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We study ab initio approaches for calculating x-ray Thomson scattering spectra from density func-
tional theory molecular dynamics (DFT-MD) simulations based on a modified Chihara formula that
expresses the inelastic contribution in terms of the dielectric function. We study the electronic dy-
namic structure factor computed from the Mermin dielectric function using an ab initio electron-ion
collision frequency in comparison to computations using a linear response time dependent density
functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the disper-
sion of free-free and bound-free contributions to the scattering signal. A separate treatment of these
contributions, where only the free-free part follows the Mermin dispersion, shows good agreement
with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed
matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray
Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma
conditions inferred with traditional analytic models at small scattering angles.

I. INTRODUCTION

X-ray Thomson scattering (XRTS) has been one of the
premier diagnostic tools for warm dense matter (WDM)
experiments, enabling measurements of the electron den-
sity, temperature and ionization state [1–3]. The states
reached in these experiments are characterized by tem-
peratures of a few electronvolts (eV) and around solid
densities, which constitutes strongly correlated plasmas
with non-negligible degeneracy. This prevents the appli-
cation of ideal plasma theory for the analysis of these
experiments, and rather requires a quantum mechani-
cal treatment in a many-body framework. Knowledge
of equation of state data as well as thermal and electrical
transport properties for warm dense hydrogen and beryl-
lium is essential for modeling astrophysical objects [4, 5]
and inertial confinement fusion [6], where hydrogen is
used as fuel while beryllium often serves as ablator ma-
terial [7, 8]. Furthermore, hydrogen and beryllium are
excellent test cases for new theoretical approaches. The
analytical behavior in many limiting cases for fully ion-
ized hydrogen plasmas are known and beryllium can be
used to test the treatment of bound states in a simple
low-Z material. WDM is typically opaque in the optical
regime, as the light frequency is smaller than the plasma
frequency ωpl of these plasmas. Therefore, it is indis-
pensable to have diagnostic tools at experiments that are
well understood, both experimentally and theoretically.

∗ maximilian.schoerner@uni-rostock.de

XRTS has proven to overcome many of the experimen-
tal challenges of probing WDM. The high energy x-ray
photons can penetrate dense plasmas and since the ad-
vent of free electron lasers (FEL), rep-rated x-ray sources
with sufficient brilliance for probing short-lived transient
states are available in addition to laser-plasma sources
which only allow a limited number of experiments and re-
quire complex sample assemblies. New FEL techniques
like self-seeding [9, 10] have also resulted in much nar-
rower bandwidths of the x-ray source, enabling the mea-
surement of phonons and ion acoustic modes [11, 12] and
a better resolution of density and temperature-sensitive
regions in the XRTS spectrum.

Due to the steadily improving quality of collected spec-
tra, it is vital to have accurate theoretical modeling of the
scattering. While in the past, the resolution of XRTS
spectra often did not allow for discrimination between
different theoretical approaches, now, fitting experimen-
tal spectra to theoretical models has allowed predictions
of electron temperature and density to within a few per-
cent uncertainties [13–15]. As a result, the fidelity of the
theoretical model used is now the limiting factor in de-
termining the correct plasma parameters in experiments
that employ XRTS as a diagnostic tool. Most approaches
rely on the semi-classical Chihara decomposition [16, 17]
of the spectrum into three distinct contributions which
originates from distinguishing between free and bound
electrons in a chemical picture. An analogous fully quan-
tum mechanical description has also been proposed [18].
The standard approach for modeling XRTS spectra in
the Chihara description is a combination of theories to
describe each component individually [19]. The ion dy-
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namics are usually described by the hypernetted-chain
approximation with different expressions for the inter-
action potential while the form factors are described by
a screened hydrogenic approximation to the wave func-
tions [20] and the Debye-Hückel approximation for the
screening cloud. The plasmon can be described by the
random phase approximation (RPA) or the Mermin di-
electric function in order to also include electron-ion col-
lisions which can also be approximated to different de-
grees [21]. Further electron correlations can be accounted
for by local field corrections [22]. Contributions that are
related to bound-free transitions are treated within the
impulse approximation [23] which is sometimes modified
by the ionization potential depression and normalized ac-
cording to different sum rules.

In recent years, this approach has been partially
replaced by ab initio descriptions like density func-
tional theory molecular dynamics (DFT-MD) simulations
and real time or linear response time dependent DFT
(RT/LR-TDDFT) computations. Witte et al. success-
fully used electron-ion collision frequencies determined
by DFT to accurately model the plasmon of an alu-
minum plasma [24]. This approach was subsequently
compared to LR-TDDFT and other theoretical models
by Ramakrishna et al. for ambient and extreme con-
ditions in aluminum [25] and carbon [26], which was
then used to discern miscibility in an XRTS experi-
ment [13]. Mo et al. also used LR-TDDFT to study
isochorically heated aluminum [27]. Baczewski et al.
went beyond the Chihara decomposition by simulating
the real time propagation of the electronic density using
RT-TDDFT [28]. Path integral Monte Carlo simulations
have delivered approximation-free results for the uniform
electron gas [29] and hydrogen plasmas [30], but are cur-
rently unable to describe heavier elements.

The capability of DFT-MD to compute ion dynam-
ics and the form factors was already demonstrated and
tested in previous publications [31–33]. Therefore, in this
work, we focus on the inelastic contribution to the scat-
tering spectrum, i.e. the plasmon and bound-free contri-
bution. Although the ab initio approaches offer a better
description of the many-body nature involved in the scat-
tering process, they incur substantial computational cost
and take a long time to perform, which is especially trou-
bling if the conditions reached in an experiment cannot
easily be constrained. Therefore, the much faster ana-
lytic approach of using the Mermin dielectric function is
still widely used in the field of WDM research [14, 34, 35].
To test the validity of the Mermin description, we con-
nect the DFT and Mermin approach in the macroscopic
limit (k → 0) by introducing an ab initio electron-ion
collision frequency, as first described in Ref. 24, and ex-
amine differences of the predicted scattering spectra at
finite scattering angles.

In Secs. II A and II B, we give an overview of the theo-
retical foundation for computing the electronic dynamic
structure factor from the Mermin dielectric function with
a dynamic complex collision frequency and apply this

framework to extract a DFT-based collision frequency. In
Sec. II D we give the details of the simulation method. We
compute DFT-based collision frequencies for a hydrogen
plasma and compare them to several analytic approaches
in Sec. III and we study the impact of these collision fre-
quencies on DSFs for hydrogen and beryllium plasmas in
Secs. IV A, IV B, and IV C. In Sec. V, we apply the full
ab initio description of LR-TDDFT to interpret XRTS
experiments on beryllium, which were previously ana-
lyzed using analytic approaches. We evaluate the impact
on the inferred plasma parameters for XRTS experiments
at small and large scattering angles, showing good agree-
ment in the backscattering and significant deviations in
the forward scattering.

