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Abstract

We extend Onsager’s reciprocal relation to systems in a nonequilibrium steady state. While

Onsager’s reciprocal relation concerns the kinetic (Onsager) coefficient, the extended reciprocal

relation concerns violation of the fluctuation response relation (FRR) for mechanical and thermal

perturbations. This extended relation holds at each frequency when the extent of the FRR violation

is expressed in a frequency domain. This non-integral form distinguishes the extended relation from

previous relations expressed by integration over a frequency. To obtain this relation, we consider

one-particle one-dimensional systems described by an overdamped Langevin equation with a force

driving the system away from equilibrium. We assume a special property of the potential in the

system. From this Langevin equation, we obtain the Fokker–Planck (FP) equation describing the

time evolution of the distribution function of the particle. Using the FP equation, we calculate

the responses of the particle velocity and heat current by applying time-dependent perturbations

of the driving force and temperature. We express the extent of the FRR violation in terms of

these responses with time correlation functions and expand them in powers of the FP operator.

This reciprocal relation is valid far from equilibrium. One can also confirm this reciprocal relation

through experiments with systems such as colloidal suspensions because the FRR violation can be

experimentally observed.

I. INTRODUCTION1

Thermal and mechanical perturbations to an equilibrium or nonequilibrium system has a2

cross effect on thermal and mechanical responses of the system. An example of perturbation3

to an equilibrium system is a heat engine because thermal perturbations change mechanical4

variables such as energy [1–3]. For an equilibrium cross effect, there are many relations5

including Onsager’s reciprocal relation [4] and the fluctuation response relation (FRR) [5, 6],6

while nonequilibrium effects are less well studied [7–9]. These studies contrast with those7

on mechanical perturbations because they provide many nonequilibrium relations such as8

the glassy system FRR [10–19], extended FRR [20–28], and reciprocal relation [29, 30].9

Some nonequilibrium studies have also dealt with perturbations other than mechanical ones10

[31–36], although the cross effect is out of the scope of these studies.11

Yamada and Yoshimori have derived a reciprocal relation between thermal and mechani-12
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cal responses by considering the nonequilibrium cross effect of perturbations [7, 8]. When the1

perturbations are applied to a nonequilibrium steady state (NESS) [7, 8, 20–23, 25–32, 37–2

43], neither Onsager’s reciprocal relation nor the FRR is valid. Yamada and Yoshimori3

showed that a reciprocal relation is valid for the extent of the FRR violation in nonequilib-4

rium Brownian systems. Their reciprocal relation is valid for any type of system potential5

and for any driving force strength, which causes the system to deviate from an equilibrium6

state. In addition, their relation can be experimentally confirmed because it consists of7

measurable quantities.8

Yamada and Yoshimori expressed their reciprocal relation by integrating the extent of the9

FRR violation over a frequency [7, 8]. The integral over a frequency shows that the reciprocal10

relation in the time domain does not hold for all time, but only at zero time. Thus, their11

reciprocal relation contrasts with Onsager’s reciprocal relation, which has a non-integral12

form holding at each frequency and for all time. In a special case, they numerically found13

that their relation has a non-integral form when the potential of the system is proportional14

to a cosine [8]. This result, however, has not exactly been proved.15

In this study, we exactly derive a non-integral form of a reciprocal relation valid for the16

extent of the FRR violation by assuming a condition of the potential U(x) of the system.17

This condition is given by U ′′(x) ∝ U(x), where U ′′(x) represents the second derivative of18

U(x). Using the potential, we calculate responses to force and temperature perturbations on19

the basis of the one-dimensional one-particle overdamped Langevin equation with a driving20

force. We do not assume the strength of the force driving the system out of equilibrium; thus,21

our reciprocal relation holds even far from an equilibrium state. In addition, we confirm22

our reciprocal relation for various values of the driving force by numerically calculating the23

extent of the FRR violation.24

II. MAIN RESULTS25

We study a one-particle one-dimensional system described by the overdamped Langevin26

equation27

ẋ(t) = γ−1 [F (x(t)) + ϵ1fp(t) + ξ(t)] , (1)

where x(t) and ẋ(t) are the position and velocity of the particle, γ is the coefficient of friction,28

ϵ1fp(t) represents the time-dependent mechanical perturbation, and we assume a periodic29
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boundary condition of length l. We write the force term F (x) as1

