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With advances in instrumentation and the tremendous increase in computational power,

vast amounts of data are becoming available for many complex phenomena in macroscopically

heterogeneous media, particularly those that involve flow and transport processes, which are

problems of fundamental interest that occur in a wide variety of physical systems. The absence

of a length scale beyond which such systems can be considered as homogeneous implies that

the traditional volume or ensemble averaging of the equations of continuum mechanics over the

heterogeneity is no longer valid and, therefore, the issue of discovering the governing equations

for flow and transport process is an open question. We propose a data-driven approach that uses

stochastic optimization and symbolic regression in order to discover the governing equations

for flow and transport process in heterogeneous media. The data could be experimental or

obtained by microscopic simulation. As an example, we discover the governing equation for

anomalous diffusion on the critical percolation cluster at the percolation threshold, which is in

the form of a fractional partial differential equation, and agrees with what had been proposed

previously.
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Heterogeneous media and materials, both natural and engineered, are ubiquitous [1,2]. They

are often multiscale systems in which the heterogeneity is relevant over multiple and disparate

length scales, and contain long-range correlations. They vary anywhere from tissues and other

biological materials, to composite solids, membranes, such large-scale porous media as aquifers,

and a vast number of other systems. Many phenomena occur in heterogeneous media that are

of fundamental and practical interest, and include flow, transport, reaction, deformation, and

other physical processes.

A most important question regarding heterogeneous materials and media is the governing

equations for the physical phenomena that occur in them. To address this question we first

divide them into two groups. In one group are those that are microscopically disordered, but

macroscopically homogeneous. Thus, provided that the size of such media is larger than the

representative elementary volume (REV) - the minimum size for macroscopic homogeneity -

the phenomena of interest are governed by the classical equations of continuum mechanics [3],

averaged over the REV, such as the Navier-Stokes equations for fluid flow, the convective-

diffusion equation for heat and mass transfer, and equations of linear elasticity. The transport

coefficients that appear in such equations represent averaged values, with the averaging taken

over the distribution of the heterogeneities, and must be measured by experiments, or predicted

based on a model of the media.

In the second group are materials and media that are macroscopically heterogeneous [4],

implying that the REV is either larger than their size, or it does not exist. This implies that

volume or ensemble averaging of the equations of continuum mechanics is no longer appropriate.

A review of a broad class of heterogeneous materials and media indicates that macroscopic

heterogeneity is more of a rule, than an exception, as they are encountered in astrophysics [5],

oceanography [6,7], large-scale porous media [8,9], spatial patterns of environmental pollution

[10], and biological tissues and organs [11]. In addition, any statistically self-similar fractal

structure, such the critical percolation cluster (CPC) at the percolation threshold pc, is also

macroscopically heterogeneous up to the length scale over which it is self-imilar.

Even if one attempts to carry out a large-scale averaging [12-14] over multiple scales, the re-

sult is a highly complex equation with many terms, such that direct computer simulation of the

phenomena and averaging the numerical results over the relevant length scales are more straight-

forward than solving the equations that result from large-scale averaging. It is also known that
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averaging over strong heterogeneity gives rise to memory effect [15,16], hence complicating the

task of deriving the governing equations. To include the memory effects, approaches based on

continuous-time random walks [17], miltirate mass transfer equations [18,19], and fractional

advective equation [20,21] have been developed. Such approaches are, however, mostly phe-

nomenological.

In this Letter, we propose an approach that uses a set of data for a transport process in a

heterogeneous medium, obtained by either experiments or computer simulation, together with

a stochastic optimization method and symbolic regression (see below), in order to discover the

governing equation for the process. An approach for discovering the governing equation for data

sets that represent non-stationary time series has already been developed [22,23]. In addition,

the Mori-Zwanzig approach [24,25] provides a procedure for developing reduced-order models

for high-dimensional systems and data, which are constructed based on projection operators,

although determining the precise form of the kernel in their approach remains difficult. Our

goal in the present Letter is to develop an approach for flow and transport in two- or three-

dimensional (3D) heterogeneous media.

