ars CHGRUS

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Social network structure and the spread of complex
contagions from a population genetics perspective
Julian Kates-Harbeck and Michael M. Desai
Phys. Rev. E 108, 024306 — Published 15 August 2023
DOI: 10.1103/PhysRevE.108.024306


https://dx.doi.org/10.1103/PhysRevE.108.024306

Social network structure and the spread of complex contagions from a population genetics

perspective

Julian Kates-Harbeck
Department of Physics,

Michael M. Desai*
Department of Organismic and Evolutionary Biology,
Harvard University, Cambridge MA 02138, USA
(Dated: July 16, 2023)

Ideas, behaviors, and opinions spread through social networks. If the probability of spreading to a new indi-
vidual is a non-linear function of the fraction of the individuals’ affected neighbors, such a spreading process
becomes a “complex contagion”. This non-linearity does not typically appear with physically spreading infec-
tions, but instead can emerge when the concept that is spreading is subject to game theoretical considerations
(e.g. for choices of strategy or behavior) or psychological effects such as social reinforcement and other forms
of peer influence (e.g. for ideas, preferences, or opinions). Here we study how the stochastic dynamics of such
complex contagions are affected by the underlying network structure. Motivated by simulations of complex
contagions on real social networks, we present a framework for analyzing the statistics of contagions with ar-
bitrary non-linear adoption probabilities based on the mathematical tools of population genetics. The central
idea is to use an effective lower-dimensional diffusion process to approximate the statistics of the contagion.
This leads to a tradeoff between the effects of ’selection” (microscopic tendencies for an idea to spread or die
out), random drift, and network structure. Our framework illustrates intuitively several key properties of com-
plex contagions: stronger community structure and network sparsity can significantly enhance the spread, while
broad degree distributions dampen the effect of selection compared to random drift. Finally, we show that some
structural features can exhibit critical values that demarcate regimes where global contagions become possible
for networks of arbitrary size. Our results draw parallels between the competition of genes in a population and
memes in a world of minds and ideas. Our tools provide insight into the spread of information, behaviors, and
ideas via social influence, and highlight the role of macroscopic network structure in determining their fate.

I. Introduction B. Relationship with past work

A. Background

Individuals on a social network are subject to influence by
their neighbors, affecting their adoption of information [1],
ideas [2], and behaviors [3]. The likelihood that a given indi-
vidual adopts a new idea depends on how many of her neigh-
bors have adopted the idea already. For physically spreading
infections, as encountered in traditional epidemiology [4], this
dependence is typically linear and leads to a “simple conta-
gion”. By contrast, social reinforcement and other forms of
peer influence [5, 6], as well as game theoretical considera-
tions of behavior [7], can result in a non-linear dependence of
an individual’s likelihood of adoption on her neighbors’ status
[5, 8-16]. A spreading process with such a non-linear likeli-
hood of adoption is a “complex contagion”, whose properties
can differ significantly from simple contagions [17, 18]. The
spread of complex contagions is related intimately to the in-
terplay of network structure and adoption patterns, relying on
locally high prevalence and multiple peer influence in order to
spread.
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The empirical evidence for complex contagions, includ-
ing the propagation of online contagions, is accumulating
[1,5, 19-23] and several structural features influencing spread
have been identified [18, 23-26]. Beyond the adoption char-
acteristics and network structure studied here, other factors in-
fluencing spread likely include individual heterogeneity, per-
sonal characteristics, strategic or reactive adoption, as well as
global influences such as mass media [21, 27-29].

Threshold models [30] provide a simple and elegant way
to capture non-linear adoption, which can be further general-
ized with dose response [31, 32] and arbitrary adoption [11]
mechanisms. These models provide insights into how hetero-
geneous adoption thresholds [8, 9] and the form of adoption
functions interact with node degree on random networks. As-
suming locally random tree-like networks (i.e. the absence
of significant clustering), general conditions for global spread
can be derived [9, 33]. In some cases, the relevant micro-
parameters of the model, such as the probability of adoption
given one or two exposures, can be empirically measured to
calibrate the model [32]. These models do not address the
temporal dynamics of the contagion or connect its behavior
to specific structural properties of the underlying network be-
yond the degree distributions. Moreover, these approaches do
not study the dynamics and statistics of “small” contagions
that never reach macroscopic size, and do not apply to com-
munity based or highly clustered networks. They do illustrate
a subtle interaction between threshold level and degree hetero-



geneity that we build on in this paper: when an individual’s
adoption threshold is a function of the fraction (as opposed to
the absolute number) of affected neighbors, low degree nodes
are easily susceptible to be converted, but pass on the conta-
gion to fewer neighbors. By contrast, high degree nodes are
harder to activate but pass it on more widely. For a fixed aver-
age degree, it is therefore not immediately clear what the net
effect of a wider degree distribution will be on the spread of
such contagions.

The competing effects of clustering and “long ties” on com-
plex contagions have been studied theoretically [6, 7, 13, 14]
and empirically [34]. Game theoretic and threshold models
have been used successfully to illustrate the key insight - sup-
ported by recent empirical work [35, 36] - that clustering and
communities can accelerate the spread of a complex contagion
by allowing it to quickly reach locally high levels and spread
one community at a time [7, 37], whereas simple contagions
converge faster for high-dimensional networks dominated by
“long ties” [14]. Incidentally, similar insights emerge in the
context of synergistic co-infections, whose coupled epidemi-
ological dynamics also exhibit nonlinearities and thus com-
plex contagion properties [16]. These theoretical studies use
approaches focused on deterministic mean field dynamics and
convergence times, and are restricted to the regime of strong
positive selection (i.e. where convergence is essentially guar-
anteed) [7].

