
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Semidefinite programming algorithm for the quantum
mechanical bootstrap

David Berenstein and George Hulsey
Phys. Rev. E 107, L053301 — Published 23 May 2023

DOI: 10.1103/PhysRevE.107.L053301

https://dx.doi.org/10.1103/PhysRevE.107.L053301


A Semidefinite Programming algorithm for the Quantum Mechanical Bootstrap

David Berenstein∗ and George Hulsey†

Department of Physics, UC Santa Barbara
(Dated: April 24, 2023)

We present a semidefinite program (SDP) algorithm to find eigenvalues of Schrödinger opera-
tors within the bootstrap approach to quantum mechanics. The bootstrap approach involves two
ingredients: a nonlinear set of constraints on the variables (expectation values of operators in an
energy eigenstate), plus positivity constraints (unitarity) that need to be satisfied. By fixing the
energy we linearize all the constraints and show that the feasability problem can be presented as
an optimization problem for the variables that are not fixed by the constraints and one additional
slack variable that measures the failure of positivity. To illustrate the method we are able to obtain
high-precision, sharp bounds on eigenenergies for arbitrary confining polynomial potentials in 1-D.

Solving for the spectrum of Hamiltonians is a very im-
portant scientific problem with applications to the study
of molecules (quantum chemistry), atomic physics, solid
state physics, etc. Certain applications also require very
high precision in the spectrum if one is to understand
theoretical aspects of non-perturbative information, like
those that appear when studying resurgent series [1].
Novel methods that compute the spectrum of Hamiltoni-
ans to high precision are very useful in these applications.

Recently, the numerical bootstrap has enjoyed renewed
attention in its application to quantum mechanical sys-
tems, starting with [2]. In previous work, we demon-
strated the efficiency of the numerical bootstrap in find-
ing rigorous, precise bounds on the energies of eigenstates
in one dimensional Schrödinger problems [3–5]. The same
setup for other 1-d problems has been studied in [6–12].
The algorithmic approach (following the ideas of [13])
performs a search of possible solutions to the truncated
bootstrap problem and gives a ‘Yes/No’ answer to their
validity. If a solution survives, one can increase the size of
the truncation and keep searching more finely in the set
of possible solutions. This search is in a space of many
variables which can grow as the size of the truncated
problem increases. This type of search is impractical ex-
cept on search spaces of low dimension, dsearch ≤ 3.

In this letter we describe and implement a semi-definite
programming algorithm to numerically find an arbitrary
subset of the spectrum of a Hamiltonian which over-
comes the problem of searching in a high dimensional
search space. We implement it for problems in 1D with
a polynomial potential. At each fixed value of the energy
E = 〈H〉, the algorithm is a linear semidefinite program
which may be solved polynomially in the size (depth) K
of the constraint matrices. One then scans only over E.

I. THE BOOTSTRAP AS AN SDP

The quantum mechanical bootstrap, as proposed in [2]
works as follows. We start with a Hamiltonian H with
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a point spectrum. For simplicity we will assume that
the potential is polynomial and that the system is one
dimensional so that

H = p2 + V (x) (1)

From this, we assume that we have an eigenstate of the
Hamiltonian with energy E. The question of the boot-
strap is to decide if E is an allowed eigenvalue of the
Hamiltonian or not. To do so we generate a recursion for
the positional moments 〈xn〉 from the two constraints

〈[H,O]〉 = 0; 〈HO〉 = 〈H〉〈O〉 = E〈O〉 (2)

which assume that the state is an eigenstate of energy E.
Given a collection of such moments, any positive function
|∑αix

i|2 will have a positive expectation value. This is a
unitary constraint: it states that the probability density
associated to the state with energy E is non-negative.
The constraint is a quadratic function of the αi and gives
rise to a positive definite matrix M � 0 computed from
the positional moments. A solution is an allowed state
if E and the moments satisfy all the constraints and the
positive condition on M .

More generally, beyond 1D, for any operator O, the ex-
pectation value of the positive operator 〈O†O〉 ≥ 0 must
be non-negative. This gives rise to a positive definite ma-
trix when we pick O from the span of a subset of basis
operators. In 1-D problems the expectation values ap-
pearing in M defined above are generally strong enough
to determine uniquely the solutions.

