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Elastic strips provide a general motif for studying shape transitions. When actuated through
rotation of its boundaries, a buckled strip exhibits, depending on the direction of rotation, three
types of shape transitions: buckling, linear snap-through, or non-linear snap-through. The transition
dynamics is linked to the character of the bifurcation, which, in turn, is disclosed by the normal form
of the system, but deriving normal forms is challenging. Recent work used asymptotic methods to
obtain this form for nonlinear snap-though, but, to date, there is no methodology for extending this
analysis to other transitions. Here, we introduce a method to analyse the dynamic characteristics of
an elastic strip near a transition and extend, in a straightforward manner, the previously-proposed
asymptotic analysis to linear snap-through and buckling transitions. Importantly, we show that these
normal forms dictate all the dynamic characteristics of the elastic strip near a shape transition. Our
analysis provides reliable tools to diagnose and anticipate elastic shape transitions.

I. INTRODUCTION

Elastic shape transitions arise when an elastic structure is in an equilibrium configuration that becomes unstable or
suddenly disappears when a control parameter is varied. These transitions are commonly classified into buckling and
snap-through. Buckling corresponds to a supercritical transition where, for an infinitesimal variation of the control
parameter, the elastic structure moves by an infinitesimal amount [1]. Snap-through corresponds to a subcritical
transition where an infinitesimal variation of the control parameter induces a finite motion of the elastic structure
[2–4]. That is, buckling occurs when, at the bifurcation point, the system transitions smoothly to a newly created
stable equilibrium branch; snap-through occurs when the structure must jump to a distant equilibrium. The study of
these transitions consists of determining (i) the value of the control parameter at which the bifurcation takes place,
(ii) the number of branch of solutions that split off at the bifurcation point, and (iii) the behavior of these solutions
in the neighborhood of the bifurcation point.
Once (i) is known, a common way to solve (ii) and (iii) at once is to reduce the dynamic of the elastic structure

near the bifurcation to the temporal evolution of the amplitudes of critical normal modes ; these are modes whose
eigenfrequency vanishes at the bifurcation and that are only mildly unstable or slightly damped around the bifurcation.
All other modes are strongly damped and rapidly attenuated and play only a marginal role in the dynamics near the
bifurcation. The amplitude equations or normal forms describe the behavior of these critical modes and give a good
approximation of the dynamics near the transition [3, 5–8]. Importantly, they allow precise classification of these
transitions according to the type of bifurcation exhibited by the normal forms.
Elastic strips have been used in recent years as a canonical system to unravel the fundamental mechanisms of elastic

shape transitions [3, 7, 9–13]. Buckling is observed under transversal shearing of a clamped-clamped or hinged-hinged
strip [11] while snap-through is observed under transversal shearing of a clamped-hinged strip [11] or when the ends
of clamped-clamped strip are rotated symmetrically or asymmetrically [3]. When snap-through occurs, authors have
identified two different types of dynamics [3]: in certain cases, the early dynamic is linear, and the typical distance
between the actual configuration of the elastic structure and its initial configuration grows exponentially in time,
thus the term linear snap-through; in other cases, the strip moves away from its initial configuration in an algebraic

manner, where the snap-through dynamics is non-linear even at early time, thus called non-linear snap-through.
For non-linear snap-through, Gomez et al. [3, 7, 14] obtained the normal form of the system near the transition

and showed that it corresponds to a saddle-node bifurcation. This allowed them to explain all the dynamic properties
of this transition. In particular, they related the abnormally slow dynamics of snap-through - which was commonly
attributed to dissipation mechanisms and/or viscoelastic effects - to the critical slowing down near the bifurcation.
The normal form was obtained using reduction order methods that rely on an asymptotic analysis in the vicinity
of the bifurcation. This analysis requires to expand the different variables involved in the problem in terms of the
bifurcation parameter, with correct scaling. In [3, 7, 14], these scalings were postulated and justified a posteriori. To
date, there is no systematic way to obtain these scalings in different systems.
In this paper, we propose a systematic way to obtain the scalings of the different variables near the bifurcation.