C. Overview of contributions

The effects of general network features on the stochastic
dynamics of complex contagions of a range of sizes (both the
statistical distribution of rare events as well as the probabili-
ties of global cascades) remain poorly characterized. Here we
a present a framework based on mathematical tools and intu-
itions from population genetics to analyze these stochastic dy-
namics for arbitrary forms of complex contagions, and apply
our model to understand the effects of key network properties
including sparsity, community structure, and degree distribu-
tions. While the influence of these structural features has been
illuminated previously [17, 18], our approach builds on and
supplements this prior work.

Our method uses the language of population genetics to
provide intuitive derivations of key properties of complex con-
tagions and their dependence on the above network features.
This approach allows us to analyze contagion dynamics at all
scales of a network, from the local neighborhood to the com-
munity to the global scale, taking into account the interplay of
“selection” (i.e. the local tendency for an idea to spread), dif-
fusion (the random fluctuations in spread due to the stochastic
nature of the process), and network structure. We study the
contagions’ full stochastic dynamics subject to arbitrary non-
linear adoption patterns and selection regimes, and we formu-
late network conditions under which complex contagions can
reach global scales.

A key idea is to use targeted approximations to derive an
effective lower dimensional diffusion process that is (approxi-
mately) obeyed by the true contagion on the network. This ap-

proach highlights parallels between the competitions of genes
in a population and the competition of memes in a world of
minds and ideas. While our method is not necessarily appli-
cable to arbitrary network structures, it provides insights in a
variety of cases.

II. Our model

In particular, we study here the fate and adoption of a newly
arising idea on a network, giving rise to a complex contagion.
We model this process in the framework of evolutionary game
theory by considering individuals as the nodes of an undi-
rected graph, with edges representing interaction and com-
munication patterns (Figure 1 (a,b)). We introduce the new
idea as a single randomly chosen type B node on a network
in which all other nodes are initially of type A. Both types
spread by contagion. In particular, we assume that individu-
als update their type as a continuous stochastic process, where
the rate of switching depends on the fraction of neighbors of
a given type: a type A node becomes type B at rate

ri=y[l+ fiy)]

and type B nodes become type A at rate

re=[1-yl[1+ f2(y)] ,

where y is the local fraction of type B neighbors at a given
node. For a complex contagion, fi /5 are functions of y, while
they are constants for simple contagions [4, 38—40]. Our main
aim is to understand how successfully the new idea spreads
through the network by calculating how the overall fraction of
type B individuals, % (t), changes over time. In a strict sense,
we use ¢ to refer to the overall (global) fraction of type B indi-
viduals and y for the local fraction as seen by a given individ-
ual. When there is no possibility of ambiguity we will simply
use y in both cases for ease of notation.

For concreteness we focus primarily on the simple illus-
trative case where f1(y) = ay and f3(y) = B, with posi-
tive a and . This models “positive frequency dependence”
[41], where an idea is unpersuasive while rare but becomes
more attractive as it is more widely adopted [6, 7, 13]. This
is a natural assumption in many contexts (e.g. political views,
preferences, games, or communication habits). However, we
note that some ideas may be positively selected at all frequen-
cies (i.e. negative 3), in which case they will always tend to
spread, and negative frequency dependence (i.e. negative )
may also be relevant in other scenarios (e.g. fashion trends
or baby naming). We further assume that o, 5 < 1, which
implies that the strength of selection is relatively weak, such
that a preference for one or the other type only emerges on a
collective population level (in the opposite case, the idea will
tend to very quickly either spread or be eliminated).

To some readers this model may appear reminiscent of SIS
or SIR models in epidemiology [42], where the rate at which
a susceptible individual becomes infected is often assumed to
be proportional to the number of infected neighbors. Indeed,
these models are encompassed by our framework. However,



in SIS or SIR models the rate of recovery of an infected in-
dividual is generally not subject to neighbor influence, while
the rate of spread is linear in the neighbors. This leads to
simple contagion dynamics (with “infected” corresponding to
type B) for low values of ¢ and a diverging negative frequency
dependent selection for large values of ¢ (see the section “Re-
lation to epidemiological models” in [43]). Therefore, small
epidemics are well described with simple contagions, with the
additional trivial consequence that large epidemics become
exponentially unlikely. We do not study this case here. In-
stead, our paper is focused on the rich behavior resulting from
positive frequency dependence once a sufficient prevalence
is reached. In this case, dynamics for low ¥ are not well de-
scribed with simple contagion models, considerations of so-
cial proof [5, 19] and evolutionary game theory are relevant,
and the conclusions and intuitions gained from the model can
differ substantially from those implied by epidemic models
[7].

In Figure 1 (c-e), we explore how the spread of such a com-
plex contagion is influenced by network structure. For this
purpose, we consider the Facebook network from the Stan-
ford Large Network Dataset collection [49]. We construct a
sequence of networks with variable clustering but unchanged

J

degree sequence by randomly swapping pairs of edges, and
study contagions on this set of graphs. We find that the spread
of simple contagions is largely insensitive to network struc-
ture (Figure 1 (c¢)). By contrast, for complex contagions there
is a critical level of clustering required to allow the contagion
to spread globally. Below this level, the contagion becomes
exponentially unlikely to fix across large networks. This can
be seen in Figure 1 (¢) which shows that the fixation probabil-
ity of the complex contagion is comparable to a simple con-
tagion with negative selection when clustering is low but be-
haves like a simple contagion with positive selection as clus-
tering gets sufficiently high. We also find that the contagion
fixes one community at a time when clustering is sufficiently
high (Figure 1 (d)), but for moderate or low clustering values,
all communities move through y space more or less in unison
(Figure 1 (e)).