F (x) = f − dU(x)

dx
(2)

with the periodic potential2

U(x+ l) = U(x), (3)

where f is the time-independent driving force shifting the system out of equilibrium. In3

Eq. (1), the Gaussian noise ξ(t) satisfies4

⟨ξ(t)ξ(s)⟩ϵ = 2γ(T + ϵ2Tp(t))δ(t− s), (4)

where T is the time-independent temperature, ϵ2Tp(t) represents the time-dependent thermal5

perturbation, and ⟨· · ·⟩ϵ is the average in the presence of ϵ1fp(t) and ϵ2Tp(t). In this paper,6

we set the Boltzmann constant to unity. The perturbations ϵ1fp(t) and ϵ2Tp(t) are applied7

to the steady–state system at t = tini → −∞.8

In the system described by the Langevin equation, we express the entropy production9

using the currents and the affinities. We define entropy production as [1]10

∆S ≡
∫ t

−∞
ds β(s)⟨Q̇(s)⟩ϵ, (5)

where β(s) ≡ 1/[T + ϵ2Tp(s)] and11

Q̇(t) ≡ (γẋ(t)− ξ(t)) ◦ ẋ(t) (6)

with the Stratonovich product ◦ [48]. We rewrite Eq. (5) in the form [7, 8]12

∆S =
2∑

i=1

∫ t

−∞
dsAi(s)⟨Ji(t)⟩ϵ (7)

=

∫ t

−∞
dsA1(s)⟨ẋ(s)⟩ϵ +

∫ t

−∞
dsA2(s)⟨Q̇(s)⟩ϵ, (8)

where J1(t) ≡ ẋ(t) and J2(t) ≡ Q̇(t) (currents), and A1(t) ≡ (f + ϵ1fp(t))/T and A2(t) ≡13

1/(T + ϵ2Tp(t))−1/T (affinities). To derive Eq. (7) from Eq. (5), we have used ⟨U(x(t))⟩ϵ =14

⟨U(x(−∞))⟩ϵ, which is obtained from the assumptions of fp(s) = Tp(s) = 0 for s > tf and15

of tf ≪ t [7, 8]. After enough time from the time tf when the perturbations are turned off,16

the system reaches the same steady state as that at t = −∞.17

By expanding the currents using the affinities, we define the nonequilibrium kinetic coeffi-18
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cients (Onsager’s coefficients). By expanding ⟨ẋ(s)⟩ϵ and ⟨Q̇(s)⟩ϵ in powers of the perturbed1

parts of the affinities δA1(t) ≡ ϵ1fp(t)/T and δA2(t) ≡ −ϵ2Tp(t)/T
2, we define the nonequi-2

librium kinetic coefficients Lij(t) as3

⟨ẋ(t)⟩ϵ = Jst
1 +

∫ t

−∞
dsL11(t− s)

ϵ1fp(s)

T
−
∫ t

−∞
dsL12(t− s)

ϵ2Tp(s)

T 2
· · · , (9)

⟨Q̇(t)⟩ϵ = Jst
2 +

∫ t

−∞
dsL21(t− s)

ϵ1fp(s)

T
−
∫ t

−∞
dsL22(t− s)

ϵ2Tp(s)

T 2
· · · . (10)

Here, Jst
1 and Jst

2 are the particle velocity and the heat current in the steady state with4

ϵ1 = ϵ2 = 0, respectively. We assume Lij(t) = 0 for t < 0.5

Using the kinetic coefficients, we express the FRR and Onsager’s reciprocal relation in an6

equilibrium state while defining their violation in a nonequilibrium state. To express these7

relations, the time correlation function Cij(t) is defined as8

Cij(t) ≡ ⟨Ji(t)Jj(0)⟩0, (11)

where ⟨· · ·⟩0 is the average in the absence of perturbations. Using Cij(t), the FRR is given9

by [5, 8]10

Cij(t) = Lij(t) (t > 0), (12)

and Onsager’s reciprocal relation is given by [4, 49]11

L12(t) = L21(t). (13)

While Eqs. (12) and (13) are valid for the perturbations applied to the equilibrium state12

(f = 0), they are violated for perturbations applied to the NESS (f ̸= 0). For the NESS, if13

we define the extent of the FRR violation ∆ij(t) as14

∆ij(t) ≡

Cij(t)− Lij(t) (t > 0)

