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Intense surface eruptions are observed along the curved surface of a confined cylindrical film of
hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simula-
tions are used to identify the dominant mechanisms causing mechanical instability. The mechanisms
that produce surface instability are found to be fundamentally different from both acoustic para-
metric instability and shock-driven Richtmyer-Meshkov instability. The timescale of observed and
simulated eruption formation is much larger than that of a single shock reflection, in stark contrast
to previously studied shock-driven instabilities. Moreover, surface undulations are only found along
external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability
mechanisms do not occur in our experiments and here we comment only on the new surface undula-
tions found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class
of impulsively excited surface instability that is driven by cycles of internal shock reflections.
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Soft solids such as human connective tissue are sub-
jected to large amplitude stress waves in a variety of med-
ical procedures such as shock wave lithotripsy, which is
common for the removal of kidney stones [1–4], and his-
totripsy cancer treatments [5–7]. Soft matter response
to high strain rates and loading conditions is also rel-
evant to the study of blast induced injuries of human
and animal tissues [8–10]. Beyond practical applica-
tions, soft material dynamics have been found to ex-
hibit a number of instabilities of theoretical interest, in-
cluding Rayleigh-Taylor [11–13], Faraday [14], paramet-
ric [15–17] and Richtmyer-Meshkov instabilities [18–20].
Many of these mechanisms are closely related to fluid
dynamic instabilities. However, soft solids can produce
a number of distinctive instability patterns which fluids
do not [21, 22].

In this Letter, we describe such a dynamic instability
that was discovered while studying the response of hy-
drogels to converging shock loading. In contrast to pre-
vious work on shock driven Richtmyer-Meshkov instabil-
ities [18, 23, 24], in our experiments surface undulations
develop on a timescale much larger than that of the ini-
tial shock dynamics and form after multiple internal re-
flections. Our impulse driven experiment precludes the
possibility of classic forced parametric resonance within
the specimen, and we show via numerical simulation that
surface instability is instead controlled by nonlinearity in
the material response to shock loading.

Our experimental setup, depicted schematically in
Fig. 1, is a 50 µm-thick specimen of a soft hy-
drogel sandwiched between two 300 µm-thick glass
plates. The gel is a polyacrylamide network pre-
pared by mixing 10 ml aqueous solutions of 12% wt.
acrylamide (A8887 Sigma-Aldrich), 5% wt. Epson 522
printer ink, 2.5% wt. sodium alignate (A2033 Sigma-

Aldrich), 0.023 % wt. N,N-methylenebisacrylamide
(146072 Sigma-Aldrich) and 0.043% wt. ammonium per-
sulphate (A3678 Sigma-Aldrich). 0.03% wt. N,N,N’,N’-
tetramethylethylenediamine (T9281 Sigma-Aldrich) is
added prior to pouring the mixture onto a glass
slide. The mixture is covered with a second slide and
crosslinked for an hour using 254 nm UV light expo-
sure with an energy deposition rate of 6 W/m2. The
N,N-methylenebisacrylamide acts as a crosslinker. Am-
monium persulphate is a thermal initiator. N,N,N’,N’-
tetramethylethylenediamine accelerates the crosslinking.
Printer ink is needed to absorb the laser energy that gen-
erates shock waves. A laser pulse of 8 ns duration con-
taining 230 µJ of energy is focused on a 180 µm-diameter
ring of the specimen using our experimental setup previ-
ously described in [25, 26]. The laser energy melts ma-
terial along the circumference of the cylinder, thereby
separating it from the remainder of the hydrogel sheet,
and excites an intense pressure wave that propagates to-
ward its center. A high-frame-rate camera (SIMX 16,
Specialized Imaging) is used to acquire sixteen images
spaced by 0.6 µs. As an illuminating probe, we use a
640 nm wavelength laser (SI-LUX640, Specialized Imag-
ing) of 30 µs pulse duration, which is longer than the
total time required to acquire the sixteen frames with
the high-frame-rate camera. Fig. 2 shows the images ob-
tained.