A. Diffusion approximation

To quantify and analyze these effects, we begin by calculat-
ing the global rate at which type A individuals become type B.
In our model of contagion dynamics, this is

Rateap = N(1—§)Ealr1(y)] = N1 — ) Ealy(1 + f1(y))] = N1 —§) (Ealy] + aEaly?]) - (1)

Here we use F 4[] to denote the expectation value induced by
the distribution of local y as seen by a randomly chosen type A
individual, and equivalently for type B. The N(1 — ) term
is the number of type A individuals, and the expectation value
gives the mean rate r; as averaged over all of these type A
nodes. Through E4[rq(y)], the rate crucially depends on the
distribution of local y seen by type A individuals, which will
depend on the network structure and the distribution of type B
individuals on the network. The rate of the reverse process
Rateg_, o has an equivalent form:

Ratep ;4 = NyER[(1 —y)(1 + f2(y)] - 2

These transition rates define the stochastic process governing
y(t), i.e. the total amount of type B individuals on the graph
as a function of time. We will use the rates to develop an
effective diffusion process describing its behavior.

Let us consider ¢g, the net change in 4 during some small
time interval 6¢. The value of §% is determined by the differ-
ence between A — B and B — A transitions. The numbers
of each of these transition events during a small time interval
0t can be viewed as independent poisson distributed random
variables with rates as given by Rateg;a_, /5. Hence, the mean
and variance of g have the form

1
E[6y] = a(y)ot = i (Ratea_,p — Rateg_,4) 0t

1
Varldy] = b(y)d = e (Ratey—,p + Rateg_,5) 6t .

(

For large IV, we can treat  as a continuous variable between 0
and 1. The evolution of § can then be described by a Fokker-
Planck equation [50]

of(g.t) _ 0
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2
3307 ODI@.0) O

(a(y)f(@,t) +

where a(y) captures selection and b(g) captures diffusion
strength. The process has absorbing boundary conditions at
y = 0,1 (since a population with all equal types will remain
unchanged). We can summarize the behavior of this process
with a selection pressure s, which we define in the standard
way from population genetics [50],

2a(y) 2 (Ratea_,p — Rateg_a) @
s= =
Nb(g) I{ateA—)B + RateA_,B

This selection pressure determines whether the contagion will
on average tend to grow (s > 0) or shrink (s < 0) and its
magnitude measures the strength of selection as compared to
the influence of random drift.

The rates from equation Eq. (1) or equivalently the selection
strength s() from Eq. (4) define an effective diffusion process
on the space of g, as shown in Eq. (3). The properties of ()
according to this process will mimic the properties of the true
evolution of ¢(¢) on the network.

Thus, the key task for understanding the dynamics of the
population is to find the local distribution of y seen by in-
dividuals of different types, which allows us to compute the
expectation values in Eq. (1) and hence the effective selection



strength s() from Eq. (4). How the individuals are distributed
among the network (and thus the local distribution of y) will
depend on the network structure and the form of the functions
J1/2(y). If the expectation values in Eq. (1) depend on addi-
tional degrees of freedom beyond the global value ¥, then a
higher-dimensional diffusion process (tracking more than just
the global value § may be necessary to model the full dynam-
ics on the graph accurately.

B. Selection regimes

In a well-mixed population, where every node is connected
to all other nodes, all individuals see the same global value of
y = 4. Thus E4[y?] = %, and hence

s(y) ~ ay — 8 ®)

in the limit where o, 5 < 1. This simple linearly increasing
form of s(y) (omitting the bar for the rest of this section, since
y = ¥) is consistent with our model of an idea that is nega-
tively selected when rare but that becomes more popular as it
increases in frequency. The critical threshold frequency above
which the idea becomes positively selected is y = y,, = g In
addition to this frequency dependence of s, the effect of ran-
dom fluctuations is another key ingredient to understanding
the behavior of the process. Standard results from population
genetics [50] imply that whenever the number of type B indi-
vidual is small compared to the inverse of the selection pres-
sure (i.e. when Ny|s| < 1, in the illustrative case of constant
s), the random stochasticity of the process dominates over the
effects of selection, and the frequency of the idea is dominated
by random “genetic drift.” By contrast, when Ny|s| > 1, se-
lection dominates over random drift, and the idea will tend to
deterministically spread or be eliminated from the population.

We define Pycqcn(y) as the probability that the contagion
reaches a given value of at least y. This function captures the
ability of the new idea to invade the population and describes
the statistical behavior of the process at both small and large
values of y. The selection regimes described above then define
various different qualitative behaviors of P,.cqcn(y). When
drift dominates, Preqcn(y) falls off as N%/ as in a neutral ran-
dom walk. In regimes of positive selection, a contagion reach-
ing a given value of y is almost certain to reach continuously
higher values of y, SO Prcqcn 1S approximately constant. By
contrast, when negative selection dominates, the contagion
becomes exponentially less likely to reach ever higher values
of 4, s0 Prcqcn falls off exponentially.

In a complex contagion, where s is a function of y, the
process can encounter various such regimes of selection, as
illustrated in figure Figure 2 (a-b). In our example where
s(y) = ay — B, the contagion begins with a neutral regime
at low y. Depending on the total network size NV, the con-
tagion may then encounter a regime of negative selection be-
fore eventually reaching the regime of positive selection above
frequency y,, (with another regime of neutral selection in be-
tween where s(y) ~ 0). If the initial regime of negative se-
lection is not too “strong”, a contagion can “tunnel through” it
by random chance, then encounter positive selection and fix.