0 (t ≤ 0),
(14)

then the following reciprocal relation holds [7, 8]:15 ∫ ∞

−∞

dω

2π
∆̃12(ω) =

∫ ∞

−∞

dω

2π
∆̃21(ω) (15)

with ∆̃ij(ω) ≡
∫∞
−∞ dt∆ij(t) exp(−iωt).16

In Sec. IV, we will use the extent of the FRR violation in the NESS to prove the following17

reciprocal relation expressed in a non-integral form:18
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∆̃12(ω) = ∆̃21(ω). (16)

To prove Eq. (16), we assume1

d2U(x)

dx2
∝ U(x). (17)

Equation (16) can be expressed in the time domain as2

∆12(t) = ∆21(t), (18)

which holds for all time. Equations (16) and (18) are independent of the strength of the3

driving force f , which shows the extent of deviation from the equilibrium state. In Sec. IV,4

we will prove Eq. (18), which is equivalent to Eq. (16).5

The reciprocal relation Eq. (16) expressed in the non-integral form is equivalent to6

Eq. (18) holding for all time in the time domain. Equation (18) holds for a wider time7

range than previous nonequilibrium relations, which hold only at zero time [7, 8, 20, 21, 30]8

(see the next paragraph). For the property, we need to assume Eq. (17), which is satisfied9

by an experimentally constructible potential used in many studies, as explained later. In10

addition, because we do not need the frequency integration, our relation is less difficult to11

confirm experimentally than those in the integral form.12

Equation (16) contrasts with nonequilibrium relations previously expressed in integral13

forms [7, 8, 20, 21, 30]. Harada and Sasa have expressed the relationship between the heat14

current and FRR violation through an integral identity [20, 21]. Shimizu and Yuge also15

used an integral form to obtain a reciprocal relation between two mechanical perturbations16

[30]. In addition, Yamada and Yoshimori have obtained an integral form of the reciprocal17

relation between the same thermal and mechanical perturbations as those used by this study18

(Eq. (15)) [7, 8]. Onsager’s reciprocal relation differs from these nonequilibrium relations in19

that it can be expressed in a non-integral form.20

To prove that the reciprocal relation holds for all time, we need to assume Eq. (17). The21

potential satisfying Eq. (17) has often been used in theoretical and experimental studies22

[20, 44–47]. The potential can be expressed in the form U(x) = A sin (kx+ c) or U(x) =23

A cos (kx+ c), where A, k, and c are constants independent of x. Such a function has only24

one wavelength; thus, we can consider it to be simplest of the periodic functions assumed in25

Eq. (3). The potential satisfying Eq. (17) can experimentally be constructed and, in fact,26

has been constructed by some experimental studies [44, 45].27
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Equations (16) and (18) can be confirmed by performing experiments on cross effects be-1

tween thermal and mechanical perturbations. In Eq. (16), ∆̃12(ω) and ∆̃21(ω) are measurable2

quantities that can be obtained in experimental systems, such as a colloidal suspension. If3

the potential of the experimental system satisfies Eq. (17), one need not integrate the extent4

of the violation over a frequency. In addition, Eqs. (16) and (18) include responses to both5

thermal and mechanical perturbations. Thus, the nonequilibrium cross effect between these6

perturbations can more deeply be understood though our reciprocal relations.7

III. A BRIEF SKETCH OF THE PROOF8

We will give a brief sketch of the proof before describing its details. We begin the proof9

by expressing the extent of the FRR violation ∆ij(t) using the non-perturbed stationary10

distribution function with the Fokker–Planck (FP) operator. To obtain the expression, we11

derive Lij(t) by expanding the FP equation in powers of ϵ1 and ϵ2 and derive Cij(t) using the12

Furutsu–Novikov–Donsker formula. Combining the derived expressions of Lij(t) and Cij(t),13

we derive the expression of ∆ij(t) on the basis of Eq. (14). Details of the derivation have14

been given by Yamada and Yoshimori [7, 8].15

From this expression of ∆ij(t), we obtain Eq. (18) or ∆21(t)−∆12(t) = 0 by introducing16

the new operator L̂†
1. To define L̂†

1, we divide the conjugate FP operator into two operators:17

one that includes F (x) and one that does not include F (x). The operator L̂†
1 is defined by18

one including F (x). The exponential operators including L̂†
1 give the time dependence of19