In the algorithm proposed in [2] one is supposed to test
(search) for each value of E as well as the expectation
values that are not determined from the recursion. The
dimension of the search space is the number of variables
that is not determined by the recursion. For example, for
a potential V (x) = ax2 +gx4 one needs to do a search on
a two dimensional space, which can be defined as the pair
of values 〈x2〉, 〈x4〉, or equivalently E, 〈x2〉. The reason
only even powers are required is due to the symmetry
x → −x of the potential. If we don’t have that sym-
metry, we would need instead 〈x〉, 〈x2〉, 〈x3〉, 〈x4〉. For
an even potential of generic form V (x) ∼ a2nx

2n + . . . ,
one needs to have information on n variables, 〈x2k〉 for
k = 1, . . . , n. The main algorithm tests if the matrix
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moments satisfy the condition M � 0 where the ma-
trix is truncated to the first K ×K matrix of moments.
The matrix MK×K is a principal minor of the subsequent
M(K+1)×(K+1) matrix. The matrix M(K+1)×(K+1) being
positive requires that MK×K � 0, so collections of val-
ues that do not satisfy the positivity at some value K are
rejected for al larger values K ′ > K. This gives a notion
of convergence of allowed solutions. When the dimension
of the search space is large, let us say n > 3, the cost of
searching for solutions becomes prohibitive: the numeri-
cal results of various experiments show exponentially fast
convergence to solutions. It is easy to miss them if one
needs to do a very fine grained improvement of the mesh.
This is what we will call the high dimension search space
problem. The algorithm as described requires searching
finely on the full dimension of the search space with a
fine comb. This paper addresses this issue by finding a
new way to find solutions that do not involve a ‘pecking’
procedure (searching on a mesh point by point) on a high
dimensional search space.

Furthermore, if E is a variable determined from the
other ones, these latter constraints in (2) are nonlinear
in the moments xn ≡ 〈xn〉. One may choose to omit
the nonlinear constraints and be left with a linear prob-
lem; this is the route in [14, 15], where one minimizes
the value of the energy given some positivity constraints.
The tradeoff is that one is only able to solve for the
ground state in the absence of the nonlinear constraints.
An alternative approach to linearization to the one we
take here is to apply a convex relaxation of the non-linear
constraints in (2). Such a method has been applied in
the study of the large N bootstrap [16, 17] to relax non-
linearities in the Yang-Mills (or matrix model) loop equa-
tions that arise from factorization. Our improved algo-
rithm linearizes the problem by fixing E and notices that
the problem to solve can be recast as a semi-definite pro-
gram optimization algorithm instead. The search space
is reduced to just one variable, the energy E.
Fixed-energy recursion. A simple way to linearize

the constraints (2) is to fix the value of energy E and test
if E is an allowed value. At each fixed value of the energy
the recursion is linear in the xn. Consider an arbitrary
potential of even degree d:

V (x) =

d∑
n=1

anx
n

The recursion relates moments xn with n ≥ d to lower
moments. For m ≥ 0 it may be written

xd+m =
1

2ad(d+ 2m+ 2)

[
4(m+ 1)Exm

+ m(m2 − 1)xm−2 − 2

d−1∑
n=1

(n+ 2m+ 2)anxn+m

]
(3)

Generically, initializing the recursion requires the energy
as well as the first d− 1 moments, with x0 = 1.

The basic object of interest in the bootstrap is the

K×K Hankel matrix with elements M
(K)
ij = xi+j , where

0 ≤ i, j ≤ K−1. The unitarity constraint is that M � 0;
M defines a covariance matrix which must be positive
semidefinite.

Before applying the recursion, the matrix elements of
M (K) are the first 2K − 2 moments xm. The recursion
(3) relates the xm with m ≥ d to those with m < d by
introducing a dependence on the energy E; it thus defines
a set of symmetric K ×K matrices Fn(E) by

M (K) =

d−1∑
n=0

xnFn(E) (4)

where the xn for 1 ≤ n ≤ d − 1 will function as primal
variables for the optimization problem.

As K → ∞, the Hankel matrix M (K) defined above
will be positive definite only for E in the spectrum of H:
this has been shown in examples and is expected to be
true. No complete proof exists. For the purposes of this
paper we will take that statement at face value. Finite
K is a truncation of an infinite set of constraints. We
expect the Hankel matrix to be positive definite in some
disjoint set SK ⊂ R which strictly contains the spectrum
of H. Moreover, the xn are uniquely determined by E.
Numerical experiments [4, 15] have shown that the con-
vergence to the eigenvalues (and the moments) is expo-
nentially fast in the size of the truncation. Furthermore,
SK+1 ⊂ SK , etc. This same weak convergence property
allows efficient search strategies in a bootstrapping algo-
rithm.