In the simple example of fixed selection, the boundaries be-
tween the regimes of selection are defined approximately by
the points at which Ny|s| = 1. In the more general frequency
dependent case, we can use diffusion theory to generalize this
condition (see “Well mixed populations” and “Working with
NS(y)” in [43] for details). By placing a fictitious absorbing
boundary at a given value of y, we can use the solution for
the fixation probability of a diffusion process like Eq. (3) with
arbitrary a(y) and b(y) functions [50] to derive

y
Preach(y)il X / eiNS(z)dZ . (6)

0
with S(y) = [/ 12\57(’2) = [ s(z)dz. By inspecting

Eq. (6) and notlng the exponentlal dependence, we can pro-
vide the generalized condition for transitioning between se-
lection regimes:

NIS(y) = Sy)l =1, (M
where y* is the argument of the most negative value of S(z)
reached for any value « < y. This elegantly generalizes the
constant selection condition Ny|s| = 1. The intuition behind
the new condition is as follows. Consider the ratio

Preach(y) _ fé]* e_NS(Z)dZ
Preach (y*) foy B_NS(Z)CZZ

which captures the scaling of P,...;, beyond the point y*.
How this quantity scales with y depends how the value of
NS(y) compares to N.S(y*). Because of the exponential, the
largest value of the integrand dominates each integral. Thus,
if NS(y) > NS(y*), the value of the integrand e~ N5®)
in the denominator is negligible for y > y* and Prcacn(y)
does not drop with y and instead remains roughly constant in
y (positive selection). If NS(y) < NS(y*) (which implies
N S(y) is dropping with increasing y, otherwise there would
be a different y*), the integral in the denominator is dominated
by the current value of N.S(y) and Preqcr(y) drops exponen-
tially (negative selection). Finally, if NS(y) ~ NS(y*), the
denominator grows roughly linearly with y (neutral selection).
Therefore, Eq. (7) defines transition points between the vari-
ous selection regimes, where S(y fo z)dz captures the
integrated effect of selection up t0 y. We 111ustrate the re-
sulting selection regimes for our case of s(y) = ay — ( in
Supplementary Fig. 1 in [43]. Selection regimes are a key
feature of a given contagion process as they allow an immedi-
ate high level description of its behavior.

III. Random regular graphs
A. Approach

To gain insight into the effect of various aspects of net-
work structure on the spread of complex contagions, we now
apply the ideas of effective diffusion processes and selection
regimes to contagions on several archetypical families of net-
works. One simple but critical aspect of network structure is



that not all nodes are connected. To focus on the effects of
this sparsity, we consider the spread of a contagion on a ran-
dom regular graph, where each node is connected at random
to exactly k other nodes [51]. In such a network, each node
will no longer see the “global” value ¥, but rather some local
value that reflects the fraction of its neighbors that happen to
be type B. In principle, determining these local values of y is
a complicated problem. However, because the network is ran-
dom, we expect no strong locality in how type B individuals
are distributed, so the neighbors of each individual form an ap-
proximately random sample of size k of the whole population.
This no-locality (or “annealed”) [52, 53] approximation is re-
lated to the assumption that a large randomly connected net-
work initially looks “locally tree-like” [9, 33] for a spreading
contagion, but specifically ignores the fact that type B nodes
are slightly more likely than chance to be connected to one an-
other (this is because they can in reality only initially appear
as a neighbor of another type B individual). The assumption
of no locality contrasts with the case of a spatial network (e.g.
a square lattice) where locality is fundamental to the network
geometry (in this case the contagion becomes a front prop-
agation problem and must be treated differently [54]). We
confirm the accuracy of the no-locality assumption in Supple-
mentary Fig 2. [43], and contrast it with the case of spatial
networks in Supplementary Figs. 3 and 4 [43].

In our approximation (see “Sparse networks” in [43] for
details), the distribution of y as seen by a given individual
with k& neighbors follows a Hypergeometric (approximately a
Binomial for £ < N) distribution with success probability ¥
and k trials:

Y~ %Hypergeometric(N LN E)

which implies E4[y] = 9. In a simple contagion (with f; 5
independent of y), only the first moment of the local distribu-
tion of y appears in Egs. (1) and (2). A simple contagion is
thus unaffected by network sparsity. By contrast, higher mo-
ments appear in Egs. (1) and (2) for a complex contagion with
y-dependent f;/5(y). Due to discreteness in the connectiv-
ity (and thus the nonzero variance in the distribution of local
1), some type A nodes will have more type B neighbors than
others, and hence E4[y?] > Ealy]> = §>. Sparsity there-
fore increases Rate 4, 5 and s(y) compared to the well mixed
behavior Eq. (5) and enhances the spread of a complex conta-
gion.

B. Results

Using the hypergeometric distribution over local y and its
moments, we can obtain the expectation values in Egs. (1)
and (2) and hence compute the effective selection (%) on this
graph using Eq. (4). Specifically, we find that for large net-
works where N > k (and assuming «, § < 1),

<y+(1_y>>—6. ®)

s(9) = a ;

This reduces to the well-mixed solution s(y) = ay —
as k becomes large, but for small & selection is significantly
enhanced, as shown in Figure 2 (¢). The intuition is that for
small k, some nodes will by chance happen to have a higher
fraction of type B neighbors than others due to local sampling
fluctuations. Because the transition rates increase non-linearly
with y, the increased positive selection on the few individuals
that see high values of y outweighs the effect of the reduced
value of y seen by individuals with fewer type B neighbors.
While this effect is present for all %, it becomes stronger for
smaller k since the variance in the locally observed y increases
with smaller k.

The example of sparse regular networks illustrates several
general patterns in our analysis. The distribution of type B in-
dividuals is influenced by the network structure and discrete-
ness for any contagion process, but it is only for complex con-
tagions that it affects selection and thus the spread.This hap-
pens through the higher moments of the distribution of local
1y, which only appear in Eqgs. (1) and (2) if there is a frequency
dependence of f; /5, i.e. for a complex contagion. By contrast,
as long as the first moment is unchanged from ¢, a simple
contagion is not affected by network structure (see “Simple
contagion” in [43]).

