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The Markovian approach, which assumes constant transmission rates and thus leads to exponen-
tially distributed inter-infection times, is dominant in epidemic modeling. However, this assumption
is unrealistic as an individual’s infectiousness depends on its viral load and varies over time. In this
paper, we present a SIRVS epidemic model incorporating non-Markovian infection processes. The
model can be easily adapted to accurately capture the generation time distributions of emerging
infectious diseases, which is essential for accurate epidemic prediction. We observe noticeable varia-
tions in the transient behavior under different infectiousness profiles and the same basic reproduction
number R0. The theoretical analyses show that only R0 and the mean immunity period of the vac-
cinated individuals have an impact on the critical vaccination rate needed to achieve herd immunity.
A vaccination level at the critical vaccination rate can ensure a relatively low incidence among the
population in case of future epidemics, regardless of the infectiousness profiles.

I. INTRODUCTION

The widely used formulation of compartmental epi-
demic models in terms of ordinary differential equations
(ODEs) implicitly assumes both a constant probability
per unit of time of leaving the infectious state (recovery
rate) and a constant transmission probability per unit of
time (transmission rate). This is analogous to the set-
ting where the sojourn times in the infectious state (in-
fectious period) and the generation (or inter-infection)
times are exponentially distributed. Following [1, 2], we
define generation times as the time between the infection
of a secondary case and the infection of the corresponding
primary case.

However, many empirical studies have shown that the
exponential distribution does not fit well clinical data
about sojourn times in several compartments of an infec-
tious disease model. For example, several studies have
shown that the generation times for the spreading of se-
vere acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) are not exponentially distributed [3–5]. This
necessitates the development of proper epidemic models
that consider non-exponential sojourn times.

Already in the foundational paper by [6], the formu-
lation of the susceptible-infected-recovered (SIR) model
was presented in terms of a renewal equation for the force
of infection where the transmission probability depends
on the time after infection, also called the age of infec-
tion. The reason for that is pretty clear: an individual’s
infectiousness depends on their viral load, which, in turn,
varies over time. Similar ages are also introduced when
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the probability of processes like loss of immunity depends
on the time after entering the recovered state (time since
clearance). In such cases, the dynamics are described by
non-Markovian processes, as the current status of indi-
viduals depends on their complete history within a given
compartment. Consequently, the sojourn time in each
state and the generation time no longer follow an expo-
nential distribution.

In a deterministic context, this fact leads to the formu-
lation of epidemic models in terms of partial differential
equations (PDEs), where a population is described by
densities with respect to one or more of those times or
ages. For the age-of-infection SIR model, the PDE corre-
sponds to the so-called McKendrick-von Foester equation
(see [7] for a model with several ages, including the age of
vaccination). Such a formulation, equivalent to renewal
equations under enough regularity conditions [8], allows
the analysis of the impact of non-Markovian processes on
the epidemic spread.

Staged-progression epidemic models are an alternative
way to model non-Markovian epidemics. These models
are halfway between simple ODE compartmental mod-
els and PDE models because they consider a sequence
of different lengths of infectious stages (compartments).
Each of them has its own recovery rate and transmission
rate [9, 10]. So, they can be considered as a sort of dis-
cretization of the PDE models [11]. Indeed, these mod-
els have been used in the literature to approximate non-
exponential infectious periods by subdividing the infec-
tious compartment into several sub-compartments with
exponentially distributed infectious periods. The original
distribution is then approximated by a sum of exponen-
tial distributions [12].

In this paper, we formulate a Susceptible-Infected-
Recovered-Vaccinated-Susceptible (SIRVS) epidemic
model and provide theoretical analyses of the model
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regarding the equilibria and the critical vaccination
rate. Following [13], the latter is obtained from the
bifurcation from the disease-free equilibrium where
susceptible and vaccinated individuals are present. We
perform PDE numerical integration and agent-based
simulations to examine the impact of infectiousness
profiles and vaccination rates on epidemic dynamics
under these two approaches. In particular, agent-based
simulations allow to assess the impact of population
sizes on the occurrence of secondary waves.

The contributions of the paper are summarized as fol-
lows:

• We present a general method to model non-
Markovian infection processes from rate-based transi-
tions. In the agent-based simulations, transitioning from
Markovian infection processes to non-Markovian infec-
tion processes is achieved by adjusting the value of infec-
tiousness parameter, which results in the desired genera-
tion time distributions. This implementation option pro-
vides a straightforward way to create comparable agent-
based models from PDE models.

• We include the effects of recovery while calculating
infectiousness profiles, which is more realistic compared
to previous models which model the infectiousness pro-
files independent of the recovery.

• With the same R0, we observe significant differ-
ences in the transient phase between non-Markovian and
Markovian models, and the magnitude of the differences
is affected by the infectious period. The transient phase
refers to the early stages of the epidemic dynamics, when
the number of infections changes and the system is far
from the steady state.

