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Real-world networks are rarely static. Recently, there has been increasing interest in both network
growth and network densification, in which the number of edges scales superlinearly with the number
of nodes. Less studied but equally important, however, are scaling laws of higher-order cliques,
which can drive clustering and network redundancy. In this paper, we study how cliques grow
with network size, by analyzing several empirical networks from emails to Wikipedia interactions.
Our results show superlinear scaling laws whose exponents increase with clique size, in contrast to
predictions from a previous model. We then show that these results are in qualitative agreement
with a new model that we propose, the Local Preferential Attachment Model, where an incoming
node links not only to a target node but also to its higher-degree neighbors. Our results provide
new insights into how networks grow and where network redundancy occurs.

I. INTRODUCTION

Networks underlie a wide variety of social phenomena,
from the spread of disease and information [1] to the for-
mation of collaborations [2, 3]. The evolution of networks
has been a popular research topic since the Barabasi-
Albert model demonstrated that growth through prefer-
ential attachment can explain a fundamental property of
networks—their heavy-tailed degree distributions [4, 5].
More recent research has studied another fundamental
aspect of network growth, known as densification, where
the number of links increases super-linearly with the
number of nodes [3]. Densification can create advan-
tages for larger systems: for instance, in collaboration
networks, it provides more opportunities for researchers
at larger institutions over smaller ones [2]. Several net-
work growth models have been developed to help explain
mechanisms of specific networks, such as gene regulatory
networks [6, 7], or provide general mechanisms of pat-
terns seen in empirical data, such as fitness [8], graph
spectra [9], or copying mechanisms [2, 10, 11], among
others [12–15].

Growth of higher-order structures in networks is a less
studied aspect of network growth. Although some higher-
order structures, such as triangles [16], have long been
known to play an important role in network phenomena,
less attention has been devoted to how these and higher-
order motifs form in growing networks. Recent research,
notably by Bhat et al. [10] and Lambiotte et al. [11], has
offered potential mechanisms that predict how edges and
larger cliques will scale as a function of network size. (For
clarity, a clique of size k is a fully connected subgraph,
with k nodes and k(k − 1)/2 edges). The mechanism of
clique formation proposed by Lambiotte et al., however,
has not been tested empirically before.

In this paper, we study clique formation in growing
networks. Fig. 1a considers the case of an empirical net-
work of user interactions on the question-answer web-
site known as Math Overflow [14] (answers to questions,
comments to questions, and comments to answers). Plot-

ting the number of cliques of differing size k as a func-
tion of network size (measured by the number of nodes),
we see that the number of edges (k = 2) grows super-
linearly with network size. Network degree therefore in-
creases with network size, consistent with previous re-
sults [2, 3, 10, 11]. But crucially, we observe that the
number of triangles (k = 3) and larger cliques grows
even faster, leading to an increased level of redundant
connections in the network. This effect, which we call
clique densification, is found in many empirical networks
(see also Supplementary Figure S1 [17], which shows re-
sults for other networks [14, 18–21]). We also find that
these networks form links locally, i.e., between nearby
nodes, and preferentially connect to high-degree nodes.
Furthermore, the effect of 2-cliques being overtaken by
increasingly large clique sizes in Fig. 1a gives rise to an
intriguing envelope structure that itself appears to follow
a power law.

In order to explain our findings, we propose the Local
Preferential Attachment Model (LPAM) that combines
two prevalent mechanisms in networks: copying (link-
ing not only to a target but also to some of its neigh-
bors) [22], and preferential attachment (linking prefer-
entially to higher-degree nodes). While copying alone
can explain some network densification, it does not ex-
plain why the representation of large cliques grows so
rapidly in networks. Similarly, preferential attachment
cannot explain densification at all. The two mechanisms
together, however, are key to understanding how such
dense substructures arise in networks. These substruc-
tures can be useful, for example, when links are removed
because they provide redundancy that maintains network
connectivity. This may help us understand seeming in-
efficiencies in network formation, as the density of these
subgraphs may preserve the giant connected component
of a network. Moreover, the copying and preferential at-
tachment mechanisms could assist in explaining the for-
mation of dense subcommunities in networks [23]. Our
work provides a new understanding of how network struc-
ture evolves and can help account for these behaviors.
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FIG. 1. (a) Number of cliques of a given size vs. the number of nodes in the network for the Math Overflow question-answer
website [14]. See also Supplementary Figure S1 [17] for results on other networks [14, 18–21]. (b) Local Preferential Attachment
Model (LPAM) preferentially attaches to higher-degree neighbors of the target node. A new node (red) connects to a random
target node (green), as well as to the target node’s higher-degree existing neighbors (purple). (c) Scaling laws versus clique size
for LPAM, node copying mechanism of Lambiotte at al [11], Forest Fire model [3], and Math Overflow data.