The main problem in previous explorations of the
quantum mechanical bootstrap is that a search is done
both in E and in the moments. If there are many mo-
ments that are undetermined from the recursion, the
search for solutions of the bootstrap equations and con-
straints is done in a high dimensional space and becomes
very inefficient. Our goal then is to find an optimal value
of the moments for fixed energy E rather than doing a
blind search. Moreover, if the problem fails to find a so-
lutions of the constraints, we want a numerical measure
of how far we are from satisfying the constraints. Our
new proposal addresses these issues, so that in end one
is left only with a scan over energies E.

Optimization. How do we test if a symmetric matrix
M (K) is positive? If the matrix is Hermitian, then the
condition of being positive (definite) is equivalent to the
minimal eigenvalue of M (K) being positive. We test pos-
itive definiteness by considering the minimal eigenvalue
of M (K) as a function of the primal variables xi. Define
an optimization problem

maximize λmin

(
M (K)(xi, E)

)
(5)

If the optimal value is negative, the energy value E can
be safely excluded from the set SK . The goal is to solve
this optimization problem for a range of energies and to
thereby determine the set SK . The algorithm proceeds
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by searching this set at depth K+ 1, and iteratively con-
verges to the spectrum (or a subset thereof).

The problem (5) defines an objective function which
is highly nonlinear in the primal xi. However, the prob-
lem of eigenvalue extremization is well-known to have an
equivalent formulation as an SDP with linear objective
[18]. First, introduce a slack variable t and write

maximize t
subject to λmin(M(xi, E)) ≥ t

which is equivalent to (5). It is convenient to introduce
the matrix M−tI. If the minimal eigenvalue of M−tI is
positive, the matrix in question must be positive definite
M− tI � 0. This allows us to write a problem equivalent
to (5) in SDP form, using the decomposition (4):

maximize t

subject to
∑d−1

n=0 xnFn(E)− tI � 0
(6)

This is an SDP in linear matrix inequality (LMI) form
with primal variables x = (t, x1, ..., xd−1) 1.

Notice that even if the energy is not allowed, the opti-
mization problem will find a solution: a sufficiently large
negative t will always make it possible to satisfy the pos-
itive matrix constraint. We thus obtain for the K we are
testing a value t that is negative and an optimal value of
the moment variables. The maximum t, which we label
tmax, is a measure of how close to success we are. As we
scan over E (at fixed K), tmax will depend continuously
on E and it is possible to estimate when it will become
positive. It thus serves not only as a diagnostic of failure,
but it also gives a way to scan intelligently in E.
Problems on other domains. For problems on the

half line, the interval, or a circle, light modifications of
the approach are needed. In the case of the circle, one
uses periodic functions in the bootstrap (a trigonometric
moment problem). The goal in that case is to find the
band structure of the potential.

There are two main differences from problems adapted
to the real line and the interval: certain terms in the
recursion are modified and one has two or more matrix
positivity constraints to contend with.

In [5], we showed how solving Schrödinger problems
on the half line requires adding anomalous terms to
the recursion which depend on the boundary conditions
ψ(0), ψ′(0). One must include these terms, which gener-
ally modify the recursion (3). The same will be true in
the interval, where each boundary will modify the recur-
sion relations depending on the boundary conditions.

On the half line, the other difference is due to the result
of Stieltjes on the moment problem for measures on R+.
Positive semidefiniteness is required for the matrix Mij =
xi+j as well as the matrix M ′ij = x1+i+j . To account

1 In some SDP solvers, the algorithm must be written as a mini-
mization problem. This is done by minimizing −t instead.

for this, we just require positivity of M − tI � 0 and
M ′ − tI � 0. The rest of the algorithm is unchanged.
Basicaly, we pick up either the minimum eigenvalue of
M and M ′ to be positive. 2. In the interval (0, 1), the
polynomial (1− x) is also positive definite and there will
be additional blocks required for solving the dynamics.