Generally, for a given , structure influences how type B in-
dividuals are distributed during the contagion, which through
Egs. (1) and (2) interacts with the specific form of f; /5(y) to
produce the effective selection strength s(7). This determines
regimes of selection and the overall behavior of the conta-
gion. Moreover, s(y) defines an effective diffusion process
capturing the behavior of (), which we can easily solve us-
ing standard methods to obtain P, (%), the fixation proba-
bility Py;,, properties of the temporal evolution [14], or any
other quantities of interest. Thus we can reduce our problem
to calculating the distribution of y in the neighborhoods of
type A and type B individuals at a given global value of 3. In
general, s at any point in time will depend on the full config-
uration of the type B individuals on the network. However,
using key assumptions about the dynamics, we can often sig-
nificantly reduce the degrees of freedom on which s depends.
In the above example, by assuming no locality and noting the
random connectivity of the network, we reduced the complex-
ity of the process to a single degree of freedom: y.

Figure 3 b,c shows that our theory accurately predicts the
results of numerical simulations of the process for various de-
grees of sparsity. Moreover, we show in Figure 3 b that the
simple condition N|S(y) — S(y*)| = 1 accurately predicts
transitions between selection regimes. In particular, the black
arrows are the predictions for transitioning from initially neu-
tral selection at small y to negative selection, which is visi-
ble on the log-log plot as a change from a straight line to a
downward bending shape of P,.cqcr(y). The white arrows are
the predictions for transitioning from the negative selection
regime to the positive selection regime (which manifests vi-
sually as a transition from a downward bending trend to flat
P, reach (y)

While a precise treatment of the additional effects of lo-
cality is beyond the scope of this work, we can provide some
intuition for its effects. Locality slightly increases the chances



of the extreme outcomes of having zero type B neighbors as
well as the chances of having many type B neighbors (see
Supplementary Fig. 2 [43]). This is because type B nodes
are created by definition only if they are initially in contact
with another type B individual, so they are slightly more likely
than chance to be found next to each other. They are also more
likely than chance to be connected to each other in a locally
“tree-like” structure [33]. Because the true distribution of y
is slightly wider than in our approximation, the variance is
slightly higher and thus the effect on selection is slightly more
positive than predicted. This explains the slight underestima-
tion of Preqcn and Pyy; in Figure 3 by our approach. We
have confirmed that these discrepancies disappear in a modi-
fied version of the simulation where node identities are shuf-
fled on the graph at every time step (making the no locality
assumption exactly true). As the specific form of the nonlin-
earity interacts with the distribution of y through its higher
moments, the differences in the distribution of y compared to
the no locality approximation could potentially lead to larger
discrepancies between our theory and simulations for differ-
ent nonlinearities. Nonetheless, the approximation allows us
to build a quantitative and intuitive picture that captures im-
portant aspects of the true process.

IV. Community based networks
A. Approach

Next we consider the effect of community structure, where
the impact of within-community locality is essential to the
contagion dynamics. To analyze this effect, we consider ran-
dom graphs that consist of randomly connected communities
of m individuals each. In particular, we assume every individ-
ual has exactly k; random connections within the community
and k. outside of it, where k; + k. = k. By tuning k;/k, we
can vary the strength of community structure. As % — 1, we
have very strong and cohesive communities, while % - %
reduces to the case of a random regular graph of degree k.

We will provide a brief description of the approach, for
more details we refer to “Community based networks” in [43].
To analyze the contagion on such a graph, we must understand
how type B individuals distribute themselves across the net-
work. For clarity, let use z to denote the fraction of type B
individuals within a given community. We are then inter-
ested in the distribution of the z values, as seen across all
communities in the network. Let us denote this distribution
with a(z), which gives the fraction of communities at a fixed
value of z. Note that z is discretized in units of % and we
have )" za(z) = y. Because the connections on the net-
work are random within and between communities, we will
assume that each node sees a random sample of size k; from
within the community with its internal edges, and a random
sample of size k. of the rest of the graph with its k. external
edges. This is effectively a targeted version of the no-locality
assumption: for the same reasoning as with the regular ran-
dom graph, while the distribution of node types across com-
munities a(z) matters, the location of type B individuals in

a given community does not, and neither does how the com-
munities are shuffled for a fixed a(z). We demonstrate the
validity of our assumptions in Supplementary Fig. 2 [43].
This allows us to determine the distribution of y as seen by a
given node:

_ ii + Z‘e
Y Ttk
where 7; and 7. are Hypergeometric random variables just like
in the section on sparse networks representing the number of

type B neighbors coming from edges internal to the commu-
nity and external to it, respectively. That is,

)

i; ~  Hypergeometric(m — 1, zm, k;) ,

ie ~  Hypergeometric(N — m, Ny — zm, k.) , (10)

Intuitively, in addition to discreteness effects as before, the
distribution of y for a given node is now a weighted mixture
between the z of the community that the node is located in,
and the global value of y. It is now more clear how the dis-
tribution a(z) will affect the local distribution of y as seen by
a given individual: if the distribution a(z) is tightly centered
around the global g, we expect the overall results to be very
similar to a regular random graph of degree k, i.e. no signifi-
cant effect of community structure. On the other hand, if the
distribution a(z) has significant departures from g, (for exam-
ple, most communities could be either “full” or “empty” and
only spend little time in between), most nodes will either see
very high values of y or very low because of the partial ef-
fect of z (which is modulated by the community strength %)
This increases the variance in the distribution of gy (without
affecting its mean), which similarly to the case of the regular
random graph will change the effective selection on the graph
through the higher moments appearing in Egs. (1), (2) and (4).