Suppose that T is the transport process in a heterogeneous medium for which we have an

extensive set of data describing the spatio-temporal evolution of a quantity q(r, t), where r

is the position vector at time t. According to the equations describing conservation of mass,

momentum and energy, the searched-for model M for the transport process is described by

partial differential equations (PDE). Large-scale averaging methods [12-14] tell us that the

spatial variability is expressed by the PDEs that contain, first- and second-order, and possibly

third-order spatial partial derivatives of q, while we also know that averaging over the spatial

heterogeneity induces long-term memory [15,16]. Thus, the time evolution of q(r, t) might be

described by its fractional derivative, defined by [26]

∂tαq ≡
∂αq

∂tα
=

1

Γ(1− α)

∂

∂t

∫ t

0
dτ

q(r, τ)

(t− τ)α
, (1)

where Γ(x) is the gamma function. Thus, the goal is to identify a modelM that minimizes the

difference between its predictions qp and the given data qd, i.e., it minimizes the loss function

L = σ2 + np, where σ2 is the normalized error σ2, defined by

σ2 =

∑
i

∑
j[qp(ri, tj)− qd(ri, tj)]2∑

i

∑
j[qd(ri, tj)]2

, (2)
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with n being the number of the nodes in the binary expression tree converted from the PDE,

and p is a complexity penalty coefficient (see the Supplementary Information (SI) [27], as well

as Refs. [15,16,28-32]). Minimizing L is, of course, a nonlinear optimization problem for which

many approaches have been developed [33], such as simulated annealing [34] and the genetic

algorithm (GA) [35].

To describe the method concretely, we consider diffusion on 2D CPC at pc, which has a

fractal dimension Df = 91/48 ' 1.9 at all length scales. Diffusion in the CPC is anomalous

[36], i.e., the mean-squared displacement of a diffusant grows with time as, 〈R2(t)〉 ∝ tα, where

α = 2/Dw. Here, Dw = 2 + (µ − β)/ν is the fractal dimension of the walk, with µ, β and ν

being, respectively, the scaling exponents of the conductivity, order parameter, and correlation

length of percolation, so that with µ ' 1.3, β = 5/36 and ν = 4/3 in 2D, one obtains,

Dw ' 2.87. An important, and for quite sometime controversial, issue was the governing

equation for q = P (r, t), the average probability that a diffusant is at position r at time t, for

which various equations [32,37,38] were suggested. It now appears that the equation derived

by Metzler et al. [32] is the generally accepted correct equation (see below).

We generated the CPC on the square lattice at its site percolation threshold, pc ' 0.5927

using the Leath algorithm [39], with periodic boundary conditions in both directions. The size

of the cluster was 4096× 4096, and we averaged the computed P (r, t) over 500 realizations of

the clusters. Diffusion was simulated by an unbiased random walk (RW) on the CPS by the

so-called blind ant method [40] using a highly efficient RW simulator, which is an open-source

GPU-accelerated [41] algorithm, hence allowing us to use 30,000 particles and simulate 106 time

steps.

For each realization i, the probability Pi(r, t) (r = |r|) of a diffusant being within a hy-

perspherical shell between (r − ∆r/2) and (r + ∆r/2) at time t (counted as the number of

RW steps) was computed (we used ∆r = 4 in units of the bonds’ length). The probability

distribution function of Pi(r, t) was then computed by normalizing the numerical results, i.e.,

by setting,
∫∞
0 rDf−1Pi(r, t)dr = 1, and then averaging over all the realizations.

Though any optimization algorithm can be used, we utilized the genetic programming for

system identification (GPSI) [28]. The complete details are given in the SI [27] (see also Ref.

[28]). Briefly, one first specifies the mathematical expressions that will be tried by the GPSI.

We included ∂nP/∂rn (n = 0, 1, and 2), ∂P/∂t, and ∂tαP (r, t) (0 < α ≤ 1), together with the
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boundary conditions. and used the 4th-order Runge-Kutta method when the time-derivative

was simply ∂P/∂t, and the predictor-corrector method suggested by Diethelem et al. [29]

when the trial PDEs involved fractional derivatives. The GPSI generates a PDE at random,

solves it numerically to compute P (r, t), and calculates the loss function σ2. If σ2 is larger

than a threshold ε, the algorithm continues generating the trial PDEs through the evolutionary

process of the GA - the crossover and mutation - until σ2 < ε. This generates a few plausible

solutions, most of which can be eliminated by imposing other physical constraints, such as

0 < P (r, t) ≤ 1. Such a procedure amounts to symbolic regression [42,43], since one tries to fit

certain expressions in terms of spatial and temporal derivatives to a given set of data.

As a test, we first carried out RW simulations on the fully-connected square lattice at p = 1.