II. THEORETICAL BACKGROUND

A. Dynamic structure factor

The electronic dynamic structure factor (DSF) [1]

Stot
ee (k⃗, ω) =

1

2πNe

∫ ∞

−∞
dt⟨ne

k⃗
(τ)ne−k⃗

(τ + t)⟩τ eiωt (1)

is the central quantity representing the spatially resolved
power spectrum of an electronic system, describing its dy-
namics at given temporal and spatial periodicities given

by the frequency ω and the wave vector k⃗, respectively.
The number of considered electrons is Ne and the spatial
Fourier components of the electron density are given by
ne
k⃗
. The time is described by t and τ , where ⟨...⟩τ de-

scribes a time average over τ . Experimentally, Stot
ee (k⃗, ω)

can be used to identify how strong a photon will cou-
ple to density fluctuations at a given energy transfer and
scattering angle [1]. In this work we will use a slight
modification of the common decomposition of Eq. (1) in-
troduced by Chihara [16, 17]:

Stot
ee (k⃗, ω) = |fi(k⃗) + q(k⃗)|2Sii(k⃗, ω)+

+ ZfS
0
ee(k⃗, ω) + ZbSbf(k⃗, ω)︸ ︷︷ ︸

Z Set(k⃗,ω)

. (2)

The first term refers to the elastic response of the elec-
trons which follow the ion motion described by the ion-

ion structure factor Sii(k⃗, ω). Here, fi(k⃗) describes the

contribution of tightly bound electrons and q(k⃗) repre-
sents the loosely bound screening cloud around the ions.
The second term, called the electron feature, arises from
the collective behavior of the free electrons in the system
undergoing transitions to different free-electron states.
The number of free electrons per atom is labeled Zf and

their DSF is denoted by S0
ee(k⃗, ω). The last term in

Eq. (2) is the bound-free contribution. In the original
work, Chihara clearly separates free and bound electrons
and describes this term as a convolution of the DSF of the
core electrons with the self-part of the ionic DSF [17]. We
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treat the bound-free contribution on the same footing as
the free electron contribution and introduce the bound-
free DSF Sbf(k⃗, ω) and the number of bound electrons per
atom Zb. Both the free electron and bound-free contri-
butions arise due to inelastic transitions of the electrons
and can, therefore, be combined into one DSF Set(k⃗, ω)
that accounts for all electronic transitions. This avoids
the artificial separation into bound and free electrons for
both the charge state Z and the DSF. According to the
fluctuation-dissipation theorem [36], this combined DSF
can be related to the dielectric response described by the

dielectric function ϵ(k⃗, ω) via

Set(k⃗, ω) = − ϵ0ℏk⃗2

πe2ne

Im
[
ϵ−1(k⃗, ω)

]
1 − exp

(
−ℏω
kBTe

) . (3)

The vacuum permittivity is denoted by ϵ0, the reduced
Planck constant is ℏ and e is the elementary charge. The
electron density is given by ne, the electron tempera-
ture is Te and the Boltzmann constant is kB. At which
conditions the separation into free and bound-free part
in Eq. (2) is justified and yields the same results as the
combined approach is discussed in Secs. IV B and IV C.

B. Dielectric Function with electron-ion collisions

The dielectric function ϵ(k⃗, ω) is a central material
property that is connected to other material properties,
like the electrical conductivity σ(ω) in the long wave-
length limit or the DSF via the fluctuation dissipation
theorem from Eq. (3). One of the first approaches that
produced collective features of the electron system, like
plasmons, is the Lindhard dielectric function [37]

ϵRPA(k⃗, ω) = lim
η→0

[
1−

− 2e2

ϵ0k2

∫
d3q

(2π)
3

f
q⃗− k⃗

2

− f
q⃗+ k⃗

2

ℏ (ω + iη) + E
q⃗− k⃗

2

− E
q⃗+ k⃗

2

]
. (4)

which accounts for electric field screening in the Random

Phase Approximation (RPA). The arguments k⃗ and ω are
the wave vector and the angular frequency, respectively.
Eq⃗ and fq⃗ are the kinetic energy and the Fermi occupa-
tion of an electron with wave vector q⃗ in the unperturbed
free electron gas. The small imaginary contribution to
the frequency η is introduced to avoid the pole in the
integration and approaches zero thereafter. However, for
degenerate, strongly correlated systems electron-ion in-
teractions, which are neglected in Eq. (4), have to be ac-
counted for in order to accurately describe the dielectric
function.

It was shown that electron-ion collisions can be in-
cluded via a dynamic collision frequency ν(ω) in the

framework of the Mermin dielectric function [38–41]

ϵMermin(k⃗, ω; ν(ω)) = 1+

+

(
1 + iν(ω)

ω

)(
ϵRPA(k⃗, ω + iν(ω)) − 1

)
1 + iν(ω)

ω
ϵRPA(k⃗,ω+iν(ω))−1

ϵRPA(k⃗,0)−1

. (5)

This collision frequency is defined as the difference to
the RPA in the macroscopic limit due to the interac-
tion of electrons and ions [21]. Further correlations be-
tween the electrons can be included via local field cor-
rections by going beyond the RPA and replacing ϵRPA in
Eq. (5) by the dielectric function of the one component
plasma [22, 42, 43]. Extensive work has been performed
on the evaluation of different analytic collision frequen-
cies and local field corrections [21, 22, 44], as well as first
attempts to incorporate ab initio results to determine
collision frequencies [45].

We present the derivation of the RPA dielectric func-
tion in the presence of a dynamic complex collision fre-
quency in Appendix A. Equations (5), (A7) and (A8)
are the basis for calculating the Mermin dielectric func-
tion for a given dynamic collision frequency ν(ω). In the
following, because we are dealing with isotropic systems,

we will only consider the magnitude of wave vector k⃗ and
drop the vector notation.

One of the most prominent approximations for the col-
lision frequency is the Born collision frequency [21], the
combination of which with the Mermin dielectric func-
tion in Eq. (5) is called the Born-Mermin approxima-
tion (BMA). It is widely used in the analysis of XRTS
spectra in the WDM field. We give the exact equations
used in this work in Appendix B. However, complex
many-particle effects, as they are considered in ab initio
simulations, cannot be accounted for by this approach.

FIG. 1. Schematic work flow for determining the dynamic col-
lision frequency and k-dependent dielectric function via DFT.