• We provide equilibrium analyses of the model and
conclude that only R0 and the mean immunity period of
the vaccinated individuals have an impact on the critical
vaccination rate needed to achieve herd immunity.

• A continuous vaccination of the population at the
predicted critical rate ensures a very low incidence among
the population in case of future epidemics, regardless of
the infectiousness profiles.

• To the best of the authors’ knowledge, the work
for the first time, explores the potential contribution
of agent-based models contrasted with PDE models in
non-Markovian epidemic modeling. We observe the me-
dian values of simulation results with secondary waves
are close to the results of the deterministic PDE model
for population sizes sufficiently large. In contrast, sim-
ulations produce patterns not predicted by the PDE
model when population sizes are sufficiently small and
the stochastic extinction of the disease becomes an im-
portant factor after an initial outbreak.

II. THE REPRODUCTION NUMBER AND
GENERATION TIMES

Suppose the recovery rate γ and the infectiousness
(per-contact transmission probability) β are both func-

tions of the age of infection τ , i.e., γ = γ(τ) and β = β(τ),
and we assume a constant contact rate c per individual
in a randomly mixed population. In that case, the ba-
sic reproductive number R0 is the sum of the infections
caused by an infected individual at each age of infection
in a totally susceptible population, conditioning on the
probability of being infectious at each age. So, we have

R0 = c

∫ ∞

0

β(τ) e−
∫ τ
0

γ(s) ds dτ, (1)

where the exponential term is the probability of be-
ing infectious at time τ since infection, and η(τ) =

c β(τ) e−
∫ τ
0

γ(s) ds is the infectivity of an individual at the
age of infection τ [12]. In other models, the contact rate
c is included in the definition of β, which is then called
effective contact rate [14].
A simple but important remark follows from (1),

namely, if β is constant, then R0 depends on the mean
infectious period τ̄I but not on its particular distribu-
tion: R0 = c β τ̄I . A similar result follows for staged-
progression models if β is constant in each compartment:
R0 =

∑nic

i=1 Ri
0 = c

∑nic

i=1 βiτ̄
i
I with nic being the number

of infectious compartments [9].
Normalizing the infectivity η(τ) by R0 we obtain the

probability density function (pdf) of the generation times
during the initial phase of an epidemic [2, 15]:

w(τ) =
η(τ)

R0
=
c β(τ)e−

∫ τ
0

γ(s) ds

R0
. (2)

The inter-infection times generated according to this
time-independent pdf have been called intrinsic genera-
tion times to distinguish them from the realized genera-
tion times as the epidemic progresses [16]. The realized
generation time distribution changes over time due to
changes in individuals’ contact patterns, the depletion of
the susceptible population, and the competition among
infectors [16–19].
From the relationship between the transmission prob-

ability β(τ), the recovery rate γ(τ), and the generation
time distribution w(τ) given by Eq (2), it follows that
an equivalent approach to study non-Markovian infec-
tion processes is the one based on the distribution it-
self of the generation times during the epidemic spread.
For instance, such an approach has been used to simu-
late stochastic epidemics on networks. This relationship
clearly shows that changing the profile of w(τ) will affect
the epidemic threshold because it implies a change in the
profile of β(τ), even though the mean infectious period
and the mean transmission rate are kept the same. This
is what was observed in [20].
The empirical knowledge of w(τ) at the beginning of an

epidemic helps to estimate R0 from the initial epidemic
growth rate r by means of the relation [2, 12, 15]:∫ ∞

0

e−rτw(τ)d τ =
1

R0
, (3)

obtained from the Euler-Lotka equation after replacing
η(τ) by R0 w(τ). This expression also says that if we
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set R0 to a fixed value, then different generation time
distributions w(τ) will lead to different initial epidemic
growth rates r and, hence, to different transient behaviors
of the epidemic.

III. THE SIRVS MODEL

In this paper, we generalize the SIRVS epidemic model
with waning immunity for recovered (R) and vaccinated
(V) individuals considered in [13] by introducing an age
of infection for the individuals in the I compartment, and
an age of immunity (time since clearance) for individuals
in the R and V compartments.

The population in each compartment at time t is then
described by the densities I(t, τ), R(t, τ) and V (t, τ) with
respect to the corresponding sojourn time τ in the com-
partment. As in [13], the epidemic time scale is supposed
to be much faster than the time scale for demographic
processes (growth, births, and deaths), which allows us to
consider that the population remains constant and equal
to N , that is,

S(t)+

∫ ∞

0

I(t, τ)dτ+

∫ ∞

0

R(t, τ)dτ+

∫ ∞

0

V (t, τ)dτ = N.

Moreover, we assume that the recovery rate γ(τ) satisfies

that lim
τ→∞

(
τ e−

∫ τ
0

γ(s) ds
)

= 0. The same condition is

satisfied by the rates δ(τ) and δv(τ) of immunity loss in
the R and V compartments, respectively. This hypothesis
guarantees a finite mean sojourn time τ in any of these
compartments:

τα =

∫ ∞

0

τα(τ)e−
∫ τ
0

α(s) dsdτ =

∫ ∞

0

e−
∫ τ
0

α(s) dsdτ <∞,

with α(τ) = γ(τ), δv(τ), δ(τ)+v. Here, v ≥ 0 stands for
the vaccination rate of susceptible and recovered individ-
uals.