To find the distribution a(z), we make the key assumption
that for any given ¢, the distribution of y values seen within
communities reaches a quasi-steady-state before 4 can change
significantly across the whole graph. This distribution will de-
pend on the connectivity of the network as well as the details
of the transition probabilities. The steady-state approximation
assumes that within-community dynamics are fast compared
to global changes of y across the whole network; we expect
this to hold when selection is weak (f; /z(y) < 1) and when
communities are small and well-connected compared to the
overall network.

If we assume that we know the distribution a(z), we can use
the definitions of the contagion dynamics together with our
knowledge of how the individual types are distributed to deter-
mine the rate at which z changes in each community. Specifi-
cally, the rate of change of a(z) for each value of z will depend
on the number of type B and type A individuals in those com-
munities (mz and m(1 — z), respectively), as well as the rates
at which individuals in communities of a given z change types
(which through Eq. (4) depend on their local distribution of y,
which we can in turn obtain from Egs. (9) and (10)). These
transitions change the value of z for a given community and
thus cause transition rates between entries of a(z) for neigh-
boring values of z. This allows us to write down a nonlinear



dynamical system for the temporal evolution of a(z). By nu-
merically finding the steady state of this system subject to the
normalization conditions ), a(z) = 1and ), za(z) = 7,
we can compute the equilibrium distribution for a(z) (this ul-
timately becomes a nonlinear algebraic system of equations
that can be solved using zero-finding routines, see “Comput-
ing the equilibrium value of a” in [43]).

The equilibrium distribution for a(z) then allows us to com-
pute the local distribution of y as seen by a given node by
using Egs. (9) and (10) and the law of total expectation to
marginalize over z using a(z). We show that our approxima-
tions accurately predict this distribution of local y in Supple-
mentary Fig. 5 [43]. As in the case of regular networks, the
local distribution of y implies an effective selection strength
s(y) acting on the contagion (Figure 2 (d)). Overall, as-
suming that a(z) is at equilibrium for any global 7 allows us
to compute numerically an effective selection strength s(%),
which determines the behavior of the contagion. The agree-
ment between our theoretical predictions and numerical sim-
ulations are shown in Figure 3 (d-f).

B. Results

When community strength is weak (% — %), the equi-
librium distribution of a(z) is narrowly peaked around the
global value of 4. In this case, each community simply be-
haves like a random sample of nodes from the overall network,
and we have the same behavior as for the regular random net-
work. By contrast, when communities are cohesive (% — 1),
the equilibrium distribution of a(z) has the same mean, but
is now more peaked at the extremes of z = 0 and z = 1.
This “U-shaped” distribution of z means that type B individ-
uals are concentrated in just a few communities. The result-
ing distribution of local y as seen by individuals is also more
peaked at the extremes, since individuals see mostly edges
from within their own communities, and those communities
are either mostly type A or mostly type B. This wider distri-
bution of local y enhances the spread of the contagion (for the
same reason that higher variance in local y enhances selection
for the regular random graph).

We provide here some intuition for the transition of a(z) be-
tween the narrowly peaked and U-shaped regimes as a func-
tion of % In [43] section “Continuum approximation” we
provide a more quantitative justification based on an effec-
tive diffusion process for z in a given community for fixed 3.
For high k;, the U-shaped distribution of z arises because the
many connections within a community can “conduct” influ-
ence between the types and thus cause rapid fluctuations of
z within the community, but only slow fluctuations between
communities. The rate of fluctuations are fastest when there
are approximately equally many type B and type A individu-
als in a community. By contrast, fluctuations are slow when
nearly all the nodes within a community have the same type.
The values of z within a community (which are subject to ran-
dom diffusion) will therefore spend most of their time at ex-
treme values of z — 0 or z — 1. This intuition is confirmed
in that we observe a critical level of community strength %

above which the equilibrium distribution of z within a com-
munity turns from a narrow distribution (concentrated around
the global 4 across the whole network) to a U-shaped distri-
bution (same mean, but concentrated at the extreme values),
as shown in Supplementary Fig. 5 [43]. The resulting vari-
ance in y as seen by individuals is high, and selection is en-
hanced. Intuitively, it is much easier for the contagion to ran-
domly reach a “critical mass” of popularity within a single
community and experience positive selection there, compared
to across the whole network. The contagion simply fixes one
community at a time, as visualized in Supplementary Fig. 6
[43] as well as Supplementary Videos 1-3 [43]. These ef-
fects also explain our observations on the role of clustering
and community strength on real social networks in Figure 1.
It is important to note that the unequal distribution of type B
individuals among communities (just like the broader distri-
bution of y in sparse networks) is again a feature purely of the
network structure and arises with or without complex conta-
gion. However, it is only in the former case that this distribu-
tion has an effect on the spread.

V. Graphs with variable degree distribution
A. Approach

Finally, we consider graphs with variable degree distribu-
tions and otherwise random connectivity. We present a brief
description of the approach and refer to “Networks with de-
gree distributions” in [43] for details. Intuitively, there are
competing effects and it is not immediately clear what the net
impact of varying degree distributions should be on the spread
of the contagion. On the one hand, high degree type B nodes
are able to convert many other nodes once they are converted,
but they are harder to convert themselves. On the other hand,
it is easier to convert low degree nodes to type B for the same
reason that low & increases selection for the random regular
graph, but those individuals in turn will influence fewer neigh-
bors. Given a fixed average degree, it is not clear what effect
a greater variance in degree will have.