∆21(t)−∆12(t).20

Using the operator L̂†
1, we divide ∆21(t)−∆12(t) into two parts. This is an important step21

of the proof and will be explained as follows. First, we expand the exponential operators22

in powers of the conjugate FP operator and count the number of L̂†
1 operators included in23

the expanded term. Next, using this number, we divide the exponential operators into a24

term including an odd number of L̂†
1 operators and a term including an even number. This25

division of the exponential operators allows us to divide ∆21(t)−∆12(t) into two parts.26

Finally, we show that the two divided parts of ∆21(t) − ∆12(t) vanish respectively. We27

can show that one of the parts vanishes without assuming Eq. (17). In contrast, the other28

part vanishes only when Eq. (17) is satisfied. To prove this, the second part is given by the29

x-integration, whose integrand is expressed using the product of F (x) and dF (x)/dx. By30
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integrating the expression by parts, we show that the second part vanishes.1

IV. PROOF2

We express the extent of the FRR violation ∆ij(t) in terms of the Fokker–Planck (FP)3

operator L̂,4

L̂ ≡ −γ−1 ∂

∂x

(
F (x)− T

∂

∂x

)
, (19)

with the stationary distribution function in a non-perturbed system. Using L̂, we describe5

the time development of the distribution function for the particle Pϵ(x, t) using the FP6

equation7

∂Pϵ(x, t)

∂t
= L̂Pϵ(x, t)− γ−1 ∂

∂x

(
ϵ1fp(t)− ϵ2Tp(t)

∂

∂x

)
Pϵ(x, t). (20)

The FP equation (20) is equivalent to the overdamped Langevin equation (1). The non-8

perturbed stationary distribution function Pst(x) is defined as the steady-state equation with9

ϵ1 = ϵ2 = 0:10

∂Pst(x)

∂t
= L̂Pst(x) = 0. (21)

Using the FP operator L̂ with the stationary distribution function Pst(x), we can express11

∆12(t) and ∆21(t) as follows [7, 8]:12

∆12(t) = γ−2

∫ l

0

dxF (x)etL̂Ĵ2Pst(x), (22)

∆21(t) = γ−2

∫ l

0

dxF (x)ĴetL̂ĴPst(x), (23)

where Ĵ is the operator defined as13

Ĵ ≡ F (x)− T
d

dx
. (24)

Using Eqs. (22) and (23), which express ∆12(t) and ∆21(t), respectively, we calculate14

∆21(t)−∆12(t). From Eqs. (22) and (23), we obtain15

∆21(t)−∆12(t) = γ−2

∫ l

0

dxF (x)
[
Ĵ , etL̂

]
ĴPst(x), (25)

where
[
Â, B̂

]
≡ ÂB̂ − B̂Â with the operators Â and B̂. Because the differential equation16

∂

∂t

[
Ĵ , etL̂

]
= L̂

[
Ĵ , etL̂

]
+
[
Ĵ , L̂

]
etL̂ (26)
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provides1 [
Ĵ , etL̂

]
= γ−1

∫ t

0

ds e(t−s)L̂F ′(x)ĴesL̂, (27)

substituting into Eq. (25) yields2

∆21(t)−∆12(t) = γ−3

∫ l

0

dx

∫ t

0

ds F (x)e(t−s)L̂F ′(x)ĴesL̂ĴPst(x), (28)

where F ′(x) = dF (x)/dx. From integrating Eq. (28) by parts with respect to x, we obtain3

∆21(t)−∆12(t) = γ−3

∫ l

0

dx

∫ t

0

ds
[
e(t−s)L̂†

F (x)
]
F ′(x)ĴesL̂ĴPst(x), (29)

where the conjugate operator of L̂ is defined as4

L̂† ≡ γ−1

(
T

d

dx
+ F (x)

)
d

dx
. (30)

In Eq. (29), [Ôg(x)] indicates that an operator Ô operates only on a function g(x) and not5

on functions outside of [· · · ].6

By expanding ∆21(t)−∆12(t) in powers of conjugate operators, we divide ∆21(t)−∆12(t)7

into two parts. To expand ∆21(t)−∆12(t), we rewrite Eq. (29) in the form8

∆21(t)−∆12(t) = γ−3

∫ l

0

dx

∫ t

0

ds
[
e(t−s)L̂†

F (x)
]
F ′(x)