According to the previous assumptions, the equations
governing the dynamics of the SIRVS model are given by

∂I

∂t
+
∂I

∂τ
= −γ(τ)I(t, τ),

∂V

∂t
+
∂V

∂τ
= −δv(τ)V (t, τ),

∂R

∂t
+
∂R

∂τ
= −(δ(τ) + v)R(t, τ),

dS

dt
=

∫ ∞

0

[δv(τ)V (t, τ) + δ(τ)R(t, τ)] dτ

− Sϕ(t)− vS,

where ϕ denotes the force of infection and is given by

ϕ(t) = c

∫ ∞

0

β(τ)
I(t, τ)

N
dτ.

These equations are endowed with the boundary con-
ditions at τ = 0

I(t, 0) = S(t)ϕ(t),

V (t, 0) = vS(t) + v

∫ ∞

0

R(t, τ) dτ,

R(t, 0) =

∫ ∞

0

γ(τ)I(t, τ)dτ,

and the initial condition I(0, τ) = I0(τ), V (0, τ) =
V 0(τ), R(0, τ) = R0(τ), and S(0) = S0.
Note that, if all the rates are constant, we obtain the

original ODE model in [13] by integrating the first three
equations of the SIRVS model with respect to τ .

IV. EQUILIBRIA AND THE CRITICAL
VACCINATION RATE

Using that
∫∞
0
γ(τ) e−

∫ τ
0

γ(s) dsdτ = 1 and

lim
τ→∞

(
τe−

∫ τ
0
(δ(s)+v) ds

)
= 0, it follows that the

equilibrium densities satisfy

I∗(τ) = S∗ϕ∗e−
∫ τ
0

γ(s) ds,

V ∗(τ) = vS∗ (1 + ϕ∗ τ δ̃
)
e−

∫ τ
0

δv(s) ds,

R∗(τ) = S∗ϕ∗e−
∫ τ
0
(δ(s)+v) ds,

where ϕ∗ =
c

N

∫ ∞

0

β(τ)I∗(τ)dτ is the equilibrium force

of infection, and τ δ̃ =
∫∞
0
e−

∫ τ
0
(δ(s)+v)dsdτ is the mean

sojourn time in the R compartment. Note that τ δ̃ takes
into account that an R individual can lose its immunity
and become susceptible or, alternatively, it can move to
the V compartment if vaccinated.
Introducing the expression of I∗(τ) into that of ϕ∗ and

using (1), it follows

ϕ∗ = ϕ∗
S∗

N
R0.

So, either ϕ∗ = 0, which corresponds to the disease-free
equilibrium (DFE), or ϕ∗ > 0 and then R0S

∗/N = 1,
which corresponds to the unique endemic equilibrium.
The DFE is then given by I∗(τ) = 0, R∗(τ) = 0, and

S∗ =
N

1 + v τ δv
, V ∗(τ) =

v N

1 + v τ δv
e−

∫ τ
0

δv(s) ds,

where τ δv is the mean immunity period of vaccinated
individuals and it is used that S∗ +

∫∞
0
V ∗(τ) dτ = N .

As expected, if v = 0 then S∗ = N .
At the endemic equilibrium (I∗(τ), V ∗(τ), R∗(τ)), the

fraction of susceptible individuals at equilibrium is

s∗ =
S∗

N
=

1

R0
,

which is the same well-known relationship between s∗ and
R0 as for the standard SIS (and SIRS) models ([21]).
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Note that, to have an endemic equilibrium (s∗ < 1),
R0 > 1.
The value of ϕ∗ is obtained from the condition

S∗ +

∫ ∞

0

I∗(τ) dτ +

∫ ∞

0

V ∗(τ) dτ +

∫ ∞

0

R∗(τ) dτ = N,

which amounts to

τγϕ
∗ + v τ δv + v τ δvτ δ̃ ϕ

∗ + τ δ̃ ϕ
∗ = R0 − 1,

where τγ is the mean infectious period. So, the force of
infection at the endemic equilibrium is given by

ϕ∗ =
R0 − 1− v τ δv

τγ + τ δ̃(1 + v τ δv )
. (4)

Note that, with vaccination, R0 > 1 does not guarantee
ϕ∗ > 0. Now, it is needed that R0 > 1 + v τ δv .
So, assuming this condition and dividing the equilib-

rium densities by the total population N , it follows that
the normalized equilibrium densities i∗, w∗ and r∗ in the
I, V and R compartments, respectively, are given by

i∗(τ) =
1

R0

R0 − 1− v τ δv

τγ + τ δ̃(1 + v τ δv )
e−

∫ τ
0

γ(s) ds,

w∗(τ) =
v

R0

(
1 + τ δ̃

R0 − 1− v τ δv

τγ + τ δ̃(1 + v τ δv )

)
e−

∫ τ
0

δv(s) ds,

r∗(τ) =
1

R0

R0 − 1− v τ δv

τγ + τ δ̃(1 + v τ δv )
e−

∫ τ
0
(δ(s)+v) ds

The condition for a bifurcation from the DFE is ob-
tained by imposing that the right-hand side of (4) is equal
to 0. In particular, using v as a tuning parameter, the
resulting critical vaccination rate is

vc =
R0 − 1

τ δv
.