This allows us to expand the analysis of Gomez et al. to the two other types of transition identified in the literature,
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Figure 1. Rotational boundary actuation When the boundaries of a buckled strip are rotated by an angle µ in an (A) asymmetric
, (B) symmetric , or (C) antisymmetric fashion, the two buckling configurations UA and UB are modified and approach each other until
they merge in a single configuration. (D, E, F) The transition from two stable equilibria to a single equilibrium depends on the boundary
actuation. This is depicted by plotting the evolution of the mid-point of the strip in term of µ for each equilibrium. The transition is
abrupt for the asymmetric and symmetric cases (D and E) and smooth for the antisymmetric case (F). In D and E, the strip snaps from
UA to UB. (G) The snap-through dynamic is monotonic for the asymmetric case and (H, I) preceded by damped oscillations for the
symmetric case; see Appendix C for an analysis of the origin of these oscillations.

the buckling and linear snap-through transitions. We study three systems inspired by [3]. A buckled elastic strip,
clamped at both ends, is boundary actuated by rotating one or both of its boundaries. Depending on the direction
around which we rotate the boundaries, we get three systems that exhibit the three types of elastic shape transitions
reported in the literature: buckling, linear snap-through and nonlinear snap-through.
We analyze the static equilibria and the dynamics of these three systems numerically, by solving the fully nonlinear

discrete Cosserat rod equations [15, 16], and analytically, in the context of the quasi-linear geometrically constrained
Euler Beam model [3, 9]. From this analysis, we develop a systematic approach to obtain the scaling of the different
variables near the bifurcation directly from data. This allows us to extend the analysis carried out in [3] and derive
the normal form of the bifurcation for the two other types of shape transitions. We demonstrate that all the dynamic
characteristics of the elastic structure are dictated by the nature of the underlying bifurcation. In particular, we show
that the scaling of dynamic variables with the bifurcation parameter provides a robust marker of the type of shape
transition the system undergoes. This analysis leads to reliable tools for the diagnosis of shape transitions in elastic
structures. We conclude by showing how these tools can be exploited to predict shape transitions.

II. NUMERICAL OBSERVATIONS BASED ON THE 3D COSSERAT ROD THEORY

We consider an elastic strip of length L and rectangular cross-section of width b and thickness h that is clamped at
both ends and strain-free in a straight reference configuration. The strip material properties are characterized by its
density ρ and Young’s modulus E. The straight strip is first compressed longitudinally, by constraining its end-to-end
distance L − ∆L to be shorter than the strip length L. This causes the strip to buckle following a supercritical
pitchfork bifurcation, known as the Euler-buckling instability (e.g.,[1, 17]). The buckled strip admits two equally-
likely, symmetric buckled states, of U-like shape, which we denote hereafter by UA and UB (Fig. 1 and Fig. 2). The
bistable elastic structure is driven through shape transition by rotating either one or both ends by a non-zero angle
α (Fig. 1). Rotational boundary actuation leads to another bifurcation, as α increases, where the system transitions
from bistable to monostable. The nature of this bifurcation and the dynamic behavior of the strip around that
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Figure 2. Evolution of the equilibrium shapes. Evolution of the equilibrium shapes obtained from the Euler beam model under (A)
asymmetric, (B) symmetric and (C) antisymmetric boundary actuation when approaching the bifurcation. For the Asymmetric case, UA

monotonically approaches SB until they merge and both disappear (Fig. 1D). For the Symmetric case, UA approaches SA and SB until
they all merge in an unstable equilibrium. Soon after the equilibrium born from the merging of these three shapes merges with with WB

and both disappear (Fig. 1E). For the Antisymmetric case UA, SA, and SB approach each other until they all merge in a single equilibrium
(Fig. 1F).