For problems in higher dimensions, we expect that the
constraints are not enough to determine recursively all
the moments from a finite search space. We are currently
investigating this issue. Conceptually, there is no obsta-
cle to proceed in these higher dimensional setups. The
main issue will be on understanding the optimal way to
eliminate variables and how different truncation schemes
might perform.

A. The algorithm

With the SDP formulation, the bootstrap algorithm
proceeds as follows. Given a potential V , take an initial
set of energy values S0 = {Ei} ⊂ R. For each fixed value
of the energy, solve the SDP (6) at some initial depth K0.
Energies Ei for which the tmax is positive form the set
SK0

, which serves as the search set at depth K ′ > K0.
Iterating this procedure will result in a set of intervals
within S0. These intervals define sharp bounds on the
exact spectrum of H, in the sense that the bounds are
rigorous and can only shrink as K increases.

A persistent issue with the bootstrap is the rapid
growth of the matrix elements. The magnitude of the
largest matrix entries scales super-exponentially with K.
For example, in the harmonic oscillator, 〈xn〉 ∼ Γ(n/2)
in eigenstates. As a result, using single or double preci-
sion floats results in serious numerical error after K ∼
10. Similar issues were encountered in the conformal
bootstrap program, which necessitated the use of an
arbitrary-precision SDP solver [19]. We found the same
to be necessary in order to obtain comparably high pre-
cision to finite-element methods.

To numerically solve the problem, we used SDPA-GMP
[20], a primal dual interior point SDP solver built on the
GMP (GNU multiple precision) arithmetic library. The
main reason this is needed is that the minimal eigenvalue
of M , when positive, tends to be exponentially small for
large matrices. This is the reason the algorithm is com-
putationally expensive in practice. The SDP was set up
in Python, where the recursion was computed and used to
generate the Fn(E) for an array of energy values. This
program wrote input and output files for SDPA-GMP,
which solved the optimization problem (6) for each con-
sidered value of E. These results were read back into
Python, generically resulting in intervals of energy where

2 Many SDP solvers, including SDPA, allow one to specify the
block structure and interpret the matrices as sparse arrays. This
avoids considering the many inert matrix elements and slowing
down the computation.
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positivity was satisfied. These intervals were used to gen-
erate new, finer resolution arrays which were fed back
into the algorithm just described. We worked with ∼ 60
digit (200 significant bits) precision.

The main benefit of the SDP approach is that we can
search a very high dimensional space very efficiently. In
our previous work, we were constrained to potentials of
degree ≤ 4 due to the brute-force nature of the algo-
rithm. Now, potentials of essentially arbitrary degree
can be solved in comparable time.

II. RESULTS FOR AN EXAMPLE

To show that this method is able to obtain high-
precision results for excited states in a search space of
large dimension, we considered as a simple example the
degree 8 potential

V (x) =
1

2
x2 − x4 +

1

8
x8 (7)

This has 8 primal variables (including t); although since
the potential is even, the number effectively reduces to 4
primal variables. We search over the energy range [0, 15]
which we know to contain the first five excited states.
We started the search at matrices of size K0 = 10 and
terminated the search once all detected levels reached 6
significant figures; this required up to K = 31. At each
depth, the algorithm requires us to look for the negative
values of the objective function of (6). We can visualize
the convergence by plotting log(|t?|), where t? is the opti-
mal value, versus the fixed energy E. Inverted ‘spikes’ in
this plot show the zero crossings. As the intervals of pos-
itive t shrink with increasing K, two spikes seem to join
around the exact value of the eigenstate energy, as shown
in Fig. 1. The structure is always a double spike struc-
ture around each allowed value: two spikes can become so
close to each other that the plot can no longer distinguish
them. The numerical estimates for the eigenenergies are
shown in Table I. This level of precision is beyond ma-

n Bootstrap Uncertainty Mathematica FEM

1 0.446987(5) ±2.86 · 10−7 0.44698(8)
2 1.975515(7) ±2.06 · 10−7 1.9755(2)
3 4.897587(3) ±2.55 · 10−7 4.8975(9)
4 9.05144(00) ±6.13 · 10−7 9.0514(4)
5 14.10082(3) ±1.76 · 10−6 14.100(8)

TABLE I. Energies for the potential (7) at K = 30 and rigor-
ous bounds on absolute uncertainty, compared to the finite-
element method (FEM) results.

chine precision in Mathematica, though its implementa-
tion of a FEM eigensolver works much faster for this class
of 1d problems. Specifically, evaluation of Mathemat-
ica’s ‘NDEigensystem’ to generate lowest 5 eigenenergies
of the potential (7) took ∼ 1.54 seconds. Our implemen-
tation of the SDP bootstrap algorithm in Python took
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FIG. 1. The (log of the) objective function evaluated over a
range of energies for the potential (7). Exact energies (com-
puted in Mathematica by FEM) shown as dashed lines. Re-
sults shown for K = 12, 14, 18.