Note that, since this paper considers waning immunity,
continuous vaccination campaigns are required to pre-
serve herd immunity. The critical vaccination rate de-
fines the minimum supply of vaccine that ensures that
the system always reaches the DFE after the introduction
of new cases. In other words, this vaccination rate con-
fers herd immunity to the population and thus prevents
future major epidemic outbreaks. Interestingly, only the
mean immunity period of vaccinated individuals (but not
the distribution of its duration) is relevant for vc. In par-
ticular, the threshold condition obtained in [13] follows
from this expression after replacing τ δv by 1/δv0 , the mean
duration of immunity arising from vaccination when δv

is constant and equal to δv0 .

V. AGENT-BASED STOCHASTIC
SIMULATIONS

To perform stochastic simulations, we reconceptualize
the mathematical formulations from an agent-based per-
spective. The PDE models adopt an aggregate represen-
tation of the entire population. In comparison, agent-
based models (ABMs) enable us to analyze the overall

system behavior emerging from autonomous agents’ be-
haviors and interactions. In the model, each person agent
follows the SIRVS transition process as shown in Fig 1.

FIG. 1. SIRVS model transition process. Each circle repre-
sents one of the disease states, namely susceptible (S), infected
(I), recovered (R), and vaccinated (V). Symbols above the ar-
rows indicate the rates of transitions between the states.

At the start of the simulation, all individuals are
equally susceptible, except a small fraction of the popula-
tion that will be randomly selected to enter the infectious
state to start the epidemic. Each person agent i records
the time when it transitioned to the infectious state (be-
comes infected), denoted by t0(i). Each person contacts
c number of other agents on average per day. Every time
an infectious person agent i executes a contact event, it
will fire an infection event based on a probability β(τ),
where τ is the age of infection (current time t − t0(i)).
If the infection event happens, person-agent i will ran-
domly select a person-agent j from the whole population
to transmit the infection. If the selected person j is in the
susceptible state, person j will immediately transition to
the infectious state. Otherwise, person j will remain in
its current state. Later, person i will leave the infected
state and transition to the recovered state at recovery
rate γ(τ) = 1/τ̄γ , leading to exponentially distributed
infectious periods. In addition, a person agent in the re-
covered state or susceptible state will transition to the
vaccinated state according to the same rate v as defined
by the PDE model. As immunity wanes over time, a per-
son in the vaccinated state or in the recovered one will
transition to the susceptible state based on an immunity
loss rate δ = δv.

VI. RESULTS

In this section, we compare the epidemic dynamics of
the SIRVS models with different infectiousness profiles,
infectious periods, and vaccination rates.
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A. General setup

Results are obtained from both agent-based simula-
tions and the PDE model formulation. The ABMs are
implemented in the AnyLogic 8 university researcher ver-
sion. The PDE system of the model is numerically inte-
grated by using a finite difference scheme based on the
one introduced in [22]. Agent-based simulations are per-
formed with the same parameters values as the mathe-
matical model. There are five hundred simulation runs
for each scenario. In all scenarios, the basic reproduction
number R0 is set to be 2.5, and the contact rate c equals
10. In addition, we assume recovered and vaccinated in-
dividuals have the perfect protection against infections
for a mean immunity period of six months based on ref-
erences [23, 24]. In particular, the rates of immunity loss
are assumed to be constant and equal to δ = δv = 0.0055.
For these values of R0 and δv, the corresponding criti-
cal vaccination rate is vc = 0.00825. Finally, the recovery
rate γ(τ) is also assumed to be constant and, hence, equal
to 1/τ̄γ .

For scenarios with constant infectiousness, β(τ) is con-
stant and equal R0γ/c. In this case, since γ is also con-
stant, the generation time is exponentially distributed:
w(τ) = γe−γτ (cf. with Eq. (2)). For varying infectious-
ness profiles, following [3], we assume that w(τ) follows a

Weibull distribution, i.e., w(τ) = k
λ (

τ
λ )

k−1e−(τ/λ)k , with
the shape parameter k kept unchanged and changing the
scale parameter λ to result in the desired value of the
mean generation time (MGT). More precisely, from the
expression of the MGT of a Weibull distribution, it fol-

lows that λ = MGT
Γ(1+ 1

k )
, where Γ denotes the gamma func-

tion. Then, β(τ) will follow from Eq. (2) with R0 = 2.5
and c = 10. So, the generation time distribution w(τ)
is only introduced to obtain β(τ) which is then used
to trigger an infection event once an infectious contact
has occurred. In other words, simulations did not use
timeout-triggered infection transmissions based on w(τ),
but rather rate-based transitions (see Fig. 1). The re-
alized generation times are then recorded to check the
accuracy of the procedure.