In Fig. 1, we show the schematic procedure to compute
a DFT-based collision frequency from an electrical con-
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ductivity in the optical limit. In essence, we construct a
complex collision frequency for which the Mermin dielec-
tric function coincides with the ab initio dielectric func-
tion in the optical limit. As input, the temperature and
electron density of the plasma are needed for the Mer-
min dielectric function and the real part of the electrical
conductivity is needed from the simulation. According to
the Kubo-Greenwood formula [46, 47] the conductivity is

Re [σ(k = 0, ω)] =
2πe2

3ωΩ

∑
g⃗

wg⃗

N∑
j=1

N∑
i=1

3∑
α=1

×

×
[
f(ϵj,g⃗)− f(ϵi,g⃗)

]
| ⟨ψj,g⃗|v̂α|ψi,g⃗⟩ |2δ(ϵi,g⃗ − ϵj,g⃗ − ℏω).

(6)

The indices i and j run over the eigenstates, α runs over
the spatial orientations and g⃗ denotes the reciprocal vec-
tors in the Brillouin zone where the wave functions ψi,g⃗

are evaluated. The Fermi-Dirac occupation at a given
eigenenergy ϵj,g⃗ is described by f(ϵj,g⃗) and v̂α is the ve-
locity operator in the direction α. The normalization
volume is denoted by Ω and wg⃗ is the weighting of each
k-point. We translate the electrical conductivity to the
imaginary dielectric function via

Im [ϵ(k = 0, ω)] =
1

ϵ0ω
Re [σ(k = 0, ω)] (7)

and use the Kramers-Kronig transformation to compute
the corresponding real part, leading to a complex dielec-
tric function ϵDFT(k = 0, ω). If we require an equivalence
between the DFT result and the Mermin dielectric func-
tion in the optical limit

ϵDFT (k = 0, ω)
!
= lim

k→0
ϵMermin (k, ω; ν (ω)) , (8)

the real and imaginary parts must be equal simultane-
ously. This can be achieved by adjusting the real and
imaginary part of the dynamic collision frequency which
feeds into the Mermin dielectric function, leading to a two
dimensional optimization problem. The result of this op-
timization is a collision frequency νDFT(ω) for which the
analytic Mermin dielectric function yields the same re-
sults as DFT in the macroscopic limit. Because there is
no notion of bound states in the theoretical framework
of the Mermin dielectric function, the electrical conduc-
tivity must only originate from free or quasi-free states.
For this purpose, the conductivity in Eq. (6) can be split
into different contributions, see Ref. 48 for details.

Figure 2 shows the convergence of the Mermin dielec-
tric function and DSF to the DFT result in the opti-
cal limit for a beryllium plasma at ρ = 5 g/cm3 and
T = 100 eV. Due to the presence of bound states in
beryllium at these conditions, only the electrical conduc-
tivity due to free electrons can be used as an input to the
workflow depicted in Fig. 1 and all quantities in Fig. 2
are free-electron contributions. The DFT result for the
DSF SDFT(k, ω) and the dielectric function ϵDFT(k, ω)

are only available at k = 0 and are shown as a con-
stant reference for the various k depicted in Fig. 2. In
both panels, it is apparent that, with the correct colli-
sion frequency νDFT(ω), the Mermin result converges to
the optical limit described by DFT. In practice, the limit
k → 0 is reached at wave numbers that correspond to
length scales that are significantly larger than any char-
acteristic length scales of the studied system. For beryl-
lium at these conditions, the convergence is reached for
wave numbers smaller or equal to 10−4 Å−1 as depicted
in Fig. 2. The dielectric functions in the upper panel are
connected to the DSF in the lower panel by Eq. (3). How-
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k = 1 Å−1
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FIG. 2. The top panel shows the free-electron part of the di-
electric function ϵ(k, ω) in a beryllium plasma at ρ = 5 g/cm3

and T = 100 eV. The DFT results are given at k = 0,
where the solid lines are the real part and the dash-dotted
lines are the imaginary part. The Mermin dielectric function
from Eq. (5) is calculated with the DFT collision frequency
νDFT. The colors represent different values for k, while the
real and imaginary parts are given by the circles and crosses,
respectively. The bottom panel shows the free-electron DSF
S0
ee(k, ω) computed from DFT (solid lines) at k = 0 and from

the Mermin dielectric function (circles) at various k. The
DSFs are scaled to the same magnitude and the dielectric
function and DSFs are shifted by 75 and 0.5 arbitrary units,
respectively, with respect to the next lowest wave number for
readability.
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ever, it is apparent that the dynamic dielectric function
in the upper panel of Fig. 2 is more sensitive to changes
in the wave number than the DSF shown in the bottom
panel, which is dominated by the pole in ϵ−1(k, ω).

C. Linear response time dependent density
functional theory

In the framework of LR-TDDFT the density response
of the non-interacting homogeneous Kohn-Sham system
can be evaluated at a finite momentum transfer as [49,
50]:

χKS(k⃗, ω) =
1

Ω

∑
g⃗,i,j

f(ϵi,g⃗) − f(ϵj,g⃗+k⃗)

ω + ϵi,g⃗ − ϵj,g⃗+k⃗ + iη
×

× ⟨ψi,g⃗|e−ik⃗r⃗|ψj,g⃗+k⃗⟩ ⟨ψi,g⃗|eik⃗r⃗|ψj,g⃗+k⃗⟩ . (9)

The quantities in this equation are defined analogously to
the Kubo-Greenwood formula in Eq. (6). This response
function can be related to the full density response χ via a
Dyson equation [49], with different levels of approxima-
tion for the exchange-correlation kernel fXC. A closed
expression can be written as

χ(k⃗, ω) =
χKS(k⃗, ω)

1 −
[
v(k⃗) + fXC(k⃗, ω)

]
χKS(k⃗, ω)

, (10)

where v(k⃗) is the Fourier transform of the Coulomb po-
tential. The exchange-correlation kernel in Eq. (10) is
closely connected to the local field corrections mentioned
in Sec. II B [42, 51, 52]. The level of the RPA is achieved
for fXC = 0, for which the dielectric function can be
computed as

ϵRPA
KS (k⃗, ω) = 1 − 4π

|⃗k|2
χKS(k⃗, ω). (11)

In this framework, the electron-ion coupling is consid-
ered, on the one hand, through the snapshots taken from
the DFT-MD simulation, which effectively account for
static screening via the static ion-ion structure factor,
and on the other hand through the Kohn-Sham orbitals
ψi,g⃗ in Eq. (9) which are the result of a DFT calcula-
tion that considers the Coulomb interaction between the
electrons and ions.

Because the Mermin dielectric function accounts for
electron interactions on the level of the RPA, we set
fXC = 0 and use Eq. (11) in Secs. IV A, IV B and IV C
to facilitate comparisons. In Sec. V, we use the adiabatic
local density approximation [49, 53].