Consistent with prior studies of converging shocks in
water, cavitation is observed early on in the center of
the disk and is a consequence of dilatational stresses ex-
ceeding the tensile strength of the gel after the shock ini-
tially focuses and begins to diverge [27]. At much larger
times, localized deformation patterns in the form of sur-
face eruptions nucleate, grow and decay between 3 and
8 microseconds. No undulations develop along the exter-
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FIG. 1. Schematic of hydrogel specimen sandwiched between
glass plates (left), detail of the initial circular 180µm-diameter
laser ring (center) and waves emanated from laser-ablated ring
(right).

nal boundary of the ablation zone, though a variety of
instabilities are known to occur along such curved exter-
nal gel domains due to steady gas pressure [28] or inertial
effects [21]. The specimen inside the laser ring does not
show evidence of inelastic deformation or damage in its
final state. Surface instability along only the internal
boundary of a toroidal laser ablation ring has not yet
been reported in soft matter, and we note that these ef-
fects were not observed in analogous experiments using
water [27].

In order to provide insight into the underlying physics,
we conducted detailed finite element simulations of our
experiment using our research code

∑
MIT [29]. For sim-

plicity, we only model the domain inside the circular ab-
lation region using a circular mesh with initial radius R0

equal to 90 µm consisting of 34,480 first order, plane
strain triangular elements. The volumetric constitutive
response of the gel is modeled using the Tait equation of
state which is justified given the material’s large water
content (∼ 85%). The two required model parameters
define the infinitesimal bulk modulus at the origin and
the degree of stiffening in the nonlinear response. In our
simulation, we adopt a bulk modulus at the origin κ of
2 GPa and a stiffening exponent γ̄ of 6.15 [30], which cor-
respond approximately to the volumetric response of wa-
ter. A neo-Hookean elastic model is adopted to describe
the deviatoric stress response, which has been shown
to effectively describe the quasistatic response in hydro-
gels [13, 31–35]. The required model parameter is se-
lected so that the shear modulus at the origin µ matches
the stiffness of our specimen in its reference configuration
at 5 KPa. The elastic strain energy function W is given
in terms of the Jacobian J of the deformation gradient F
and the first invariant I of the right Cauchy-Green tensor
C:

W =
κ

γ̄ − 1

(
J−γ̄

γ̄
+ J − γ̄ + 1

γ̄

)
+
µ

2
(
I

J
2
3

− 3) (1)

x The elastic first Piola-Kirchhoff stress is computed as:

P =

(
− κ

γ̄ − 1

(
J−γ̄ − J

)
− µ

3

I

J
2
3

)
F−T +

µ

J
2
3

F (2)

It bears emphasis that the material model considered
here accounts for nonlinear volumetric material response.

FIG. 2. Time sequence of images obtained in laser-shock ex-
periment on hydrogel. The images are taken every 0.6µs. The
dark region around the edge of the pictures corresponds to the
laser-ablated hydrogel material. The images clearly show the
formation of a cavitation bubble at around 0.6µs which dis-
appears at around 7.2µs. Pronounced unstable deformation
patterns appear on the surface at some time between 2.4 and
3.0µs.

Both Rayleigh-Taylor and parametric instabilities of soft
solids have been studied extensively assuming either iso-
choric deformations [16, 21] or the low Mach number ap-
proximation of Keller and Miksis [36–38]. Our modeling
framework captures these instabilities in the incompress-
ible and acoustic regimes respectively, but our interest
in shock driven experiments motivates this more general
approach.