There exists a variety of estimated epidemiological pa-
rameters for COVID-19. For example, the MGT of the
alpha and delta SARS-CoV-2 variants are estimated be-
tween 3.44 – 7.5 days [17]. Similarly, variations exist
regarding the duration of the infectious period [25]. The
central values reported for Weibull shape parameter k
and the scale parameter λ in [3] are 2.826 and 5.665,
respectively. In this paper, we consider MGT varying
between 4 and 8 days with an interval of one day, and
τ̄γ = 14 or τ̄γ = 7 days. Fig. 2 shows the infectiousness
profiles corresponding to different MGTs and τ̄γ .

In the ABM, we record the infection times between
infector and infectee for all simulation runs associated
with index cases and plot their distributions in Fig. 3.
Index cases refer to those individuals infected at the be-
ginning of the epidemic, who are used to introduce the

0 5 10 15 20 25 30

 (days)

0

0.02

0.04

0.06

0.08

0.1

0.12

In
fe

ct
io

u
sn

es
s 

FIG. 2. Infectiousness profiles. The solid lines correspond to
five infectiousness profiles associated with a mean infectious
period τ̄γ = 14 days to obtain the same R0 = 2.5. The dashed
lines refer to five infectiousness profiles associated with a mean
infectious period τ̄γ = 7 days to achieve the same R0 = 2.5.
Colors (blue, orange, yellow, purple, green) refer to the five
mean values for the generation times, varying between 4 and 8
days with an interval of 1 day. The Weibull shape parameter
k = 2.826 for all curves.

disease into the population. The mean infectious period
τ̄γ used to generate Fig. 3 is equal to 14 days. However,
its precise value is irrelevant to the measured Weibull
generation time distribution as long as it is far enough
from 0. This fact, numerically verified for several values
of τ̄γ , confirms that the computation of β(τ) from Eq. (2)
counterbalances the recovery effects (see Fig. 2).

B. Scenarios without vaccinations

In this section, 0.01% of the total population is initially
infected, and the remaining population is susceptible at
the beginning of the epidemic. Without considering vac-
cinations, the results from ABM and the PDE model are
presented in Figs. 4 and 5.
Overall, the model with time-varying infectiousness

profiles (Fig. 5) leads to more oscillations and of greater
amplitude when compared to that with constant infec-
tiousness profiles (Fig. 4). Due to their stochastic na-
ture, ABMs provide extra patterns not observed in the
PDE model. As ABMs treat each individual as an agent,
and PDE models can have fractions of an individual, all
curves with PDEs are associated with secondary waves
resulting from a damped oscillatory approach to endemic
equilibrium. At the same time, in the ABM (Fig. 5),
454 out of 500 (90.80%) simulation runs result in sec-
ondary waves, and the rest die out after the first epidemic
wave. Accordingly, we present the median values of sim-
ulation runs with secondary waves and the PDE results
in Fig. 4 (a) and Fig. 5 (a). With a population size equal-
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FIG. 3. Generation time distributions at the beginning of the
epidemic. Colors (blue, orange, yellow, purple, green) cor-
respond to the five generation time distributions, measured
from the ABM, with mean values varying from 4 – 8 days
with an interval of 1 day. In panels (a – e), red curves refer to
the theoretical generation time distributions for each scenario.
The generation times in each scenario follow the Weibull dis-
tribution with the same shape parameter k and varied scale
parameter λ. In the simulations, the mean infectious period
τ̄γ is set as 14 days and the population size is 500,000.

ing 500,000, the ABM results resemble PDE results very
well.

Fig. 6 shows the impact of the population size and in-
fectiousness profiles on the risk for secondary waves. We
can see that the chance for secondary wave occurrences
rises along with the increase in MGT. Probably, this is
due to the fact that those individuals who remain infec-
tious for a long time have higher infectiousness towards
the end of their epidemic period as the MGT increases
because the infectiousness profile gets stretched out to
the right. On the other hand, the percentage of simula-
tion runs with secondary epidemic waves in populations
of size 20,000 is lower than that in populations of size
100,000 and 500,000. So, with the same fraction of in-
fected cases, larger populations have a higher chance for
secondary outbreaks over small populations.

Simulation runs without secondary waves may be asso-
ciated with epidemics dying out after the first peak, with
initial extinctions, or with no index cases. Focusing on
whether the secondary waves appear after the first peak,
we calculate the risk for secondary waves in Fig. 6, with-
out taking into account those simulation runs associated
with initial (stochastic) extinctions or those without se-
lected index cases. At the beginning of each simulation
run, each agent enters the infected state based on a prob-
ability of 0.0001. This leads to stochasticity in the num-
ber of index cases and thus to simulation runs that fail
to introduce index cases with populations of size 20,000,
for which the expected number of index cases is only 2.