D. Computational details

All DFT-MD simulations for this work were per-
formed with the Vienna ab initio simulation package

(VASP) [54–56]. The electronic and ionic parts are de-
coupled by the Born-Oppenheimer approximation and,
for fixed ion positions, the electronic problem is solved in
the finite temperature DFT approach [57]. In VASP, the
electronic wave functions are expanded in a plane wave
basis set up to a energy cutoff Ecut. After the electronic
ground state density is determined self-consistently at
every time step, the forces on the ions via Coulomb in-
teractions with other ions and the electron cloud are com-
puted and the ions are moved according to Newton’s sec-
ond law. The temperature control in the MD simula-
tion is performed via the Nosé-Hoover algorithm [58, 59]
with a mass parameter corresponding to a temperature
oscillation period of 40 time steps. All simulations are
performed using the exchange-correlation functional of
Perdew, Burke, and Ernzerhof (PBE) [60]. For beryl-
lium, we use the PAW_PBE Be_sv_GW 31Mar2010 poten-
tial with an energy cutoff of 800 eV for all simulations
apart from the compressed case in Sec. IV C for which we
use a Coulomb potential with a cutoff of 10 000 eV. For
further details on the hydrogen simulation parameters,
see Ref. 61.

The dynamic electrical conductivity, that is the input
for the scheme presented in Fig. 1, was computed from
the eigenfunctions and eigenenergies of separate DFT cy-
cles with a more precise energy convergence criterion
via the Kubo-Greenwood formula (6). These simula-
tions were performed on at least five snapshots taken
at equidistant time steps from the DFT-MD simulation.
The scheme described in Sec. II B was implemented us-
ing the NumPy software package [62] for arrays to store
the dynamic properties and for the evaluation of sim-
ple numerical integration. More elaborate integrals, such
as in Eqs. (A7) and (A8), were evaluated using Gaus-
sian quadrature from the SciPy software package [63].
The Kramers-Kronig transformation between the real
and imaginary part of the dynamic dielectric function
and the electrical conductivity was performed according
to Maclaurin’s formula from Ref. 64.

The linear response time dependent DFT (LR-
TDDFT) calculations were performed in the GPAW
code [50, 65–67]. The same snapshots as for the Kubo-
Greenwood calculations were used and a 2x2x2 or 4x4x4
Monkhorst-Pack grid [68] was employed for calculations
of k-dependent dielectric functions. For the considered
conditions, already the Baldereschi mean value point [69]
yields converged optical conductivities for the Kubo-
Greenwood calculations. For hydrogen, the dielectric
function was computed with a plane-wave energy cut-
off of at least 50 eV, while for beryllium at least 250 eV
were used.

III. DYNAMIC COLLISION FREQUENCY

The work flow presented in Fig. 1 results in a complex
dynamic collision frequency νDFT(ω). To study how this
collision frequency compares to different levels of analytic
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FIG. 3. The real part of the dynamic collision frequency of hy-
drogen plasmas at ρ = 2 g/cm3 for temperatures ranging from
5 to 100 eV. The DFT and LR-TDDFT collision frequencies
determined via Eq. (8) from their respective electrical con-
ductivities are shown in black and pink, respectively. The LB
collision frequency is shown in blue with crosses and the T -
Matrix approach is shown in yellow with plus symbols. The
GDW collision frequencies with and without electron-electron
collisions are depicted in red as a dotted line and as a solid
line with filled circles, respectively.

approximations, we determine the real part of νDFT for a
hydrogen isochore at ρ = 2 g/cm3 from 5 to 100 eV (see
Ref. 61 for numerical details). This temperature range
was chosen to illustrate the transition from the WDM
regime to the ideal plasma regime. In Fig. 3 we compare
these collision frequencies to the Lenard-Balescu (LB)
collision frequency, the T -Matrix (TM) approach and
the Gould-DeWitt (GDW) approach. The LB approach
goes beyond the Born collision frequency by including
dynamic screening, while the TM approach accounts for
strong binary collisions by summing up ladder diagrams
in the perturbation expansion [70]. The GDW scheme
combines the dynamic screening of the LB approach with

the strong collisions of the TM treatment and should,
in principle, give the most accurate results. For further
details on the analytic approaches see Refs. 21, 70–73.
The aforementioned approaches solely describe electron-
ion collisions, but electron-electron (e-e) collisions can
be included by modulating the collision frequency with
a renormalization factor [21]. The GDW collision fre-
quency including e-e collisions is also indicated in Fig. 3
by the red dotted lines. It is apparent that although the
DFT predictions agree well with the TM and GDW ap-
proach at high temperatures, it deviates significantly at
lower temperatures where complex many-body and quan-
tum effects contribute strongly. At T = 100 eV, the colli-
sion frequency is dominated by strong collisions between
ions and electrons. However, the inclusion of e-e collisions
via the renormalization factor leads to worse agreement
with the DFT results, which is in agreement with recent
observations that the Kubo-Greenwood formula applied
to DFT lacks e-e collisions [61, 74]. Furthermore, we
apply the work flow presented in Fig. 1 to the electri-
cal conductivity in the optical limit computed by LR-
TDDFT to extract a collision frequency which we show
as the pink dashed lines in Fig. 3. At all temperatures,
its behavior is very similar to the Kubo-Greenwood re-
sults which indicates that electron-electron collisions are
also not included in this description of transport prop-
erties. It is remarkable that at high frequencies the LR-
TDDFT collision frequency lies significantly below the
Kubo-Greenwood results for all considered temperatures.
In our tests, this could not be attributed to a lack of con-
vergence in number of bands or cutoff energy.

IV. DYNAMIC STRUCTURE FACTOR

A. Hydrogen

Given a dynamic collision frequency ν(ω), Eqs. (3) and
(5) can be used to compute the electronic DSF See(k, ω)
where the k dependence only enters through the Mermin
dielectric function. The LR-TDDFT approach allows di-
rect access to the dielectric function at finite k by com-
puting transitions matrix elements between Kohn-Sham
states at different k points [50]. In Fig. 4, we show the
electronic DSF of a hydrogen plasma at ρ = 2 g/cm3 and
T = 50 eV (lower panel) and T = 5 eV (upper panel).
The direct computations through LR-TDDFT are shown
as solid lines, while we also present DSFs computed via
the Mermin dielectric function in conjunction with the
DFT and GDW collision frequencies shown in Fig. 3 as
dashed and dash-dotted lines, respectively. Additionally,
we show the results from the Mermin dielectric function
with the Born collision frequency (see Eq. (B1)), which
constitutes the often used Born-Mermin approach, as
dotted lines. At the lowest wave number shown in Fig. 4,
k = 0.67 Å−1, we are considering the collective behavior
where collision are important, as can be seen from the
dimensionless scattering parameter α (see Ref. 1 for def-
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inition) which is 4.17 and 2.84 for T = 5 and T = 50 eV,
respectively.