In the case of non-regular graphs, the degrees k of the nodes
are distributed according to a degree distribution P (k) (which
for regular graphs has zero variance, an assumption that we
now relax). For a given individual of degree k on the graph,
we will also need the distribution over the degrees &’ of their
neighbors P(k’|k). While this neighbor degree distribution
can in principle be arbitrary, we expect it without further in-
formation to have the form P(k'|k) ~ P(k')k’ since each
node of degree £’ has k" edges to which one can be connected
(any departure from this distribution is called “assortativity”).

For networks with a nontrivial distribution P(k), it is no
longer possible to calculate a selection strength s that depends
only on y. Instead, we must work with the fraction of nodes of
each degree k' that are type B, yx/. This requires an explicit
analysis of the fraction of type B individuals for each degree
k', which leads to a high-dimensional diffusion process. Note
that this still reduces the effective degrees of freedom signif-
icantly compared to the true process on the network, but not



as much as in the regular graph case where we only track a
single degree of freedom.

We can solve this multi-dimensional diffusion process us-
ing the no-locality approximation, i.e. assuming that nodes of
degree k see a random sample of all other nodes on the graph.
The probability distribution of the value of y seen by a given
individual will now depend on the degrees k' of the individ-
ual’s neighbors through ¥/ (the probability of a given node
being type B is y;, and depends on k’). The degrees of the
neighbors £’ in turn depend on the neighbor degree distribu-
tion P(k’|k). Using the law of total expectation, we find the
simple and intuitive result that nodes of degree k see a distri-
bution of y identical to that for a k-regular random graph, with
the global frequency y replaced by the “effective frequency”

2=y P [k)yw; - (11)

k’

Using this distribution of the local value of y as seen by a
given node of degree k, we can use the same approach as for
the regular graphs to determine the rates Eq. (1) and thus ob-
tain the diffusion process. This time, however, there is such
a process for each population of NP (k) nodes at each value
of k£ and they are coupled together through the mixing across
degrees in Eq. (11). This coupled high-dimensional diffusion
process in y; space must therefore be solved numerically.

B. Results

To vary both the mean and variance of the degree distri-
bution continuously, we consider graphs where the degree of
each node is drawn from a Gamma distribution with mean k
and variance oy. Specifically, in order to illustrate the effect
of wide degree distributions, in Figure 3 (g-i) we compare
graphs with o, = 0 (i.e. regular random graphs as studied
before) to networks with high degree variance (o, = 30)
and equal mean degree. We consider regimes that on a reg-
ular graph with would consist of initial positive selection
(s(0) > 0), initial neutral selection (s(0) = 0) and initial neg-
ative selection followed by positive selection (s(0) < 0). Our
theoretical predictions show excellent agreement with the full
numerical simulations. Note that for graphs with high degree
variance, the behavior of Prcqcn(y) becomes “less extreme”,
whether selection is positive or negative (we find lower P,.cqch
in the case of positive selection and higher P,..,.p in the case
of initial negative selection). Overall, we find that broader
degree distributions dampen the effects of selection (whether
positive or negative) on the contagion, both for simple and for
complex contagions. Another effect is the consistent suppres-
sion of the contagion for very low y (see Figure 3 (h)), which
is enhanced for distributions with significant degree correla-
tions (see Supplementary Figure 8 [43]). We give intuition
and a derivation for this effect in [43] (see the sections “Sup-
pression at low y” and “Impact of the neighbor degree distri-
bution”). We also verify the soundness of our modeling ap-
proach by comparing the predicted local distribution of y to
observations in Supplementary Figure 7 [43] showing close
agreement.

VI. Phase transitions

Whenever it is possible to compute an s(y), our frame-
work implies a simple condition under which the contagion
can spread globally with finite probability even in arbitrarily
large networks (i.e. global cascades are possible, see “Phase
transitions” in [43]): the width of a region of negative s(y)
around y = 0 must scale as N~7, with v > 1. That is, the
contagion must need to tunnel through at most a finite number
of individuals to reach a frequency above which it is positively
selected. Otherwise, the process encounters negative selection
and is exponentially unlikely to spread globally for large N.
Using Eq. (8) and setting s(0) = 0, this leads to the criti-
cal sparsity ki = yi = % below which global contagion is
possible (Figure 4 (a)). Note that this result is in line with pre-
vious work considering locally tree-like connectivity [9, 33]
and has a simple intuitive interpretation: each individual that
sees at least one type B neighbor has s(y) = s(%) ~ e -0
If this minimum selection is nonnegative, the contagion can
spread globally.

For community-based networks, we find that the effective
selection strength has s(0) = — 3, but jumps higherasy — %
(see Figure 2 (d)). Global contagion is possible provided that
s(%) > 0, because in that case the contagion only needs to
overcome a fixed size negative selection regime of size at most
m that does not scale with N. Numerically, we find this im-
plies a critical community strength &; /k above which complex
contagions are able to spread globally by appearing popular
and reaching critical mass in one community at a time, even
though they do not have critical mass on the global network
(Figure 4 (b)). This is in line with our initial simulations of
contagions on real social networks Figure 1 (c-e).