II. METHODS

In this section, we describe how cliques in a network
are counted. We define our model that better explains
how cliques scale super-linearly with network size, and
we discuss how we fit this and other models to data.

A. Empirical Networks

The empirical datasets we use are freely available from
the SNAP library [24]. We take 11 graphs that contain
temporal information, ignoring weights and edge direc-
tion: College Messages [18] (nodes are users, and edges
are messages between individuals), an email network at a
large European institution [14] (nodes are users and edges
are emails between users), Reddit hyperlinks within the
body and within the title of posts [19] (nodes are users
and edges are links to comments between users), Bitcoin
Alpha and Bitcoin OTC trust weighted signed networks
[20, 21] (nodes are users and edges represent degree of
trust, where we ignore the edge sign), and conversations
on Ask Ubuntu, Math Overflow, Stack Overflow, Stack
Exchange Super User boards (nodes are users and edges
represent comments to questions or answers, or answers
to questions between users) [14], and Wikipedia’s talk
pages (nodes are users and edges are comments between
users) [14]. Data are captured cumulatively, such that
links and nodes will appear but not disappear from the
first to the last timestamp.

B. Counting Cliques

It is typically a challenge to analyze high-order net-
work properties, such as cliques, in part because finding
the largest clique in a network is NP-hard [25]. Pivoter
[26], however, helps speed up clique counting, allowing
clique densification to be studied. Pivoter is based on
the Succinct Clique Tree, which efficiently stores a rep-
resentation of all cliques in the network. This is built
via an algorithm called pivoting, which reduces the re-
cursion tree used to find the cliques. We use this method
to study all empirical networks. Code used to model
and analyze data is available at https://github.com/
haochenpi314/Clique-Densification.

C. Local Preferential Attachment Model

We find three attributes of growing networks that we
aim to capture within a single mechanistic model: (a) the
number of cliques scaling super-linearly with the network
size, (b) nodes forming new links with nearby nodes, and
(c) nodes preferentially connecting to high-degree nodes.
One theoretically grounded mechanistic model is by Lam-
biotte et al. [11], in which nodes enter the network, find
a random target node to connect with, and then also
connect to random neighbors of that target node. Their
model provides theoretical predictions on the scaling laws
of edges and higher-order cliques versus network size, but
does not assume any preferential attachment mechanism.

We therefore expand on this model with LPAM, shown
in Fig. 1b. Consider a process where, at each time step,
a new node (red node) enters the network. It connects to
an existing target node (green node) chosen uniformly at
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random, and also connects to some number of neighbors
(purple nodes) of the target, with preference given to
higher-degree nodes (larger-sized nodes in Fig. 1b).

LPAM is characterized by two parameters, p and r.
For a target node of degree k, the marginal probability
of establishing a connection to a given one of its neighbors
is p, such that the expected number of new connections is
pk. However, conditional on the neighbor’s own degree,
this probability depends on r. The parameter r interpo-
lates linearly between the case of no preferential attach-
ment at all (r = 0), corresponding to the Lambiotte et
al. model [11], and the case of strong preferential attach-
ment (r = 1). Specifically, for the ith neighbor of the
target node, we define the initial scaled probability

pi = p
ki∑k

j=1 kj/k
, (1)

where ki is the degree of the ith neighbor. If pi exceeds
a threshold level p+(1−p)r, then the “excess” probabil-
ity pi − (p + (1 − p)r) is spread over the probabilities of
connecting to other neighbors of the target node, giving
new probabilities p′j = pj + (pi − (p + (1 − p)r))/(k− 1).
As this may result in certain probabilities exceeding
p+ (1− p)r, the process is iterated until all probabilities
fall below that threshold. The end result is an expecta-
tion value independent of r: we continue to connect to
pk nodes on average, but with a preferential attachment
to higher-degree nodes. The threshold level allows us
to smoothly transition between strictly preferential at-
tachment (r = 1) and the Lambiotte et al. node copying
model [11].

For a network with N nodes and L(N) links, the net-
work growth mechanism implies, as in [11],

L(N + 1) = L(N) + 1 + 2p
L(N)

N
. (2)

Following the same theory as in Bhat et al. [10], this
results in

L(N) =


N/(1 − 2p) p < 1/2

N lnN p = 1/2

A(p)N2p p > 1/2

(3)

i.e., the number of links scales superlinearly for p > 1/2,
where A(p) = [(2p − 1)Γ(1 + 2p)]−1. Sadly, because pi
depends on the other neighbor degrees kj , higher-order
dependencies are not solvable, such as the number of tri-
angles as a function of N . We instead calculate scal-
ing laws numerically by taking a linear fit of the log of
the number of cliques versus log of the network size (see
Fig. 1a) for different realizations of this model.

