so we discard it. The second PDF
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FIG. 10. The effects of terminating the NN-FCGLS algorithm
at different numbers of iterations. If the algorithm is termi-
nated too early then the least-squares residual in (13) is large;
if the algorithm is terminated too late then the ensuing PDF
is too jagged. The plotted PDFs on the top row are computed
with 20, 80, and 200 iterations respectively.

is produced after 80 iterations. It has a small residual and
is smooth. Accordingly, we select this PDF as our solu-
tion µ⋆. The green curve in figure 10 confirms that this
is a good choice of PDF. Indeed, selecting anywhere be-
tween 70-100 NN-FCGLS iterations would have produced
a satisfactory PDF.

Finally, an advantage of using Krylov methods is that
they can be applied when one has access only to a lin-
ear operator that evaluates matrix-vector products Gv,
as opposed to G itself. Accordingly, the NN-FCGLS
method scales well and will be suitable for higher-
dimensional problems, such as a particle in a circular
corral [19, 42].
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[45] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and
D.S. Henningson. Spectral analysis of nonlinear flows. J.
Fluid Mech., 645:115–127, 2009.

[46] J. N. Kutz. Data-Driven Modeling & Scientific Computa-
tion: Methods for Complex Systems & Big Data. Oxford
University Press, 2013.

[47] Travis Askham and J Nathan Kutz. Variable projec-
tion methods for an optimized dynamic mode decompo-
sition. SIAM Journal on Applied Dynamical Systems,
17(1):380–416, 2018.

[48] Diya Sashidhar and J Nathan Kutz. Bagging, optimized
dynamic mode decomposition (bop-dmd) for robust, sta-
ble forecasting with spatial and temporal uncertainty-
quantification. arXiv preprint arXiv:2107.10878, 2021.

[49] Henning Lange, Steven L Brunton, and Nathan Kutz.
From Fourier to Koopman: Spectral methods for
long-term time series prediction. arXiv preprint
arXiv:2004.00574, 2020.

[50] K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dy-
namic mode decomposition: Boundary condition, Koop-
man, and Fourier analyses. Journal of Nonlinear Science,
22(6):887–915, 2012.

[51] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L.
Proctor. Dynamic Mode Decomposition: Data-Driven
Modeling of Complex Systems. SIAM, 2016.

[52] P. A. Milewski, C. A. Galeano-Rios, A. Nachbin, and
J. W. M. Bush. Faraday pilot-wave dynamics: modelling
and computation. J. Fluid Mech., 778:361, 2015.

[53] P.A. Milewski A. Nachbin and J.W.M. Bush. Tunneling
with a hydrodynamic pilot-wave model. Phys. Rev. Flu.,
2:034801, 2017.

[54] Feng Li, Ping Kong Alexander Wai, and J Nathan Kutz.
Geometrical description of the onset of multi-pulsing in
mode-locked laser cavities. JOSA B, 27(10):2068–2077,
2010.

[55] Kristin M Spaulding, Darryl H Yong, Arnold D Kim,
and J Nathan Kutz. Nonlinear dynamics of mode-locking
optical fiber ring lasers. JOSA B, 19(5):1045–1054, 2002.

[56] Edwin Ding and J Nathan Kutz. Operating regimes,
split-step modeling, and the haus master mode-locking
model. JOSA B, 26(12):2290–2300, 2009.

[57] James Koch, Mitsuru Kurosaka, Carl Knowlen, and
J Nathan Kutz. Multiscale physics of rotating detona-
tion waves: Autosolitons and modulational instabilities.
Physical Review E, 104(2):024210, 2021.

[58] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brun-
ton, and J. N. Kutz. On dynamic mode decomposition:
theory and applications. Journal of Computational Dy-
namics, 1(2):391–421, 2014.

[59] Steven L Brunton, Marko Budǐsić, Eurika Kaiser, and
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