The algorithm easily identified the spherically-symmetric diffusion equation as the only viable

governing equation. The simulations on the CPC at pc yield, Dw ' 2.875±0.003, in agreement

with the theoretical expectation. We used the data for the final 40 percent of time steps and,

therefore, the predictions of the equation to be discovered for the initial 60 percent of the total

time is a stringent test of its accuracy. The algorithm rejected all the PDEs with integer-order

time derivatives of P (r, t). Only three possible solutions with fractional derivatives were deemed

viable. Of the three, one given by

∂0.718P

∂t0.718
= −0.288P 2 + 0.202

∂2P

∂r2
, (3)

was rejected, even though its predictions for P (r, t) were accurate, because it violates mass

balance. A second solution,

∂0.645P

∂t0.645
=

0.555

r

∂P

∂r
+ 0.640

∂2P

∂r2
, (4)

which is still accurate, was also rejected because it implies anisotropic diffusion. Thus, the final

governing equation identified by the approach is given by

∂0.614P

∂t0.614
=

0.849

r

∂P

∂r
+
∂2P

∂r2
. (5)

Note that the factor 1/r in the first term of the right side of Eq. (5) was identified by the

algorithm, and was not included in the set of trial searches.

On the other hand, the governing equation for P (r, t), derived by Metzler et al. [32], is

given by
∂αP

∂tα
=

1

rds−1
∂

∂r

[
rds−1

∂P (r, t)

∂r

]
=
ds − 1

r

∂P

∂r
+
∂2P

∂r2
, (6)
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where ds = 2Df/Dw ' 1.321 is the spectral dimension [44]. Thus, substituting for ds and

α = 2/Dw ' 0.696, Eq. (6) becomes

∂0.669P

∂t0.669
=

0.321

r

∂P

∂r
+
∂2P

∂r2
, (7)

which is practically identical with what the proposed approach identified. In Fig. 1 we compare

the predictions of Eqs. (5) and (7); the agreement is excellent. Since only the last 40 percent

of the data was used in the stochastic optimization, we compare in Fig. 2 the predictions of

the discovered equation for P (r, t) over the entire time that was simulated. It is clear that Eq.

(5) provides accurate predictions even for the initial 60 percent of the data. Note that since

our estimate of α = 2/Dw is in agreement with the theoretical expectation, the reason for the

difference between the value of ds ' 1.849 that Eq. (5) identified and the theoretical prediction,

ds ' 1.321 is due to finite-size effect that influence the value of the fractal dimension Df of the

CPC.

Let us point out that, as He et al. [45] showed, the dynamics of transport processes in

heterogeneous media that are described by a fractional diffusion equation is not self-averaging,

in that time and ensemble averages of the observables, such the mean-squared displacements,

do not converge to each other. This is consistent with what is known for diffusion on the

CPC at the percolation threshold [46,47], for which the distribution of the displacements of

the diffusing particle does not exhibit self-averaging. Our discovery of a fractional diffusion

equation for diffusion on the CPC at the percolation threshold is fully consistent with this

picture, and indicates the accuracy of the approach.

As a further test of the method, we used experimental data of Scheidegger [48] for dispersion

of a solute in flow of a solvent through a heterogeneous porous medium, which have been subject

to debate for decades, because the data cannot be accurately described by the standard 1D

convective-diffusion equation (CDE),

∂C

∂t
+ v

∂C

∂z
= DL

∂2C

∂z2
, (8)

where C is the solute concentration, v is the mean flow velocity, and DL is the dispersion

(effective diffusion) coefficient. Our preliminary computations based on the method proposed

here indicate that the data can be accurately described by a fractional CDE of the following

form
∂αC

∂tα
+ v

∂C

∂z
= DL

∂βC

∂zβ
, (9)
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where α < 1 and 1 < β < 2, hence shedding light on decades-old experimental data. The

details will be reported elsewhere [49].

Summarizing, with advances in instrumentation and the tremendous increase in computa-

tional power, vast amounts of data are becoming available for various phenomena in macro-

scopically heterogeneous media. To understand and analyze such data and make predictions for

future states of the phenomena, one must be able to represent them by accurate governing equa-

tion(s). We proposed a data-driven approach, based on stochastic optimization and symbolic

regression, which provides an effective solution for this unsolved problem, and opens the way

to many applications of the method for a wide variety of complex phenomena in heterogeneous

media.
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Figure 1: Comparison of the predictions of the discovered fractional diffusion equation (curves)

with the results of numerical simulations of diffusion on the critical percolation cluster at the

percolation threshold: (a) Eq. (5) and (b) Eq. (7). To discover the equation, the last 40

percent of the data at the longest times were used; circle. Triangles and squares represent the

numerical results, while red, green and blue show the model’s predictions.
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Figure 2: Comparison of the predictions of the discovered fractional diffusion equation (curves)

with the results of numerical simulations of diffusion on the critical percolation cluster at the

percolation threshold over the entire simulation time: (a) Eq. (5) and (b) Eq. (7). Diamond,

cross, circle, triangle, and square represent the numerical results, while cyan, magenta, red,

green, and blue show the predictions.
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