[
esL̂

†⋆
F (x)

]
ĴPst(x) (31)

using the formula (Appendix A)9

ĴesL̂ĴPst(x) =
[
esL̂

†⋆
F (x)

]
ĴPst(x), (32)

where L̂†⋆ = L̂†
0 − L̂†

1 with10

L̂†
0 ≡ γ−1T

d2

dx2
, (33)

L̂†
1 ≡ γ−1F (x)

d

dx
. (34)

In Eq. (31), we expand etL̂
†
F (x) and etL̂

†⋆
F (x) in powers of L̂† and L̂†⋆, respectively, via11

etL̂
†
F (x) =

∞∑
n=0

tn

n!
(L̂†)nF (x), (35)

etL̂
†⋆
F (x) =

∞∑
n=0

tn

n!
(L̂†⋆)nF (x). (36)

Using L̂†⋆ = L̂†
0 − L̂†

1 and L̂† = L̂†
0 + L̂†

1 obtained from Eq. (30) with Eqs. (33) and (34), we12
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obtain1

etL̂
†
F (x) =

∞∑
n=0

tn

n!
(L̂†)nF (x) = go(x, t) + ge(x, t), (37)

etL̂
†⋆
F (x) =

∞∑
n=0

tn

n!
(L̂†⋆)nF (x) = −go(x, t) + ge(x, t), (38)

with2

go(x, t) ≡
1

2

[
etL̂

†
F (x)− etL̂

†⋆
F (x)

]
=

1

2

∞∑
n=0

tn

n!

[
(L̂†

0 + L̂†
1)

nF (x)− (L̂†
0 − L̂†

1)
nF (x)

]
, (39)

ge(x, t) ≡
1

2

[
etL̂

†
F (x) + etL̂

†⋆
F (x)

]
=

1

2

∞∑
n=0

tn

n!

[
(L̂†

0 + L̂†
1)

nF (x) + (L̂†
0 − L̂†

1)
nF (x)

]
, (40)

where L̂†
1 operates on F (x) an odd and even number of times, respectively. By substituting3

Eqs. (37) and (38) into Eq. (31), we can divide Eq. (31) into two parts,4

∆21(t)−∆12(t) = ∆o(t) + ∆e(t), (41)

where5

∆o(t) ≡ −γ−3

∫ l

0

dx

∫ t

0

ds ge(x, t− s)F ′(x)go(x, s)ĴPst(x)

+ γ−3

∫ l

0

dx

∫ t

0

ds go(x, t− s)F ′(x)ge(x, s)ĴPst(x), (42)

∆e(t) ≡ γ−3

∫ l

0

dx

∫ t

0

ds ge(x, t− s)F ′(x)ge(x, s)ĴPst(x)

− γ−3

∫ l

0

dx

∫ t

0

ds go(x, t− s)F ′(x)go(x, s)ĴPst(x). (43)

One of the two divided parts ∆o(t) vanishes. To show this, we transform the variable s6

into τ = t− s in the first term of Eq. (42) to obtain7

∆o(t) =− γ−3

∫ l

0

dx

∫ t

0

dτ ge(x, τ)F
′(x)go(x, t− τ)ĴPst(x)

+ γ−3

∫ l

0

dx

∫ t

0

ds go(x, t− s)F ′(x)ge(x, s)ĴPst(x). (44)

On the right side of Eq. (44), the absolute value of the first term is equivalent to that of the8

second term if τ = s. These terms cancel out, so we obtain9

∆o(t) = 0. (45)
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We have not assumed Eq. (17) to derive Eq. (45).1

The other of the two divided parts, ∆e(t), can be expressed as a product of F (x) and2

F ′(x) assuming Eq. (17). Using3

d2F (x)

dx2
= α [F (x)− f ] (46)

derived from Eq. (17) with U ′(x) = αU(x), we rewrite Eqs. (39) and (40) in the forms4

go(x, t) =
∞∑
p=0

∞∑
q=0

hpq
o (t) [F (x)]p [F ′(x)]

2q+1
, (47)

ge(x, t) =
∞∑
p=0

∞∑
q=0

hpq
e (t) [F (x)]p [F ′(x)]