It was found that the simulations are able to capture
the mechanisms of instability on the surface without the
need for explicitly describing the complex laser energy
deposition process, and instead by simply applying a
mechanical load along the boundary. Specifically, the
boundary conditions applied consisted of a square pres-
sure pulse duration tpulse of 8 ns on the cylinder surface
with an amplitude Ppulse of 2.0 GPa, which corresponds
to an energy deposition of approximately 75 µJ. We es-
timate that approximately a third of the laser energy in
the experiment is injected into the hydrogel cylinder, and
have found that loading conditions of this intensity ac-
curately reproduce experimental observations. As com-
monly required in simulations of shock-wave propagation,
we add artificial viscosity for shock stabilization using lin-
ear and quadratic viscosity parameters of c1 = 1.0 and
cL = 0.1 [39]. We utilize second-order explicit Newmark
time integration with mass lumping to evolve the dy-
namic fields in time [40, 41]. The time step is selected
to maintain a CFL number of one half which guarantees
numerical accuracy and stability.

Simulation results: In order to visualize the se-
quence of interesting events that take place during the
various reflections of the ensuing stress waves, we mon-



3

FIG. 3. Maximum (red) and minimum (blue) radial displace-
ment along the boundary plotted over time. The difference
between the two has been normalized by the initial radius of
90 µm and is shown in green.

itor the evolution of the minimum and maximum radial
displacements on the free surface, Fig. 3. For compar-
ison purposes we plot a scalar metric of instability am-
plitude Ā = rmax−rmin

R0
on the right axis. rmax and rmin

denote the maximum and minimum radial displacement
along the domain boundary. We also provide represen-
tative snapshots of the evolution of the relevant mechan-
ical fields at times of particular interest in Figs. 4—6.
Animated videos containing the full -dynamic evolution
of these fields are provided in the supplemental mate-
rial [42].

The initial hydrostatic stress wave shocks up as it con-
verges toward the center. Convergence occurs at 29 ns at
which point the entire domain is in compression. As the
stress wave diverges, the center is placed under tension,
a condition that persists until 202 ns.

At 55 ns, the shock wave reflects off the boundary,
accelerating it outward in the radial direction, and the
free surface in turn reflects a tensile stress wave toward
the center of the domain. Fig. 4 illustrates the circular
tension wave at 80 ns. The tensile wave moves far slower
than the shock because the bulk modulus decreases when
under tension. It takes 147 ns for the tension wave to
focus into the center of the domain while the shock tra-
versed the same distance in 26 ns. The central tensile
region and the reflected stress wave join into a common,
shrinking tensile core. Outside this region the hydrostatic
stress is still positive, but significantly smaller.

At 202 ns, the tensile region contracts to a point and
the continued inward motion of material causes hydro-
static compression at the center which drives a second
diverging shock. This concludes one complete cycle of
the pressure wave. Subsequent pressure wave cycles con-
sist of a tensile phase followed by a radially expanding
shock. Converging shocks do not occur in later cycles
and are only present at the start of the simulation. Ad-
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FIG. 4. Hydrostatic stress contours plotted at times 80, 110
ns. on a ±0.3 GPa scale. Observe the tensile wave traveling
inward.

ditional shock reflections are found at 233, 428, 612, and
788 ns.

Discussion: Fig. 3 demonstrates that the bound-
ary radial displacement initially remains nearly homo-
geneous, but axial symmetry breaks down over time as
evidenced by the diverging maximum and minimum ra-
dial displacement curves. The consequent increase in Ā
indicates the formation of localized deformation features
or surface eruptions around the circumference which are
shown in Fig. 5. Both figures show that the surface undu-
lation amplitude grows with each cycle of wave reflection
and reaches up to 15% of the initial radius on the fourth
cycle before starting to decrease due to viscous dissipa-
tion. This is remarkably similar to the surface eruptions
observed experimentally. We note that the characteris-
tic wavelength nondimensionalized by the sample radius
ranges between 0.37 and 0.45 in both our simulations
and our experimental observations which corresponds to
between 14 and 17 clearly visible undulations along the
boundary.