Let us denote the percentages of total simulation runs
with initial extinctions and without index cases as pex
and pno, respectively. The values of pex and pno become
substantially small as the population size increases. For
example, with populations of size 20,000, pex = 10.40%
(pno = 11.00%) for MGT=4 days, and pex = 15.80%
(pno = 12.60%) for MGT=8 days. With populations of
size 100,000, pex = 0.4% (pno = 0) for MGT=8 days,
and, with populations of size 500,000, pex = 0 (pno = 0)
for MGT=8 days.
Fig. 7 depicts the fractions of infected individuals ob-

tained by considering variations in infectiousness profiles.
These fractions follow from the numerical integration of
the PDE model and are given by

∫∞
0
I(t, τ) dτ/N . In

Fig. 7 (a), with the mean infectious period τ̄γ = 14 days,
when the MGT increases from 4 to 8 days, the peak time
for the epidemic waves is postponed (from day 41 to day
79 for the first peak time) with height reduced by 29.95%.
This shift in the time of the first peak is consistent with
lower initial epidemic growth rates predicted by Eq. (3)
for larger MGTs. Precisely, the predicted values of the
initial growth rate are as follows: r(MGT=4)= 0.2464,
r(MGT=5)= 0.1971, r(MGT=6)= 0.1642, r(MGT=7)=
0.1408, r(MGT=8)= 0.1235, and r = 0.1071 for constant
β. All of them are in agreement with the initial growth
rates estimated from Eq. (3). In comparison, differences
between epidemic curves due to the shift in the infectious-
ness profiles are less pronounced when the range of MGT
gets closer to the mean infectious period, e.g., τ̄γ = 7
in Fig 7 (b). Remarkably, the only initial growth rate
that has changed is the one for constant β, which, now,
is higher than those corresponding to the largest MGT
(predicted initial growth rate for constant β: r = 0.2143).
This is due to the fact that, for constant β, the gener-
ation time distribution is equal the distribution of the
length of the infectious period (cf. with Eq. (2)). The
rest of the generation time distributions are independent
of the recovery rate and, so, the corresponding curves
are arranged in the same order in both panels. This
indicates that the differences between models based on
time-varying and constant infectiousness profiles heavily
depend on the recovery processes. When recovery pro-
cesses interfere less with infection processes, we can see
noticeable effects of infectiousness profiles.

C. Scenarios with vaccinations

Fig. 8 shows the fractions of infected individuals, com-
puted again as

∫∞
0
I(t, τ) dτ/N , with a uniform vacci-

nation rate v equal to 0.5vc and vc, and different in-
fectiousness profiles. Here, the critical vaccination rate
vc = (R0 − 1)/τ δv equals 0.00825. All individuals are
initially susceptible except 0.01% of the total population
which is set as index cases to start the epidemic. We can
see that the infectiousness profiles and the mean infec-
tious period affect the epidemic dynamics in the transient
phases but have no impact on the critical vaccination as



7

FIG. 4. Scenario results with constant infectiousness profiles and a mean infectious period τ̄γ = 14 days. The dashed lines in
panel (a) depict fractions of cases in each state from the numerical integration of the PDE model. The solid lines show the
median value of simulation runs with secondary waves from the ABM. Panels (b – d) plot the fractions of infected, recovered,
and susceptible cases for all simulation runs. Various colors represent the values resulting from different simulation runs. Five
hundred simulation runs are performed for each scenario with a population size of 500,000.

FIG. 5. Scenario results with varying infectiousness profiles (MGT=5 days) and a mean infectious period τ̄γ = 14 days. In
panel (a), the dashed lines depict the fraction of individuals obtained from the numerical integration of the PDE model, and
the solid lines show the median value of simulation runs with secondary waves from the ABM. In panels (b – d), various colors
represent the values resulting from different simulation runs. Panel (b) plots the fraction of infected cases for all simulation
runs. Panels (c) and (d) show the fractions of recovered and susceptible cases for all simulation runs. Five hundred simulation
runs are performed for each scenario with a population size of 500,000.
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FIG. 6. The impact of population size and the mean gener-
ation time on the risks for secondary wave occurrences. In
the figure, MGT stands for the mean generation time, which
varies from 4 to 8 days with an interval of 1 day. The mean
infectious period τ̄γ = 14 days. The value in the heatmap
indicates the percentage of simulation runs with secondary
epidemic waves, given a first epidemic peak. Simulation runs
associated with initial extinctions or without selected index
cases are not considered. In all these cases, the predicted en-
demic equilibrium is eventually reached.