2q
, (48)

where hpq
o (t) and hpq

e (t) are functions of t independent of x (Appendix B). By substituting5

Eqs. (47) and (48) into Eq. (43), we obtain6

∆e(t) = γ−3

∞∑
p=0

∞∑
q=0

∫ l

0

dx

∫ t

0

ds hpq(t, s) [F (x)]p [F ′(x)]
2q+1

ĴPst(x), (49)

where hpq(t, s) is a function of t and s independent of x.7

Using Eq. (49) expressed in terms of F (x) and F ′(x), we show that ∆e(t) vanishes. We8

rewrite the integral part of Eq. (49), using [F (x)]pF ′(x) = (p+ 1)−1d([F (x)]p+1)/dx, in the9

form10

∫ l

0

dx [F (x)]p [F (x)′]
2q+1

ĴPst(x) =
1

p+ 1

∫ l

0

dx
d[F (x)]p+1

dx

[
dF (x)

dx

]2q
ĴPst(x). (50)

Using Eqs. (21) and (46), integrating Eq. (50) by parts yields11

1

p+ 1

∫ l

0

dx
d[F (x)]p+1

dx

[
dF (x)

dx

]2q
ĴPst(x) = a0

∫ l

0

dx [F (x)]p+2

[
dF (x)

dx

]2q−1

ĴPst(x)

+ a1

∫ l

0

dx [F (x)]p+1

[
dF (x)

dx

]2q−1

ĴPst(x),

(51)

where a0 and a1 are x-independent constants determined by p, q, and α. By integrating12

Eq. (51) p times by parts, we obtain13
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∫ l

0

dx [F (x)]p
[
dF (x)

dx

]2q+1

ĴPst(x) =

q∑
i=0

Ci

∫ l

0

dx [F (x)]p+q+i

[
dF (x)

dx

]
ĴPst(x)

=

q∑
i=0

Ci

p+ q + i+ 1

∫ l

0

dx
d[F (x)]p+q+i+1

dx
ĴPst(x)

= −
q∑

i=0

Ci

p+ q + i+ 1

∫ l

0

dx [F (x)]p+q+i+1 d

dx
ĴPst(x)

= 0, (52)

where Ci is a constant expressed in terms of a0 and a1. Because Eq. (52) shows1

∆e(t) = 0, (53)

we finally obtain Eq. (18) from Eqs. (45) and (53) with Eq. (41).2

V. NUMERICAL CALCULATIONS3

We demonstrate the reciprocal relation derived in the previous section by numerically4

calculating ∆12(t) and ∆21(t) using the following form of the potential U(x):5

U(x)

T
= cos

2πx

l
+ a cos

4πx

l
, (54)

where a is a parameter independent of x. The potential given by Eq. (54) does not satisfy6

the condition of Eq. (17) for a ̸= 0, but satisfies the condition for a = 0. To calculate ∆ij(t),7

we convert all quantities to dimensionless forms using the time unit γT−1l2, energy T , and8

length l.9

We numerically calculate ∆12(t) and ∆21(t) on the basis of Eqs. (22) and (23) using the10

FP equation [7, 8]. Because Eqs. (22) and (23) do not include the perturbations ϵ1fp(t) and11

ϵ2Tp(t), the calculations do not need the explicit forms of the perturbations. Equations (22)12

and (23) are represented by13

∆12(t) = γ−2

∫ l

0

dxF (x)P12(x, t), (55)

∆21(t) = γ−2

∫ l

0

dxF (x)ĴP21(x, t), (56)

where P12(x, t) and P21(x, t) are given by P12(x, t) = etL̂Ĵ2Pst(x) and P21(x, t) = etL̂ĴPst(x).14

We obtain the distribution functions P12(x, t) and P21(x, t) by solving Eq. (20) with15

12
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FIG. 1. Time dependence of the extent of the FRR violation ∆12(t) or ∆21(t) (Eq. (14)) calculated

using the potential in Eq. (54) and the driving forces f = 0, 0.5, and 1 with a = 0. We use a

one-particle one-dimensional model described by a driving overdamped Langevin equation. We

convert all quantities into dimensionless forms using the time unit γT−1l2, energy T , and length l,

where γ is the friction coefficient.