As expected for a fully ionized hydrogen plasma, the
k dependence encoded by the Mermin dielectric function
agrees well with the direct computation via LR-TDDFT
for all considered collision frequencies at both conditions.
However, at T = 5 eV, the damping of the plasmon pre-
dicted by LR-TDDFT can only be captured with the
DFT collision frequency, especially at small k. The Born
collision frequency leads to a vast overestimation of the
plasmon magnitude for k below 2.4 Å−1 and also the
GDW approach with renormalization overestimates the
magnitude by a factor of 2 for k below 1.15 Å−1. With
increasing wave numbers, the collisions become less sig-
nificant, and the DSFs for all collision frequencies start
to converge to the same result. At T = 50 eV, the col-
lisions play a smaller role, which is demonstrated by the
largely identical predictions from all collision frequen-
cies for k above 1.15 Å−1. It is notable that although
the inclusion of electron-electron collisions leads to sig-
nificant discrepancies between the dynamic collision fre-
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FIG. 4. The inelastic electronic DSF Set(k, ω) of a hydrogen
plasma at ρ = 2 g/cm3 and T = 5 eV (upper panel) and T =
50 eV (lower panel) from k = 0.67 Å−1 to k = 2.40 Å−1. The
solid line denotes the direct computation from LR-TDDFT
at the respective wave numbers, while the other lines denote
DSFs computed from the Mermin dielectric function with the
DFT collision frequency (dashed lines), the GDW collision
frequency including electron-electron collisions (dash-dotted
lines) and the Born collision frequency (dotted lines). The
DSFs are shifted by 0.5 with respect to the next lowest wave
number for readability.

quencies in Fig. 3, these differences cannot be observed in
the DSF, given the numerical noise. In the LR-TDDFT
data, a small additional contribution at ℏω = 0 eV ap-
pears, which has also recently been seen in path inte-
gral Monte Carlo simulations [75]. This bump is not in-
cluded in the Mermin formalism and appears more pro-
nounced at higher temperatures and lower densities (also
see Sec. IV B and IV C), leading us to propose that it
is connected to bound-bound transitions without energy
transfer.

B. Isochorically heated beryllium

To investigate the impact of tightly bound states on
the presented procedure, we study a beryllium plasma
at ρ = 1.8 g/cm3 and T = 12 eV, for which the ap-
proach of Ref. 48 predicts a charge state Z = 2.1. The
bound 1s states are energetically clearly separated from
the free electrons. The collision frequency can either be
determined from the full dynamic electrical conductivity
that includes the transitions from the bound 1s states to
the conduction band, or from the free-free electrical con-
ductivity by restricting the transition matrix elements
in Eq. (6) to transitions originating and ending in the
conduction band (for details on this decomposition, see
Ref. 48). In the latter case, only the free-free contribution
to the DSF is considered within the Mermin dielectric
function, while the bound-free contribution must be ap-
proximated by its behavior at k → 0. In Fig. 5, we show
the comparison of these two approaches to the direct
computation of the electronic DSF using LR-TDDFT.
At the lowest wave number k = 0.49 Å−1, shown in the
upper panel, all approaches agree well, as expected due
to the construction of the collision frequency which re-
quires equivalence in the limit of small k (see Eq. (8)).
The separation of the conductivity into a free-free and a
bound-free contribution allows us to clearly identify the
different terms of the Chihara formula (2) in the DSF.
The dotted line represents the bound-free contribution,
which agrees exactly with the LR-TDDFT data above
∼ 90 eV, and the dashed line represents the free-free
contribution (plasmon), which matches the LR-TDDFT
results below ∼ 90 eV. Remarkably, the prefactors Zf

and Zb in Eq. (2) which give the respective weighting
of these two features come out of the definition of the
charge state described in Ref. 48 and agree virtually ex-
actly with the direct computation including all transi-
tions in LR-TDDFT.

At k = 1.47 Å−1 in the middle panel of Fig. 5, the devi-
ation of the approach using the full collision frequency to
the other approaches becomes apparent. The bound-free
dominated DSF above ∼ 90 eV is still well approximated
by both the full collision frequency and the bound-free
feature at k → 0. Below ∼ 90 eV, however, the ap-
proach using the full collision frequency, denoted by the
dash-dotted line, deviates strongly (note the logarithmic
scale) from the LR-TDDFT result. The free-free fea-
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ture computed solely from the collision frequency based
on free-free transitions, denoted by the dashed line, still
agrees very well with the LR-TDDFT calculation in this
energy regime.

The bottom panel of Fig. 5, showing the DSF at
k = 3.42 Å−1, highlights the complete breakdown of
the approach using the full collision frequency. While
the DSF is still described adequately above ∼ 90 eV, its
shape is very different from the LR-TDDFT result below
that energy. On the other hand, the separate description
of free-free and bound-free contributions again describes
the DSF accurately compared to the LR-TDDFT data.
However, the approximation of the bound-free feature by
its k → 0 limit starts to deteriorate at this wave number.
At the highest energy shift shown in Fig. 5, this approxi-
mation underestimates the LR-TDDFT value by a factor
of almost 2. Additionally, at the onset of the bound-free
feature around 100 eV, it overestimates the DSF com-
pared to the LR-TDDFT as can be seen in Fig. 6 which
shows the DSF on a linear scale. The fast deterioration
beyond the k → 0 limit of the approach using the full
collision frequency is expected because the framework of
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FIG. 5. The inelastic electronic DSF Set(k, ω) of a beryllium
plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values
on a logarithmic scale. The solid lines are direct computations
at the given k using LR-TDDFT. The dash-dotted and the
dashed lines denote DSFs computed from the Mermin dielec-
tric function with the full DFT collision frequency, determined
from the electrical conductivity including bound-free transi-
tions, and the free-free collision frequency, determined from
the electrical conductivity including only free-free transitions,
respectively. The dotted lines denote the DSF computed di-
rectly from the bound-free conductivity at k = 0 Å−1.
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FIG. 6. The inelastic electronic DSF Set(k, ω) of a beryllium
plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values.
The solid lines are direct computations at the given k using
LR-TDDFT, while the dotted and dash-dotted lines denote
DSFs computed from the Mermin dielectric function with the
Born collision frequency for a plasma with a charge state of
Z = 2 and Z = 4, respectively. The dashed lines represent
the sum of the DSF computed through the Mermin dielectric
function using the free-free collision frequency and the bound-
free DSF at k = 0 Å−1. The DSFs are shifted by 0.5 with
respect to the next lowest wave number for readability. In
the inset, the solid line shows the density of states, while the
shaded area denotes the occupied density of states.

the Mermin dielectric function, which encodes the k de-
pendence, does not include the existence of bound states.
Therefore, any such states that are artificially introduced
via the collision frequency cannot be handled correctly in
the k dependence.