D. Fitting Models

Another methodological contribution of our work is
fitting a clique densification model to empirical data of

clique scaling. We measure the distribution of clique sizes
for a given network size and compare this distribution to
our model’s prediction (see an example of this distribu-
tion in Supplementary Figure S2 [17] for our model and
competing models [3, 11]). We find the parameters that
fit the empirical distributions best across several network
sizes, which can be characterized by maximizing the like-
lihood function averaged over the network sizes, N . We
call this metric MeanMLE. Each N are log-spaced steps
between which the network grows 10% until we reach the
maximum network size. MeanMLE allows us to find pa-
rameters and models with the best overall fit to data,
rather than the best at an arbitrary time point.

When fitting data, we discard model instances that
will yield low likelihoods and remove models that time
out computationally (take more than a few hours to run).
We show in Supplementary Figure S8 [17] that each real-
ization can have clique frequencies vary wildly for LPAM,
and the wide variance can in turn can sometimes make
calculating cliques computationally infeasible. This oc-
curs rarely, however. For example, out of 150,000 in-
stances across the three models used to fit Math Over-
flow, only 135 instances (0.09%) are discarded.

The LPAM, Forest Fire [3], and copying (Lambiotte
et al., [11]) models all have parameters constrained to lie
between 0 and 1. The entire parameter range is taken
when models are fit and the parameters are randomly
realized and rounded to the nearest 0.01, with 5 realiza-
tions on average for each parameter value. For the Forest
Fire and LPAM, there are two parameters whose range
is between 0 and 1, therefore there are 5 × 101 × 101
or approximately 50,000 realizations for each dataset. In
contrast, for the copying model, there is only 1 parameter
and therefore 5 × 101 = 505 realizations.

III. RESULTS

We compare the statistics of several empirical graphs
against all candidate models: the Forest Fire model [3],
which was the first of two models to explain densification,
the copying model [11], which provides theoretical predic-
tions for clique scaling, and LPAM. While there are many
other potential models one could compare against [12–
15], our results show that LPAM captures basic aspects
of network growth with a simple theoretically-grounded
mechanism.

To test the importance of preferential attachment [4],
we measure the mean degree of the target node’s neigh-
bors to which a new node connects, divided by the mean
degree of all the target node’s neighbors, averaged over
all network sizes sampled. Preferential attachment would
imply that this ratio is greater than one. In Fig. 2, we
show our findings for all networks studied. While the
copying model has a ratio of nearly one, implying no sig-
nificant preferential attachment, the empirical data show
a ratio significantly greater than one (strong preferen-
tial attachment) which is better captured with LPAM.
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FIG. 2. Effect of preferential attachment. The y-axis shows the mean degree of a target’s neighbors that a new node connects
to, averaged across all nodes at a given timestep, divided by the mean degree of all of the target’s neighbors, again averaged
over all nodes at a given timestep. When this ratio is greater than 1, nodes preferentially connect to higher-degree neighbors.
Empirical data (grey bars) are compared against the node copying mechanism (light blue) [10], the Forest Fire model [3], and
LPAM. Datasets are College messages (CollegeMsg) [18], emails at a large European institution (email-Eu-core-temporal) [14],
Reddit hyperlinks within the body of a Reddit post (soc-redditHyperlinks-body), or in the title (soc-redditHyperlinks-title)
[19], Bitcoin Alpha and Bitcoin OTC trust networks (soc-sign-bitcoinalpha and soc-sign-bitcoinotc) [20, 21], and conversations
on Ask Ubuntu (sx-askubuntu), Math Overflow (sx-mathoverflow), Stack Overflow (sx-stackoverflow), and Stack Exchange
Super User (sx-superuser) boards [14], and Wikipedia’s talk pages (wiki-talk-temporal) [14]. Error bars are standard errors of
this ratio across all sampled network sizes.

See Supplementary Figure S4 [17] for further support of
the consistency of these results across different empirical
datasets [14, 18–21].

We also plot the mean distance between nodes before
they connect to each other, and compare this distance
to a null model (connecting between random nodes) as
well as to the candidate models, shown in Fig. 3 (similar
plots are seen for other datasets [14, 18–21] in Supple-
mentary Figure S5 [17]). We find that nodes form links
to nearby nodes (the distance is smaller than the null
model), while the models assume even closer distances
- neighbors of neighbors, implying a distance of 2. We
therefore qualitatively capture the closeness of link for-
mation, although the models tested do not fully address
the links that are formed at a distance greater than 2.
Capturing these nuances are left for future work.