ϵ1 = ϵ2 = 0 under the initial conditions P12(x, 0) = Ĵ2Pst(x) and P21(x, 0) = ĴPst(x).1

We numerically solve the FP equation with the Euler method and spatial finite difference2

method, setting the time and length steps at ∆t = 6.25 × 10−7 and ∆x = 1.25 × 10−3,3

respectively.4

First, we numerically confirm that Eq. (18) is valid using a range of values of the driving5

force f , which shows the extent of deviation from an equilibrium state (Fig. 1). Because6

Eq. (18) is valid at a = 0 in Eq. (54), we calculate ∆ij(t) for the potential at a = 0. For7

f = 0, ∆12(t) = ∆21(t) = 0 because the FRR is valid in the equilibrium state. We confirm8

∆12(t) = ∆21(t) for all the calculated values. This result shows that our reciprocal relation9

is valid in some nonequilibrium states.10

Second, we calculate ∆12(t) −∆21(t) when the potential U(x) does not satisfy Eq. (17)11

(Fig. 2). At t = 0, ∆12(t) − ∆21(t) = 0 for all values of a, as Yamada and Yoshimori12

showed [7, 8]. When t increases from 0, ∆12(t)−∆21(t) increases from 0 to a positive value13

and reaches a peak between t = 0.02 and 0.03. The peak value increases with a except14

for a = 1.0, where the peak is lower than at a = 0.75. In contrast, for a longer time,15

∆12(t)−∆21(t) is larger at a = 1.0 than at a = 0.75.16
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FIG. 2. Time dependence of the difference in extent of the FRR violations ∆12(t) and ∆21(t)

(Eq. (14)) calculated using the potential in Eq. (54) for five values of the parameter a. We use

a one-particle one-dimensional model described by an overdamped Langevin equation with the

driving force f = 1.0. We convert all quantities into dimensionless forms using the time unit

γT−1l2, energy T , and length l, where γ is the friction coefficient.

VI. DISCUSSION1

We have exactly proved the reciprocal relations of Eqs. (16) and (18) assuming Eq. (17).2

We now discuss why Eq. (17) was necessary for deriving Eqs. (16) and (18). Equation (17)3

has been used to show ∆e(t) = 0, where ∆e(t) is given by the division of ∆21(t) − ∆12(t)4

into ∆o(t) and ∆e(t). To show ∆e(t) = 0, we have to express go(x, t) and ge(x, t) in the5

forms of Eqs. (47) and (48), where any higher derivative of F (x) is expressed by F (x) and6

F ′(x). The expressions of the higher derivative can be obtained using Eq. (46) derived from7

Eq. (17) and have also been applied to Eq. (51).8

In the following, we discuss whether our result can be transferred to non-equilibrium9

systems other than the systems considered in this study. First, we discuss the transferability10

to systems where the potential does not satisfy Eq. (17). Because we can prove ∆o(t) = 011

without Eq. (17), Eqs. (16) and (18) are valid for systems with ∆e(t) = 0. Thus, even if12

Eq. (17) is not satisfied, we can obtain ∆21(t) − ∆12(t) = 0, for instance, in the case of13

ge(x, t) = go(x, t) in Eq. (43). Because it is not clear whether such a system exits, we have14

to study the possibility in future work.15

Next, we discuss the transferability to the underdamped Langevin case, where we have16

14



to consider the particle momentum p as well as the position x. Because of the consideration1

of p, we cannot divide ∆21(t)−∆12(t) in the same way as in the overdamped case. Even if2

we can divide it in another way, we cannot show that the two divided parts vanish. This is3

because considering p does not allow us to obtain equations valid in the overdamped case.4

We obtain ∆o(t) = 0 from Eq. (31) and ∆e(t) = 0 from Eqs. (47) and (48), but we cannot5

obtain such equations in the underdamped case.6

Finally, we discuss the transferability to a many-particle three-dimensional system de-7

scribed by the overdamped Langevin equation [8]. In this case, we assume8

d2U({xi})
dx2

i

∝ U({xi}), (57)

where U({xi}) is the potential including particle interaction terms, xi is the position of9

particle i, and {xi} = x1,x2, . . .. In this system, we can divide ∆21(t) − ∆12(t) in the10

same way as in the one-particle one-dimensional system, so we obtain ∆o(t) and ∆e(t).11