Furthermore, in Fig. 6, we show the DSFs computed
from the Mermin dielectric function with Born collision
frequencies for a plasma with a charge state Z = 2 and
Z = 4. The position of the plasmon peak for Z = 2
agrees well with the DFT spectra, while the position of
the Z = 4 plasma is consistently at too high energies, as
expected due to the higher free-electron density. How-
ever, at low k, the dampening of the plasmon peak due
to the Born collision frequency is too low compared to the
DFT data, similar as observed for hydrogen in Fig. 4. At
the higher wave numbers, the plasmon-peak position of
the DFT results agrees well with Mermin function using
the Born collision frequency at Z = 2, clearly indicat-
ing that the bound 1s states do not contribute to this
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feature. The inset in Fig. 6 shows the density of states
(DOS) of the beryllium plasma which shows a clear sep-
aration between the narrow 1s band, which is fully oc-
cupied, and the conduction band. This clear distinction
is the reason why the separate treatment of free-free and
bound-free contributions is successful. The bound-free
feature does not exhibit a strong k dependence up to
high k values [23, 76], and the plasmon occurs energeti-
cally separated in the DSF.

C. Compressed beryllium

With increasing density and temperature the notion
of bound states becomes ill-defined in WDM. The in-
set in Fig. 7 shows the DOS of a beryllium plasma at
T = 50 eV and ρ = 40 g/cm3 which demonstrates the
closing of the band gap compared to the inset in Fig. 6.
Furthermore, the former 1s states broaden significantly
into a band and the DOS converges towards the

√
E be-

havior of a free electron gas. Because the band gap is still
clearly identifiable the separate treatment of bound-free
and free-free contributions to the DSF presented in the
previous section can also be applied to these conditions.
Figure 7 shows the results of this separate treatment,
as well as the direct computation using LR-TDDFT and
the DSF from the Mermin dielectric function using the
full collision frequency. While the separate treatment of
bound-free and free-free contributions yields excellent re-
sults for the near-ambient density case in Fig. 5, it poorly
approximates the LR-TDDFT results in strongly com-
pressed beryllium shown in Fig. 7. The plasmon peak at
k = 1.37 Å−1 is severely underdamped due to the missing
bound-free transitions in the collision frequency, which
occur in the same energy range as the free-free transi-
tions at these conditions. The use of the Born collision
frequency in lieu of the free-free DFT collision frequency
leads to an increase of the plasmon peak magnitude by a
factor of 2 (not shown in Fig. 7). The broader peak aris-
ing around ∼ 130 eV for k = 4.12 and k = 6.87 Å−1 is due
to the insufficient approximation of the bound-free fea-
ture by its value at k = 0 Å−1. As can be seen from the
LR-TDDFT data, the bound-free features merges with
the free-free feature to form one homogeneous feature.
At these conditions, using the full collision frequency in
the Mermin dielectric function gives better results, which
is expected as the former 1s states lose their bound char-
acter due to the higher compression and higher temper-
ature. For all considered wave numbers, this approach
yields good agreement with the LR-TDDFT data above
∼ 200 eV, and approximates the trends below that energy
fairly well. Solely at ∼ 100 eV this approach predicts
a feature that is not visible in the LR-TDDFT results
across the considered k range.
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k = 4.12 Å−1
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FIG. 7. The inelastic electronic DSF Set(k, ω) of a beryllium
plasma at ρ = 40 g/cm3 and T = 50 eV for various k val-
ues. The solid lines are direct computations at the given k
using LR-TDDFT, while the dashed lines represent the sum
of the DSF computed through the Mermin dielectric function
using the free-free collision frequency and the bound-free DSF
at k = 0 Å−1. The dotted lines denote the DSF computed
through the Mermin dielectric function with the full collision
frequency. The DSFs are shifted by 0.5 with respect to the
next lowest wave number for readability. In the inset, the
solid line shows the density of states, while the shaded area
denotes the occupied density of states.

V. APPLICATION TO EXPERIMENTS

We reanalyze previous XRTS experiments by
Döppner et al. [77] and Kritcher et al. [78] using LR-
TDDFT to evaluate the influence of advanced methods
on the initially inferred plasma parameters. In general,
temperature and density of the target must be consid-
ered simultaneously. However, since Döppner et al. used
detailed balance in their forward scattering experiment
to determine the temperature as T = 18 eV, we use this
value and vary the density to find the best agreement
with the experimental data. To justify this approach
we show the results of a recently suggested model-free
temperature diagnostic [79] in Appendix C. For the
other experiment, we include the temperature in the
analysis.

Firstly, in Fig. 8, we show simulated XRTS spectra
with densities ranging from 1.0 to 2.2 g/cm3 at T = 18 eV
together with the forward XRTS spectrum recorded by
Döppner et al. [77], which was collected at the Omega
laser facility at the Laboratory for Laser Energetics at
the University of Rochester. The experiment probed a
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scattering vector of approximately k = 1 Å−1, enabling
access to collective behavior of the plasma. In the orig-
inal analysis of the experiment a density of 1.17 g/cm3

was determined by Döppner et al. [77]. The electron
feature was treated on the level of the RPA without in-
cluding electron-ion collisions and the ionization was as-
sumed to be Zf = 2.3. We compute the electron feature
for various densities from LR-TDDFT while including
local field corrections via the adiabatic local density ap-
proximation [49, 53]. The magnitude of the ion feature
is left as a free parameter in the χ2 minimization. Al-
though none of the computed spectra capture the plas-
mon at 2930 eV perfectly, the spectrum at ρ = 1.8 g/cm3

yields a 5% lower χ2 deviation than any of the other
considered densities. The ionization state at this den-
sity is Z = 2.14, determined via the Thomas-Reiche-
Kuhn sum rule [48], which is approximately 7% lower
than the value used by Döppner et al. [77]. Further-
more, the originally determined density is approximately
35% smaller than the here computed density. The re-
maining disagreement in the shape of the plasmon could
be explained by uncertainty in the instrument function
or, potentially, local field corrections caused by a more
sophisticated exchange-correlation kernel. However, the
general spectral position of the plasmon is captured well
by our fit and the difference in inferred density highlights
the importance of considering many-body physics in the
collective scattering regime.