Fig. 3 shows that the breakdown of symmetry (when
the maximum and minimum displacements diverge)
starts at around 80 ns after the first inflexion point of
the radial surface displacement, i.e. when the boundary
acceleration changes signs although the surface is still
moving outward. The incipient inward acceleration to-
ward the heavier material is responsible for the onset
of the instability, but in contrast to the inertial effects
driving Rayleigh-Taylor type mechanisms in converging
shock settings [43–47] it is the tensile release wave, not
the compressive shock that nucleates surface undulations.
The effect also appears similar to the classic Richtmyer-
Meshkov instability, which occurs when a fluid interface
is rapidly accelerated by the passage of a shock wave from
the less dense toward the more dense fluid [23, 24], but
in stark contrast with the Richtmyer-Meshkov instability
our simulations show interface acceleration caused by ra-
dial tension not by shock compression. In fact, in our ex-
periments and simulations the shocks actually propagate
from the middle toward the lighter laser ablated region,
which provides a surface regularizing effect responsible
for the rapid decreases of the undulation amplitude Ā
with each reflection, Fig. 3. The detailed animations pro-
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FIG. 5. Hydrostatic stress contours on a scale from -0.65 GPa
to zero at 213, 408, 592, and 768 ns. The diverging shock is
visible in these frames taken 20 ns prior to each of the final
four reflections. The simulations capture eruption formation.

vided in the supplemental material [42] confirm both the
tensile wave-driven radially inward surface acceleration
as the mechanism for nucleation of localized deforma-
tion, as well as the stabilizing effects of outward-moving
shock reflections.

An analysis of the evolution of the circumferential
(hoop) stress exposes a second mechanism that con-
tributes to the growth of the surface instability, namely
the development of a compressive circumferential stress,
which occurs when the boundary is pulled radially in-
ward, Fig. 6. As in other types of elastic instabilities
where the main mechanism driving the onset and growth
is compression in directions tangent to a free surface [48],
we find that hoop compression plays a key role in generat-
ing large scale eruptions. In particular, the destabilizing
compressive hoop stresses develop under radial tension
which indicates significant deviatoric stress and results in
surface rotations and undulations. For instance, in Fig. 6
at 180 ns, the radial displacement is negative along the
free surface and hence the circumferential strain is neg-
ative, but the radial stress remains tensile. In Fig. 3 it
is apparent that the radial displacement plots continue
to curve downward due to radial tension even after the
displacement and hoop strain first attain negative values.
Boundary radial stresses do not become compressive and
push the domain outward until just prior to the shock ar-
rival. The maximum hoop compression that occurs due
to radial tension along the boundary is 11 MPa at 180
ns and we continue to observe MPa-scale hoop compres-
sion in subsequent pressure cycles. Although these hoop
stresses are small compared to the GPa-scale pressures
arising from shock compression, they are still large when
compared to the 5 KPa shear modulus of the soft hydro-
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FIG. 6. Top: Hoop stress on a ±10.0 MPa scale at 155 and
180 ns. Bottom: Hoop stress on a ±10.0 MPa scale at 350
and 375 ns.

gel.
The simulations capture growth of many wave num-

bers during the initial oscillation cycles when undulation
formation is driven primarily by radially inward acceler-
ation, see Fig. 7. In this figure, the color represents the
amplitude of the Fourier modes of the nondimensional
boundary radial displacement field plotted along the ver-
tical axis as a function of the nondimensional time t̄ plot-
ted along the horizontal axis. As a convenient measure
of the timescale we normalize by the time for acoustic
propagation from the boundary to the center of the do-
main: t̄ = t

τ where τ = R0

√
ρ
κ . Though many modes are

excited by inertial effects, the large scale undulations we
showcase in this Letter are clearly of a moderate wave
number on the order of 20. We find that the hoop com-
pression effect preferentially amplifies these intermediate
wave numbers at later times once inertial effects have
dissipated. A detailed order parameter study which in-
cludes Refs. [49–56] is provided in the supplemental ma-
terial and underscores this finding [42].