Nevertheless, we cannot show ∆o(t) = 0 because Eq. (31) is not valid in this system. In12

addition, we cannot show ∆e(t) = 0 even using Eq. (57) because it is not possible to obtain13

equations similar to Eqs. (47) and (48).14

VII. CONCLUSION15

In this work, we have exactly derived the reciprocal relation (16), which is valid in the16

NESS, from an overdamped Langevin equation assuming Eq. (17). Our reciprocal relation17

can be expressed in a non-integral form with respect to the frequency, in contrast to other18

relations derived by previous studies. This relation is valid far from an equilibrium state19

because the derivation of the relation is independent of the driving force f representing the20

extent of the nonequilibrium state. Because our reciprocal relation is expressed only with21

measurable quantities, one can verify its validity through experiments on systems such as a22

colloidal suspension. Our reciprocal relation gives deeper understanding of the cross effect23

between thermal and mechanical perturbations to the NESS.24

Appendix A: Derivation of Eq. (32)25

In this appendix, we derive Eq. (32), by expanding esL̂ in powers of L̂. We expand esL̂26

15



on the left side of Eq. (32) to obtain1

ĴesL̂ĴPst(x) = Ĵ

∞∑
n=0

sn

n!
L̂nĴPst(x). (A1)

Substituting Eqs. (19) and (24) into Eq. (A1), we obtain2

Ĵ
∞∑
n=0

sn

n!
L̂nĴPst(x) = Ĵ

∞∑
n=0

sn

n!

(
−γ−1 d

dx
Ĵ

)n

ĴPst(x). (A2)

We rewrite the right side of Eq. (A2) in the form3

Ĵ
∞∑
n=0

sn

n!

(
−γ−1 d

dx
Ĵ

)n

ĴPst(x) =
∞∑
n=0

sn

n!

(
−γ−1Ĵ

d

dx

)n

Ĵ2Pst(x). (A3)

From Eq. (A3) with L̂†⋆ = −γ−1Ĵd/dx and4

esL̂
†⋆
=

∞∑
n=0

sn

n!

(
L̂†⋆

)n

, (A4)

we obtain5

ĴesL̂ĴPst(x) = esL̂
†⋆
Ĵ2Pst(x). (A5)

We can derive Eq. (32) from Eq. (A5), obtained by expanding esL̂, using the property of6

the stationary distribution function Pst(x). Because Eq. (24) leads to the property7

d

dx
ĴPst(x) = 0, (A6)

we obtain8

esL̂
†⋆
Ĵ2Pst(x) = esL̂

†⋆
F (x)ĴPst(x). (A7)

By applying the operator esL̂
†⋆
to F (x)ĴPst(x) in Eq. (A7) and using L̂†⋆ = −γ−1Ĵd/dx and9

Eq. (A6), we rewrite the right side of Eq. (A7) in the form10

esL̂
†⋆
F (x)ĴPst(x) =

[
esL̂

†⋆
F (x)

]
ĴPst(x). (A8)

From Eqs. (A5), (A7), and (A8), we finally obtain Eq. (32).11

Appendix B: Derivation of Eqs. (47) and (48)12

Using Eq. (46), we obtain13

16



L̂†
1[F (x)]m[F ′(x)]n

= c1[F (x)]m[F ′(x)]n+1 + c2[F (x)]m+2[F ′(x)]n−1 + c3[F (x)]m+1[F ′(x)]n−1 (m ≥ 0, n ≥ 1),

(B1)

L̂†
0[F (x)]m[F ′(x)]n

= c′1[F (x)]m+2[F ′(x)]n−2 + c′2[F (x)]m[F ′(x)]n + c′3[F (x)]m−2[F ′(x)]n+2

+ c′4[F (x)]m+1[F ′(x)]n−2 + c′5[F (x)]m−1[F ′(x)]n + c′6[F (x)]m[F ′(x)]n−2 (m ≥ 2, n ≥ 2),

(B2)

where m and n are integers, and ci and c′i are constants independent of x. Equation (B1)1

shows that L̂†
1 changes the exponent of F ′(x) into an odd number when n is even. When n2

is odd, L̂†
1 changes the exponent into an even number. In contrast, we find from Eq. (B2)3

that L̂†
0 does not change the parity of the exponent of F ′(x). Because the same situations4

are valid for n < 2 or m < 2, we can rewrite Eqs. (39) and (40) in the forms of Eqs. (47)5

and (48).6
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