For the experiment by Kritcher et al. [78], the tempera-
ture cannot reliably be inferred from the detailed balance
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FIG. 8. The lower panel shows the scattering intensity of
an isochorically heated beryllium target at T = 18 eV from
Ref. 77. The colors of the solid lines encode different densities
used in the LR-TDDFT simulations. The dotted lines denote
the inelastic contributions. The upper panel shows the χ2

deviation depending on the density used in the simulation
where the colored dots correspond to the spectra shown in the
lower panel and the black curve is achieved by interpolating
to 40 evenly spaced densities between these spectra.

relation and the temperature must, therefore, be included
in the analysis. Furthermore, the instrument and source
functions were not available and must be modeled ex-
plicitly in the analysis. To analyze the experiments, we
simulate spectra on a sufficiently large temperature and
density grid and interpolate between them [80] to model
arbitrary ρ − T combinations in this range. Due to the
high number of parameters involved in this sort of anal-
ysis, we employ Bayesian inference [81] implemented in
the PyMC3 software package [82] and use the sequential
Monte Carlo algorithm [83, 84] for sampling the parame-
ter space. In Fig. 9, we consider the backward XRTS ex-
periment at k = 8.42 Å−1 on imploding beryllium shells
by Kritcher et al. [78], which was also performed at the
Omega laser facility. To analyze the experiment, we sim-
ulate spectra on a grid ranging from 2 to 32 g/cm3 and
from 0.1 to 25 eV. No instrument or source function was
supplied in Ref. 78. We, therefore, use the parametriza-
tion of a zinc source given in Ref. 14 and include all
the parameters of the instrument response function in
the Bayesian analysis. We also replace the Gaussian de-
scribing the source broadening by a skewed Gaussian to
account for the asymmetry observed in the ion feature.
Thus, ten parameters determine the shape of the spec-
trum, including the physical parameters describing the
density and temperature of the sample and the magni-
tude of the ion feature, and 7 parameters describing the
experimental setup. The upper panel of Fig. 9 shows an
XRTS spectrum collected from an imploding beryllium
shell at a delay of t = 3.1 ± 0.1 ns and the posterior
prediction for the elastic and inelastic contribution to
the simulated scattering spectrum. The posterior pre-
dictions are obtained by sampling parameters according
to the posterior probability distribution and using these
parameters to simulate the spectrum. The agreement
between the simulated spectrum and the experimental
data is excellent. The bottom panel of Fig. 9 shows the
reduced posterior probability distribution in the density
parameter ρ, which is the full probability distribution
integrated over all other parameters. The inferred den-
sity ρ = 7.9+1.0

−0.8 g/cm3 corresponds to the maximum
aposteriori probability and the uncertainties are deter-
mined from the 80% highest posterior density interval.
With an assumed ionization state Z = 2, the original
analysis by Kritcher et al. [78] resulted in estimates of
ρ = 8.23 ± 2.24 g/cm3 and T = 14 ± 3 eV. The density,
which is the most sensitive plasma parameter with re-
spect to the Compton feature at these conditions, agrees
very well with our current study. However, Kritcher et al.
also used a temperature-dependent model for the ion fea-
ture, while we keep the ion feature as a free parameter.
Therefore, the inferred temperature is mainly determined
from the relative magnitude of the ion feature and Comp-
ton feature. Because the shape of the Compton feature is
not very sensitive to the temperature at these conditions,
we cannot reliably determine the electron temperature.
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FIG. 9. Scattering intensity of imploding beryllium shells
from Ref. 78. The upper panel shows the experimental data
at a delay t = 3.1 ± 0.1 ns and the posterior prediction for
the elastic and inelastic contributions based on LR-TDDFT
simulations. The thin lines are 100 spectra computed from
parameters randomly sampled from the posterior probility
distribution. The shaded areas show the region below the
average posterior predictions. The lower panel shows the re-
duced posterior probability distribution in the density param-
eter ρ where the dark shaded area under the curve indicates
the 80% highest posterior density interval.

VI. CONCLUSION

In this work, we presented the theoretical basis for
computation of DSFs using the Mermin dielectric func-
tion with a dynamic complex collision frequency and
showed how this framework can be used to extract col-
lision frequencies from DFT simulations. We compared
these collision frequencies to several analytic approaches
for hydrogen plasmas at ρ = 2 g/cm3 and, for temper-
atures approaching the ideal plasma limit, found good
agreement with models that incorporate strong collisions.
Furthermore, we studied how different collision frequen-
cies impact the DSF calculated from the Mermin dielec-
tric function and compared these results to the direct
computation of the DSF at the given wave numbers us-
ing LR-TDDFT. For hydrogen, we find good agreement
for all collision frequencies at high k, while at small k, es-
pecially the frequently used Born approximation leads to
underdamped plasmon peaks. For beryllium, we showed
that a separate treatment of free-free and bound-free con-
tributions to the DSF yields excellent agreement with the
LR-TDDFT for near-ambient densities up to moderate
wave numbers (k = 3.42 Å−1), while it disagrees signif-
icantly for highly compressed beryllium because bound-
free transition interact with the free-free transitions to
dampen the plasmon. Therefore, in order to get accurate

DSFs over a wide range of wave numbers in extreme con-
ditions, it is imperative to employ ab initio approaches
like LR-TDDFT or path integral Monte Carlo simula-
tions. Analytic approaches that are based on electron-
ion collision frequencies should only be used for the free-
free part if free and bound states are clearly separated,
and even at these conditions standard descriptions like
the Born collision frequency significantly under-dampen
the plasmon in the collective regime. We applied LR-
TDDFT to XRTS experiments on beryllium and found
significant differnces of roughly 35% in inferred density
for small k for Döppner et al. [77] and found good agree-
ment with analytical approaches for backscattering with
large k for Kritcher et al. [78].
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Appendix A: Derivation of real and imaginary part
of RPA dielectric function

The collision frequency is generally a complex number

ν(ω) = ν1(ω) + i ν2(ω), (A1)

meaning that its imaginary part acts as a shift of the
frequency that enters into ϵRPA in Eq. (5) and its real
part takes on the role of the artificial damping η that
was introduced in Eq. (4). However, in this case, the
damping is not set to zero after the integration.

Now, we will split Eq. (4) into its real and imaginary
part and consider the modulation of the input frequency
ω by the complex frequency from Eq. (A1) where the
argument of ν is dropped for readability:

Re
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Im
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The shifted frequency ω̃ = ω − ν2 is introduced here.