FIG. 7. Impact of infectiousness profiles on the fraction of in-
fected individuals. In panel (a), the infectious period τ̄γ = 14
days. In panel (b), τ̄γ = 7 days. A shorter infectious period
(faster recovery) interferes more with the generation time dis-
tribution (transmission process) and reduces the differences
among curves. Figures in both panels are based on the nu-
merical integration of the PDE model.

long as the parameters can achieve the same R0.
On the other hand, we consider scenarios (Fig. 9)

where the vaccinated population is present at the begin-
ning of the epidemic, and 0.01% of the susceptible pop-
ulation is initially infected. More specifically, the frac-
tion of the susceptible population is obtained through the
DFE condition S∗/N = 1/(1 + v τ δv ), and the rest of the
population is vaccinated (

∫∞
0
V ∗(τ) dτ/N = 1 − S∗/N).

Accordingly, we have 40% and 57.14% of the total pop-
ulation susceptible at the beginning of the epidemic for
scenarios with v = vc and v = 0.5vc, respectively.
Fig. 9 shows the evolution of the median fractions of in-

fected cases resulting from simulations where vaccinated
people are initially present. As expected, when new cases
are introduced, outbreaks are contained very well under
scenarios with v = vc, with only a very small fraction of
infections. In comparison, there are large outbreaks un-
der scenarios with v = 0.5 vc. For example, with MGT=4
days, the peak fraction of infected cases in Fig. 9 (a) is
0.0889 while the peak fraction of infected cases in Fig
9 (b) is 1.16 × 10−4. Considering a population size of
500,000, a peak fraction equal to 1.16× 10−4 means that
only 58 individuals are infected at peak time. So, at
the critical vaccination rate v = vc, the introduction of
new infections at the start of the simulation only leads
to minor outbreaks. Fig. 9 (a) also shows that the ini-
tial growth rates are lower than without vaccination, but
are ordered in the same way. As additional information,
Fig. 9 (c) depicts the measured R∗

0 through simulations,
which is the number of secondary cases divided by the
number of index cases. Since the initial fractions of vac-
cinated and susceptible individuals are given by the DFE,
R∗

0 can be interpreted as the basic reproduction number
at the DFE considering vaccinations. At the critical vac-
cination rate vc, the mean value for R∗

0 range from 0.9895
– 1.0182. At v = 0.5 vc, the mean value for R∗

0 varies be-
tween 1.4069 and 1.5645. The predicted values for R∗

0,
namely, R0S

∗/N , are 1 and 1.4285, respectively, which
are within the observed ranges.

VII. DISCUSSION

This paper presents a general SIRVS model consider-
ing waning immunity and age of infection. We analyzed
how variations in infectiousness profiles under the same
R0 could affect the epidemic dynamics. Compared with
Markovian models, non-Markovian models with time-
varying infectiousness profiles create more damped oscil-
lations with peak times affected in the transient phases.
Remarkably, the magnitude of this difference between the
two types of models heavily depends on the recovery pro-
cesses. When the recovery process interferes more with
the infection processes, the variations between models
become less pronounced. Such an interference is possible
because, in the standard formulation of epidemic models
with age of infection (see, for instance, [26]), recovery and
infectiousness are modeled as independent of each other.
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FIG. 8. Scenarios with vaccinations. All individuals are initially susceptible except 0.01% of the total population which is set
as index cases. In panels (a) and (c), the mean infectious period τ̄γ = 14 days, and the vaccination rate equals 0.5vc and vc,
respectively. In panels (b) and (d), τ̄γ = 7 days and the vaccination rate equals 0.5vc and vc, respectively. Figures are obtained
from the numerical integration of the PDE model.
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FIG. 9. Scenarios with initially vaccinated individuals. The vaccinated population is initially present at a fraction given by
the DFE, and 0.01% of the susceptible population is initially infected. Panels (a – b) plot the median fractions of infected
cases from ABM. The vaccination rate equals 0.5vc and vc in panels (a) and (b), respectively. Panel (c) depicts boxplots of the
measured R∗

0 through ABM and the black solid circles reflect the predicted R∗
0. R∗

0 denotes the basic reproduction number at
the DFE considering vaccinations. The mean infectious period τ̄γ is 14 days. Five hundred simulation runs are performed for
each scenario with a population size of 500,000.
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This modeling assumption, however, is clearly question-
able if infectiousness is interpreted in terms of viral load
and recovery only occurs once a low level viral load is
reached.

We have also seen that different combinations of in-
fectiousness profiles and infectious periods have no im-
pact on the critical vaccination vc as long as they lead
to the same R0. Indeed, given R0, the mean duration
of the recovery period is the only feature of its profile
that determines the value of vc. However, when vacci-
nation rates are lower than the critical rate vc, models
with time-varying infectiousness still have a transient be-
havior with damped oscillations of higher amplitude than
Markovian models and retain the same order of the ini-
tial growth rates. This echoes the findings of [1], who
found that vaccination reduces the reproduction number
without changing the generation time distribution during
the epidemic. Besides, with susceptible and vaccinated
people at the beginning of the epidemic, a population at
the predicted critical vaccination rate is resilient to fu-
ture epidemics, regardless of the particular infectiousness
profile.