VII. Discussion

These results demonstrate quantitatively how interactions
between non-linear adoption probabilities and network struc-
ture influence the dynamics and outcomes of complex conta-
gions by modulating the effects of selection and stochasticity.
A central idea was the use of targeted approximations (e.g.
no locality on random networks, local vs. global equilibra-
tion time scales on community based networks) to reduce the
contagion to an effective diffusion process on a lower dimen-
sional space (y for regular networks, y; for random graphs
with degree distributions, and the space of per-community z
for community based networks) and hence obtain its statisti-
cal properties. This allows us to understand the behavior of
both large and small contagions, as well as the emergence of
global cascades. These results help explain why the spread of
even initially unpopular ideas and opinions can be enhanced
both by overall sparsity as well as by cliques and other forms
of community structure. They also show that in contrast to
simple contagions (where the existence of highly-connected
individuals always enhances spread), broad degree distribu-
tions dampen both positive and negative selection for complex
contagions and hence have more subtle effects.
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FIG. 1: Model and simulations on real social networks. a, We model a complex contagion on a network where each
individual can be type B or type A. We denote the global frequency of type B individuals as . Each node sees a potentially
different local fraction y of type B neighbors (node labels). b, Transition rates between type B and type A individuals occur at
rates 71 and 72; the form of f; 5(y) determines the non-linear adoption probabilities in complex contagions. ¢, Simulations on
networks of variable clustering derived by swapping pairs of edges in a Facebook network[49] (/N = 4039, k = 43) show that
the spread of complex (but not simple) contagions are highly sensitive to clustering. The line increasing with clustering is the
complex contagion. The three flat lines correspond to simple contagions and are ordered top to bottom as in the legend. d,e,
Example frequency trajectories for contagions that fixed in our simulations. Each colored line shows the frequency within a
given community as detected by a standard community detection algorithm [55], while the black line shows overall frequency
y. If the community structure is strong, the contagion fixes one community at a time, rapidly gaining and maintaining local
popularity which helps the spread (d, Clustering C' = 0.6). If the community structure is weaker (but still detectable [55]), the
contagion instead spreads uniformly across the entire network (e, C' = 0.2). This is much less likely, so the fixation probability
Py, is lower in this case. Simulations assume f1(y) = ay, f2(y) = 8, a = 0.25, and § = 0.05.
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FIG. 2: Selection and genetic drift in complex contagions.
For simplicity we omit the bar for % in all panels. a, The
condition N|s(y)|y = 1 distinguishes regimes where
contagion dynamics are dominated by genetic drift, negative
selection, or positive selection (this is an approximation to
the exact condition N|S(y)| = 1, see SI). b, A contagion can
spread globally if it reaches high enough frequency to be
positively selected; this may require “tunneling” through a
regime of negative selection at lower frequencies. ¢,d,
Sparsity (¢) and community structure (d) can change the
shape of s(y) and hence alter the contagion dynamics.
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FIG. 3: Network structure and the dynamics of complex contagions. For simplicity we omit the bar for 4 in all panels. a,
Mlustration of networks that are more (right) or less (left) sparse. b, Theoretical predictions (solid lines) and simulated results
(for N = 10, 000; dots) for P,.cqch(y) for networks of different sparsity. Theoretical predictions for the transition to the regime
of negative and positive selection are shown as black or white arrows respectively. ¢, Theoretical predictions (solid lines) and
simulated results (dots) for the fixation probability Py;,.(y) as a function of network size N. We show results for five values of
k, corresponding to sparsity above (blue; top line), approximately on (purple; second line from top), and below (red; second
line from bottom) the phase transitions allowing for global spread, as well as for a large value (yellow; bottom line) that
approximates a fully-connected graph (dotted line). d, Illustration of networks with more (right) or less (left) community
structure. e,f, Theoretical predictions (solid lines) and simulated results (dots) for Py.c,chn(y) () and Py, (f) for networks with
different strengths of community structure. g, [llustration of networks with high (right) or low (left) variance in degree
distribution. h,i, Theoretical predictions (solid lines) and simulated results (dots) for Py.cqcr(y) (h) and Py, (i) for networks
with mean degree k£ = 10 and standard deviation in degree distribution o, = 30 for contagions with 5 = 0.1 (h), 5 = 0.05 (i),
and three different values of « corresponding to initially positive, initially neutral, and initially negative selection on a regular
graph with equal mean degree. Dotted lines show theoretical predictions for those equivalent regular graphs (i.e. with equal
k = 10 but o, = 0). Large oy, decreases P,.¢qcn for positive selection and increases P,..,.j, for negative selection. In both cases,
the absolute effect of selection is lessened by higher degree variance. Parameters: o = 1.0, 5 = 0.1 (b), « = 0.4, 8 = 0.04 (¢),
a=0.88,3=01,m=k=20(),a=0.208=0.025m=%k=20(),a=(25,1.0,0.71) (h), « = (1.25,0.5,0.36) (i).
All parameters correspond to positive frequency dependence and are chosen so that the curves’ distinguishing features are
clearly visible within a reasonable range of magnitudes and computational budget. All line labels are ordered top to bottom in
the legend in the same order as they appear in the plot itself. The dashed lines in (h-i) have the same top to bottom ordering as
the corresponding solid lines.
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FIG. 4: Phase transitions for complex contagions. a,b,c, Ratio of Py;, on a network of size N; = 50000 to Py;; on a
network of size Vo = 2000 for contagions with 5 = 0.025, different values of « and varying sparsity (a), community structure
(k = m = 20) (b), or degree distributions (£ = 10) (c). Values close to one correspond to cases where Py;, does not scale
strongly with N, so global cascades are possible even in large networks. Solid white lines in (a,b) denote the theoretically
predicted phase transition, and the thick dashed white line indicates an observed ratio of 1/5 = /N7 /N5 (the empirical
location of the phase transition). The theoretical value for (a) is found by evaluating s(0) = 0 using equation Eq. (8). The
theoretical value for (b) is found by numerically evaluating s(%;) and finding where it is equal to zero given the parameters
(See the sections on “Phase transitions” in [43] for details). In (b), the location of the phase transition approaches the regular
random graph value (white arrow, can be read off for £ = 20 in panel (a)) as the network loses community structure and
becomes regular random (k; — % ~ 0). In (¢), the empirical phase transition also correctly approaches the theoretical
prediction (regular graph limit, white arrow) as o, — 0. Since wider degree distributions weaken the effect of selection, the
“transition regime” becomes noticeably wider for large o.
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