∼ 876 seconds to run from K = 10 to K = 30, generat-
ing the results above. The time for evaluation increases
roughly exponentially in K, from ∼ 12 sec for K = 10 to
∼ 94 sec at K = 30.

As an additional point of performance comparison, one
can also numerically diagonalize the Hamiltonian by writ-
ing it in the number basis of p2+x2 and truncating. This
is a fundamentally variational method, so convergence
will be monotonically downward toward the exact eigen-
values. To reproduce the precision of the bootstrap for
this potential, this method required diagonalizing a ma-
trix of size ∼ 330, taking ∼ 35 sec to produce answers at
the same level of precision as the bootstrap. The resid-
uals of this method for different size matrices are shown
in figure 3 in the appendix.
Convergence. The data from each depth K is a set

of valid energy intervals. It has been repeatedly observed
that the widths of these intervals decreases exponentially
in K. We find that result borne out again in Fig. 2. The
convergence is exponential and uniform in slope across
energy levels, at least asymptotically in K.

In the regime of constant exponential growth of Fig.
2, the approximate slope is ≈ −0.83; the average width
of the allowed intervals decreases like w̄(K) ∝ e−0.83K .
Hence at K ′ > K, the ratio of widths goes like
e−0.83(K

′−K). Obtaining one more decimal digit of pre-
cision requires changing the size of the truncation to
K ′ = K+log(10)/0.83 ≈ K+3. This shows the power of
the bootstrap approach: the number of significant digits
scales approximately linearly with the depth K.

Conclusion In this paper we proposed a new algo-
rithm to solve for the energies of 1-dimensional Hamil-
tonian systems within the bootstrap approach. The
method utilizes a semidefinite programming algorithm
to find solutions of the (truncated) bootstrap equations.
The method solves the problem of “searches in a large
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FIG. 2. Width of allowed energy intervals vs. K, on a loga-
rithmic scale.

dimension space” by considering the system at fixed en-
ergy (the guess) and extremizing over an additional slack
variable as well as the other parameters of the original
bootstrap equations. What we noticed was that once
the energy was factored out, the recursive relations for
moments become linear. The search space is effectively
reduced to one dimension as the algorithm optimized the
other variables that where necessary to search in the pro-
posal of [2]. If the slack variable is positive at the optimal
value, the positive definite constraint is satisfied and the
energy E is allowed. If the slack variable is negative, in
principle one can use a Newton-Raphson method to find
the next crossing of zero and thus search effectively in the
energy parameter as well. The method is able to obtain
high precision data on the eigenvalues and in the exam-
ple we studied, it is numerically seen that the method
converges exponentially fast.

It is clear that our method can be expanded to solv-
ing problems in higher dimensions, where the size of the
search space might grow with the truncation. Applying
these techniques might be useful in the study of many-
body problems in quantum chemistry and other areas,
with the possibility of not only finding ground state func-

tions of electrons (like in other optimization algorithms
[21]), but also finding excited states.
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Appendix A: Hamiltonian truncation

For completeness, here we present the results of
the Hamiltonian truncation method for the lowest
five eigenenergies of the Hamiltonian with the poten-
tial in equation (7), evaluated in Mathematica. We
obtain numerical values of 0.446987553, 1.9755156336,
4.8975870391, 9.0514388973, 14.1008176421 for the low-
est five eigenvalues, on a matrix of size 330. The results
match the ones in table I.

The residuals for different size matrix truncations are
found in figure 3

100 150 200 250
Matrix Size

10-8

10-4

Residual

FIG. 3. The residuals comparing the six smallest eigenvalues
of different Hamiltonian truncations by matrix size, relative
to the size 330. The residuals increase with the size of the
eigenvalue.

As can be seen from the data, the fifth eigenvalue has
a precision of roughly 10−7 at a matrix size of 270.
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