Loss of immunity is one of the causes of the oscillations
observed in epidemic models. For instance, if there is a
constant period of temporary immunity, destabilization
of the endemic equilibrium of the SIRS model is possible
through a Hopf bifurcation ([27]). As for damped os-
cillations, they occur in the standard (Markovian) SIRS
model and an approximation of their period is also well
known ([21]). Here we have explored the impact of the in-
fectiousness profile on the occurrence and shape of these
oscillations.

We have found that ABMs not only can produce re-
sults close to the PDE formulation with large population
sizes, but also provide additional insights into the risk of
secondary waves that are not obtained under the latter
formulation. They suggest that, even with large popu-
lations, epidemics could die out after an initial epidemic
peak if the decline in prevalence is fast enough. The
occurrence of these waves then depend on both popula-
tion size and infectiousness profile (through the assumed
mean generation time). Moreover, since they are always
associated with an endemic equilibrium, if stochastic ex-
tinction after the first peak is avoided, the convergence
towards endemic equilibrium always occurs because the
damped behavior of the oscillations prevents a return to
very low levels of prevalence. Besides, at the same popu-
lation size, the percentages of simulations with secondary
waves with constant infectiousness are higher than those
with varying infectiousness. Therefore, given the impor-
tance of reducing the risks of the emergence of secondary
waves during the course of an epidemic, it highlights
the importance of selecting the appropriate modeling ap-
proach and estimating the generation time distributions
to tackle future epidemics.
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Appendix: Simulation results with non-Markovian
recovery processes

Denote γ(τ) as the age-dependent recovery rate, and
ψip(τ) as the infectious period distribution. This distri-
bution can be characterized as recovery processes, which
can be expressed as follows:

ψip(τ) = γ(τ)e−
∫ τ
0

γ(s) ds. (A.1)

In the following, we consider infectious periods (from
I to R compartments) following the Weibull distribution,
i.e., ψip(τ) =

α
β (

τ
β )

α−1e−(τ/β)α , where α is the shape pa-

rameter and β is the scale parameter of the infectious
period distribution. According to Eq (A.1), we have

γ(τ) = α
β

(
τ
β

)α−1

.

From Eq (2), it follows

β(τ) =
w(τ)R0

c e−
∫ τ
0

γ(s) ds
.

Since now γ(τ) = α
β

(
τ
β

)α−1

, we have β(τ) =

w(τ)R0/
(
c e−(

τ
β )

α)
. In the simulations, we set α = 2.82

and β = 15.72 to obtain the mean infectious period
τγ = 14 days. The parameters of w(τ) are the same
as those in the main text.
Without considering vaccinations, the results from

agent-based simulations are plotted in Fig. A.1. We
record the recovery times for all simulation runs associ-
ated with index cases, from which we compute the cor-
responding infectious periods and plot their distribution
in Fig. A.1(d). In Fig. A.1, 493 out of 500 (98.6%) simu-
lation runs result in secondary waves, while the rest dies
out after the first epidemic wave. In comparison, with
the same MGT (5 days) and a constant recovery rate
equal to the inverse of a mean infectious period τγ = 14
days, 90.8% simulation runs result in secondary waves. It
suggests that, with the same mean infectious period, the
percentage of secondary wave occurrences increases when
the recovery rate changes from constant to non-constant
values.



11

In Fig. A.2, we present the median values of simulation
runs with secondary waves. Consistent with the patterns
observed in Fig. 7, we can observe that as the MGT in-
creases from 4 to 8 days, the peak time for the epidemic
waves is postponed (from day 42 to day 79 for the first

peak time) with a reduced height of 35.91%. When com-
paring the results with constant recovery rate shown in
Fig. 7, we notice that the disease prevalence increases
when infectious periods are Weibull distributed but with
the same τγ = 14 days.
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FIG. A.1. Scenario results with varying infectious profiles (MGT=5 days) and non-Markovian recovery processes. The Weibull
infectious period distribution is associated with shape parameter α = 2.82 and scale parameter β = 15.72, leading to a mean
infectious period τγ = 14 days. Panels (a – c) plot the fractions of infected, recovered, and susceptible cases for all simulation
runs. Various colors represent the values resulting from different simulation runs. In panel (d), we present the infectious
period distribution measured from ABM, and the red curve refers to the theoretical infectious period distribution. 0.01% of
the susceptible population is initially infected. Five hundred simulation runs are performed for each scenario with a population
size of 500,000.

0 200 400 600 800 1000

Time (days)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

ct
io

n
 o

f 
in

fe
ct

ed
 c

as
es

FIG. A.2. Scenarios with different infectiousness profiles and
the same non-Markovian recovery time distributions. The
Weibull infectious period distribution is associated with a
shape parameter α = 2.82 and a scale parameter β = 15.72,
resulting in a mean infectious period τγ = 14 days. The figure
depicts the median fraction of infected cases from the ABM.
Initially, 0.01% of the susceptible population is infected. Five
hundred simulation runs are performed for each scenario with
a population size of 500,000.