According to our analysis, cylindrical Rayleigh-Taylor
or parametric instabilities as reported in [15, 57–59] may
develop regardless of the scale of the hydrostatic stress
because these instabilities do not require nonlinear volu-
metric material response, but the instability reported in
this paper requires sufficiently large pressures and wave
dispersion upon shock reflection. Richtmyer-Meshkov in-
stabilities do require a nonlinear equation of state but
develop due to baroclinic effects induced by compres-
sive shock waves. Even in the context of reshocked
Richtmyer-Meshkov instability, where first a converging
and then a diverging wave drive instability growth, the
domain does not typically enter the tensile phase of the
pressure cycle [18, 60]. In our case, we have considered
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many cycles of internally reflecting large amplitude stress
waves and have found that the overall period of oscilla-
tions and emergence of large elastic surface instabilities
is controlled by the tensile material response when in the
strongly nonlinear range.

The key features of the simulations are also evident
in our experimental observations. A soft material’s crit-
ical cavitation stress scales with shear stiffness [61, 62],
which precludes water from sustaining the large ampli-
tude tensile stress cycles that are needed to form this new
class of surface instabilities. The novel mechanism is not

found in water in our recent experiments or in previous
studies [27]. Additionally, experimental undulations form
only along one side of the laser ring because the external
surface of the ablation zone does not experience oscil-
latory loading due to internal wave reflections and does
not develop compressive hoop stress. Rather, the exter-
nal hydrogel is placed under circumferential tension by
the thermal expansion of material inside the laser abla-
tion ring. Hoop compression along the external surface of
a curved laser ablation zone does not typically develop on
a submicrosecond timescale for gel cavities with charac-
teristic lengths of ∼ 100 µm [37] and consequently such
curved surfaces form instabilities slower than those re-
ported here [21]. Additionally, the timescale of both ob-
served and simulated instability growth considered here
is more than an order of magnitude faster than the oscil-
lation period typically used to generate forced parametric
instability of comparably sized bubbles in soft gels [15].
High frequency forced vibrations are challenging to excite
uniformly due to wave scattering, but our laser-driven ex-
periment generates high frequency and highly nonlinear
oscillations inside the hydrogel cylinder. Our accompa-
nying elastodynamic model demonstrates that cycles of
large amplitude waves can rapidly induce surface instabil-
ities in materials possessing both sufficient softness and
tensile strength.

In summary, we have observed and simulated a new
nonlinear elastodynamic instability which is driven by ra-
dial acceleration and circumferential hoop compression.
Materials exhibiting this instability must possess suffi-
cient ultimate strength to sustain large amplitude non-
linear pressure waves. It should be emphasized that this
instability has only been described recently since it occurs
along the boundary of shocked soft solids with small radii
of curvature. The experimental setup considered here is
ideally suited for exploring this regime of mechanical re-
sponse.
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nologies under Contract ARO69680-18 with the U.S.
Army Research Office.

[1] Weinberg, K. and Ortiz, M., Shock wave induced damage
in kidney tissue, Computational Materials Science 32,
588 (2005).

[2] P. Movahed, W. Kreider, A. D. Maxwell, S. B. Hutchens,
and J. B. Freund, Cavitation-induced damage of soft ma-
terials by focused ultrasound bursts: A fracture-based
bubble dynamics model, The Journal of the Acoustical
Society of America 140, 1374 (2016).

[3] J. E. Lingeman, Extracorporeal shock wave lithotropsy:
Development, instrumentation, and current status, Uro-
logic Clinics of North America 24, 185 (1997).

[4] M. Bailey, J. Mcateer, Y. Pishchalnikov, M. Hamilton,
and T. Colonius, Progress in lithotripsy research, Acous-
tics Today 2, 10.1121/1.2961131 (2006).

[5] T. J. Dubinsky, T. D. Khokhlova, V. Khokhlova,

and G. R. Schade, Histotripsy: The next gen-
eration of high-intensity focused ultrasound
for focal prostate cancer therapy, Journal
of Ultrasound in Medicine 39, 1057 (2020),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jum.15191.