Furthermore, we explore how the different mechanisms
capture the scaling exponents of different clique sizes.
We show in Fig. 1c that exponents increase significantly
with clique size, which is qualitatively captured from the

copying mechanism [10, 11] but this model has a lower
exponent than what we find empirically. (This is also
consistent with what we find in other datasets [14, 18–
21], shown in Supplementary Figure S6 [17].) LPAM,
however, can better capture the scaling law exponents,
and therefore help us understand why extremely dense
cliques are unusually common in large networks. While
the performance is comparable with the forest fire model,
LPAM provides a clearer mechanism to explain this be-
havior. We also show in Supplementary Figure S3 [17]
that LPAM captures the mean clique size better than the
competing models [3, 11] for many datasets [14, 18–21].

In order to determine the best overall model among
these three, we take the mean Kullback-Leibler (KL) di-
vergence [27] between model and empirical clique size dis-
tributions (details in Supplementary Figure S7 [17]). We
find that LPAM and the Forest Fire model have less error
(lower KL divergence) than the copying model of Lam-
biotte et al. [11], which suggests that the Lambiotte et
al. model may not fully capture how networks grow. Al-
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FIG. 3. Nodes make local connections. The distance between
pairs nodes prior to forming a mutual connection with a new
node. Distance between randomly chosen pairs in the College
Messaging dataset [18], and the empirical distance between
nodes prior to connecting to a mutual new node. Other ex-
amples show similar results, see Supplementary Figure S5 [17]
for other networks [14, 18–21].

though LPAM can sometimes outperform the other mod-
els, we do not claim that another model cannot fit data
even better. The main goal of our paper is to instead
provide a theoretically-motivated mechanism beyond the
copying model.

Finally, we can study ablation of LPAM either by
removing node-copying or removing preferential attach-
ment. Setting r = 0, we remove traditional preferen-
tial attachment, and the model simplifies to the node
copying model of Lambiotte et al. [11], a poorer-fitting
model. Alternatively, we can remove node copying and
have nodes connect to other nodes preferentially based
on degree. This simplifies LPAM to the Barabasi-Albert
model [4], whose degree is fixed independent of network
size. Because neither simplification fits data as well,
LPAM is an effective mechanism to reproduce the results
we observe.

IV. CONCLUSION

We observe that cliques scale super-linearly with net-
work size, therefore we observe strong patterns in the
higher-order structure of networks. Moreover, we observe
that scaling exponents vary significantly for large and
small cliques in a growing network. We further observe
nodes connect locally (e.g., to neighbors of neighbors)
and confirm previous analysis that nodes have preferen-
tial attachment. We develop a new mechanism, LPAM,
to explain these patterns. LPAM is an extension of previ-
ous mechanisms in which a new node attaches to a target
node and preferentially to the target node’s higher-degree
neighbors. We carried out an ablation study to show this
is one of the simplest mechanisms to explain the empiri-
cal patterns we measure.

There are a number of ways this method could be im-
proved in future work. First, the mechanism is not the-
oretically grounded for cliques of order k > 2. Next,
LPAM does not fully match empirical data, which is both
a disadvantage and an advantage in that it greatly sim-
plifies the rich complex patterns that each observational
network encodes. We notice in Supplementary Figure
S7 [17], for example, that LPAM performs worse than
or similarly to the competing Forest Fire model for small
networks, such as the College Messages or cryptocurrency
networks. This points to finite size effects that our model
overlooks. Even when the model performs well, LPAM’s
exponents are often lower than the empirical data (Sup-
plementary Figure S6 [17] for other networks [14, 18–21]),
and the simulated nodes connect to closer neighbors than
in empirical data. This motivates extensions of LPAM to
address finite size effects and the strong relation between
clique size and scaling exponent. One way to improve
this model, which might address some of its limitations,
includes having new edges connect between two old nodes
in the network with some probability, which is similar to
the Newman-Watts small world model [28]. Another way
to improve the model could be to seed the model with a
real network as an initial condition. Finally, we assume
that the fitted scaling laws are asymptotic, but this needs
to be tested with more networks, especially with sizes in
the hundreds of millions to billions (which our current
computing power cannot tolerate).

V. CODE AVAILABILITY

The code is available at the following URL: https:
//github.com/haochenpi314/Clique-Densification.

[1] P. Holme and J. Saramäki, Physics Reports 519, 97
(2012), temporal Networks.

[2] K. A. Burghardt, Z. He, A. G. Percus, and K. Lerman,
Communications Physics 4, 189 (2021).

[3] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans.
Knowl. Discov. Data 1 (2007), 10.1145/1217299.1217301.

[4] A. Barabási and R. Albert, Science 286, 509 (1999).



6
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