These integrals are performed across the entire momen-
tum space and can therefore be shifted by an arbitrary
vector y⃗ because for an integral of a function G(x⃗), which
goes to 0 as |x⃗| → ∞, it holds that∫

R3

d3xG(x⃗) =

∫
R3

d3xG(x⃗− y⃗), with |y⃗| <∞. (A4)

Therefore, we can separate the integrand in Eqs. (A2)
and (A3) into two summands with the Fermi occupation
of the up- and down-shifted momentum, respectively. We
further use Eq. (A4) to shift the momenta in the argu-
ment of the Fermi occupation to q⃗ in order to get fq⃗ as
a common prefactor for both summands. The momenta
in the subscripts of the energy have to be shifted accord-
ingly. This gives

Re
[
ϵRPA(k⃗, ω + i ν)

]
= 1−

− 2e2

ϵ0k2
2π

∫ ∞

0

dq

(2π)3
q2fq

me

ℏ2k
×

×
∫ 1

−1

dz

(
κ− 1

2 (k + 2qz)(
κ− 1

2 (k + 2qz)
)2

+ ∆2
−

− κ− 1
2 (−k + 2qz)(

κ− 1
2 (−k + 2qz)

)2
+ ∆2

)
(A5)

for the real part and

Im
[
ϵRPA(k⃗, ω + i ν)

]
=

4π
e2

ϵ0k2

∫ ∞

0

dq

(2π)3
ν1m

2
e

ℏ3k2
q2fq×

×
∫ 1

−1

dz

(
1(

κ− 1
2 (k + 2qz)

)2
+ ∆2

−

− 1(
κ− 1

2 (−k + 2qz)
)2

+ ∆2

)
(A6)

for the imaginary part. Here, k⃗ was fixed in the q3-
direction and z = cos θ where θ is the angle between

q⃗ and k⃗. The shorthands κ = ω̃me

ℏk and ∆ = meν1

ℏk with
the electron mass me are introduced. The Fermi occu-
pation can be pulled out of the angle integration as it
only depends on the magnitude of the momentum. The
integral over the angle can be performed analytically in

−20 0 20 40

h̄ω [eV]

0.0

0.2

0.4

0.6

0.8

1.0

In
te

n
si

ty
[a

rb
.

u
n

it
s]

Exp.

Inst.

20 30 40

h̄ω [eV]

5

10

15

20

25

30

35

40

45

T
e

[e
V

]

Te = 19± 1.5 eV

Without
instrument

With
instrument

FIG. 10. The left panel shows the scattering intensity and
the instrument function from Ref. 77. The right panel shows
the inferred electron temperature accoring to Ref. 79.

Eqs. (A5) and (A6), giving

Re
[
ϵRPA(k⃗, ω + i ν)

]
= 1 + 2π

mee
2

ϵ0ℏ2k3

∫ ∞

0

dq
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qfq×

× ln

(
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(
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2 − q
)2)(
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(
κ+ k

2 + q
)2)(
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(
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2 + q
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(
κ+ k
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)2) (A7)

for the real part, and

Im
[
ϵRPA(k⃗, ω + i ν)

]
= −4π

mee
2

ϵ0ℏ2k3

∫ ∞

0

dq

(2π)3
qfq×

×
[

arctan

(
κ− k

2 − q
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)
+ arctan

(
κ+ k

2 + q

∆

)
−

− arctan

(
κ− k

2 + q

∆

)
− arctan

(
κ+ k

2 − q

∆

)]
(A8)

for the imaginary part of the RPA dielectric function
modulated by a complex frequency. The remaining in-
tegration over q has to be performed numerically.

Appendix B: Expressions for the Born collision
frequency

One of the most prominent approximations for the col-
lision frequency is the Born collision frequency [21]

νBorn(ω) = −i ϵ0niΩ
2

6π2e2neme

∫ ∞

0

dq q6×

× V 2
ei(q)Sii(q)

1

ω

[
ϵRPA(q, ω) − ϵRPA(q, 0)

]
, (B1)

with the ion density ni, the electron density ne and
the normalization volume Ω. There are different ap-
proximations for the electron-ion potential Vei and the
static structure factor Sii. The potential can be ap-
proximated by the screened Coulomb potential with the
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T = 50 eV,
ρ = 40 g/cm3

FIG. 11. The upper and lower panels show the DSFs com-
puted from LR-TDDFT shown in Fig. 6 and 7, respectively.
The solid lines denote the results without inclusion of CLFE,
while the dotted lines represent calculations including CLFE.

Debye-Hückel or Thomas-Fermi screening parameter de-
pending on the density and temperature regime consid-
ered.

Approaches to the structure factor range from the as-
sumption of a homogeneous electron gas (Sii(q) = 1) or
analytic models like the Debye-Hückel theory to more
sophisticated methods like the hypernetted-chain (HNC)
equation or MD simulations. Here, we use the potential

Vei(q) =
V Coulomb
ei (q)

ϵRPA(q, 0)
= −eeei

ϵ0Ω

1

q2 ϵRPA(q, 0)
(B2)

and the static structure factor we calculate from our
DFT-MD simulations. Equation (B1) is computed by
directly calculating its real part and subsequently per-
forming the Kramers-Kronig [85, 86] transformation to
arrive at the imaginary part.

Appendix C: Temperature determination via
Laplace transform

We employ the recently proposed temperature diag-
nostic based on a two-sided Laplace transform [79] to
inferr the temperature from experiment performed by
Döppner et al. The left panel of Fig. 10 shows the
scattering data and the instrument function, while the
right panel shows the inferred temperature according to
the procedure described in Ref. 79. The x axis denotes
the energy up to which the two-sided Laplace trans-
form is performed. A convergence is observed beyond
40 eV and the electron temperature is determined to be
19± 1.5 eV. This values agrees within errorbars with the
electron temperature of 18 eV, originally determined by
Döppner et al. We, therefore, exclude the electron tem-
perature from the fitting procedure for this experiment.

Appendix D: Crystal local field effects

The expression for LR-TDDFT in Eq. (9) is only valid
for homogeneous systems. For a heterogeneous system,
the formula is expressed in a basis of reciprocal lattice
vectors [87, 88]. To get macroscopic information on the
dielectric function, the dielectric matrix in the basis of re-
ciprocal lattice vectors must be inverted leading to addi-
tional local field effects. These contributions are referred
to as crystal local field effects (CLFE) [89] which are
not connected to the local field corrections discussed in
Secs. II B and II C. In Fig. 11, we show the DSFs without
CLFE from Sec. IV B and IV C compared to the corre-
sponding results with CLFE. It is apparent that these ef-
fects are negligible in the regime considered in this work.
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gori, R. Irsig, T. Laarmann, H. J. Lee, B. Li, K.-H.
Meiwes-Broer, J. Mithen, B. Nagler, A. Przystawik,
H. Redlin, R. Redmer, H. Reinholz, G. Röpke, F. Tavella,
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[30] M. Böhme, Z. A. Moldabekov, J. Vorberger, and
T. Dornheim, Phys. Rev. Lett. 129, 066402 (2022).
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H. Reinholz, G. Röpke, A. Wierling, S. H. Glenzer, and
G. Gregori, Phys. Rev. E 78, 026411 (2008).

[45] K.-U. Plagemann, P. Sperling, R. Thiele, M. P. Desjar-
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