[6] A. Hendricks-Wenger, L. Arnold, J. Gannon, A. Simon,
N. Singh, H. Sheppard, M. A. Nagai-Singer, K. M. Im-
ran, K. Lee, S. Clark-Deener, C. Byron, M. R. Edwards,
M. M. Larson, J. H. Rossmeisl, S. L. Coutermarsh-Ott,
K. Eden, N. Dervisis, S. Klahn, J. Tuohy, I. C. Allen,
and E. Vlaisavljevich, Histotripsy ablation in preclini-
cal animal models of cancer and spontaneous tumors in
veterinary patients: A review, IEEE Transactions on Ul-
trasonics, Ferroelectrics, and Frequency Control 69, 5
(2022).

https://doi.org/10.1016/j.commatsci.2004.09.005
https://doi.org/10.1016/j.commatsci.2004.09.005
https://doi.org/10.1121/1.4961364
https://doi.org/10.1121/1.4961364
https://doi.org/https://doi.org/10.1016/S0094-0143(05)70363-3
https://doi.org/https://doi.org/10.1016/S0094-0143(05)70363-3
https://doi.org/10.1121/1.2961131
https://doi.org/https://doi.org/10.1002/jum.15191
https://doi.org/https://doi.org/10.1002/jum.15191
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jum.15191
https://doi.org/10.1109/TUFFC.2021.3110083
https://doi.org/10.1109/TUFFC.2021.3110083
https://doi.org/10.1109/TUFFC.2021.3110083


6

[7] A. Hendricks-Wenger, R. Hutchison, E. Vlaisavlje-
vich, and I. C. Allen, Immunological effects of his-
totripsy for cancer therapy, Frontiers in Oncology 11,
10.3389/fonc.2021.681629 (2021).

[8] A. Jean, M. Nyein, J. Zheng, D. Moore, J. Joannopou-
los, and R. Radovitzky, An animal-to-human scaling law
for blast-induced traumatic brain injury risk assessment,
Proceedings of the National Academy of Sciences of the
United States of America 111, 15310 (2014).

[9] C. J., A. M., S. R., R. R., M. S., and M. D., A virtual
test facility for the simulation of dynamic response in
materials, Journal of Supercomputing 23, 39 (2002).

[10] F. C, Microcavitation: the key to modeling blast trau-
matic brain injury?, Concussion 10.2217/cnc-2017-0011
(2017).

[11] S. Mora, T. Phou, J. M. Fromental, and Y. Pomeau,
Gravity driven instability in elastic solid layers, Physical
Review Letters 113, 178301 (2014).

[12] D. Riccobelli and P. Ciarletta, Rayleigh-Taylor instabil-
ity in soft elastic layers, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 10.1098/rsta.2016.0421 (2017).

[13] A. Chakrabarti, S. Mora, F. Richard, T. Phou, F. Jean-
Marc, Y. Pomeau, and B. Audoly, Selection of hexag-
onal buckling patterns by the elastic rayleigh-taylor in-
stability, Journal of the Mechanics and Physics of Solids
10.1016/j.jmps.2018.07.024 (2018).

[14] G. Bevilacqua, X. Shao, J. R. Saylor, J. B. Bostwick,
and P. Ciarletta, Faraday waves in soft elastic solids,
Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 476, 20200129 (2020),
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2020.0129.

[15] F. Hamaguchi and K. Ando, Linear oscillation of gas bub-
bles in a viscoelastic material under ultrasound irradia-
tion, Physics of Fluids 27, 113103 (2015).

[16] K. Murakami, R. Gaudron, and E. Johnsen, Shape sta-
bility of a gas bubble in a soft solid, Ultrasonics Sono-
chemistry 67, 105170 (2020).

[17] K. Murakami, Spherical and Non-spherical Bubble Dy-
namics in Soft Matter, Ph.D. thesis, The University of
Michigan (2020).
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