bifurcation are the main topics of this study.
We numerically investigate the equilibrium configurations of the boundary-actuated strip using an implementation

of the discrete Cosserat Rod theory [16]. Starting from the clamped-clamped straight strip, we quasi-statically push
the two ends towards each other, waiting sufficiently long after each decrement for the strip to reach mechanical
equilibrium, until the strip buckles into one of the two energetically identical states UA and UB and a targeted
end-to-end distance L − ∆L is reached. The buckled strip admits, in addition to the state shapes UA and UB, an
infinite series of unstable shapes of alternating geometric symmetries that are not directly accessible by forward-time
simulations without imposing additional geometric constraints. The first unstable pair with odd geometric symmetry
has an S-shape; therefore, the corresponding strip configurations are denoted by SA and SB; the next unstable pair
admits a W-shape with even geometric symmetry; the corresponding configurations are denoted by WA and WB

(Fig. 2).
We subject the buckled strip, starting from the UA and UB configurations, to rotation of one or both of its clamped

boundaries. We consider asymmetric, symmetric, and antisymmetric boundary rotations (Fig. 1). In the asymmetric
case, we rotate one end while holding the other at zero angle (Fig. 1A) as done experimentally in [3]. In the symmetric
case, both ends are rotated by an equal amount in opposite directions (Fig. 1B), while in the antisymmetric case,
both ends are rotated by an equal amount in the same direction (Fig. 1C). As we rotate the strip’s endpoints, UA

and UB morph into two new stable equilibrium shapes (Fig. 2).
To facilitate later analysis, we report the strip’s behavior in non-dimensional form. Following [3], we scale time t by

the elastic time scale
√

ρbhL4/B, longitudinal distance by the strip length L, and the strip transverse deflection by√
L∆L. We use w(s, t) to refer to the strip’s transverse deflection in the y-direction, consistent with the notation in

the Euler-Bernoulli theory introduced in §III. In non-dimensional form, the angle imposed at either or both boundaries
is given by (see [3])

µ = α

√

L

∆L
. (1)

The parameter µ balances the slope α imposed at the boundary with the natural slope
√

∆L/L adopted by the strip
in order to satisfy the end-to-end shortening.
In Fig. 1 and 2, we vary µ by holding ∆L fixed and varying α. For all three types of boundary actuation, the two

initially-stable buckled states UA and UB get modified until a threshold value µ∗ is reached. The numerically obtained
µ∗ values are summarized in Table I where we also report the analytically obtained values in the limit ∆L/L → 0
(see next section). Above this threshold, only one stable equilibrium configuration is available for the strip. The way
the system transitions from two equilibrium states to one depends on the type of boundary actuation.
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Table I. Dynamic behavior close to the bifurcation. The bifurcation value µ∗ obtained numerically using discrete Cosserat
simulations for ∆L/L = 10−2 and (semi)-analytically using the Euler beam model. Values without decimal are analytically
exact while values with decimals are approximate. At a distance ∆µ = µ−µ∗ ≪ 1 from the bifurcation µ∗, the amplitude A of
the leading order mode and time scale 1/

√

|σ2| describing the behavior of the strip near the transition are the same for both
the discrete Cosserat model and the Euler beam model as long as ∆µ is measured from the corresponding µ∗ values.

Asymmetric Symmetric Antisymmetric

Numerical µ∗ 1.763 1.973 1.967
∆µ = µ− µ∗

Analytical µ∗ 1.782 2 2

Time scale 1/
√

|σ2| ∆µ−1/4 ∆µ−1/2 ∆µ−1/2

Amplitude A ∆µ1/2 ∆µ1/2 ∆µ1/2

In the asymmetric case, the transition happens at µ∗ ≈ 1.763. The stable branch corresponding to the inverted
shape UA disappears suddenly at µ∗ and only the natural shape UB remains available for µ > µ∗. This is evidenced
by plotting the evolution of the midpoint deflection w for the two equilibrium states UA and UB as a function of the
actuation parameter µ (Fig. 1D square symbols). At the transition µ∗, an infinitesimal variation δµ causes sections
of the strip that is initially in the UA configuration to move by a finite amount before reaching the equilibrium in
the UB configuration. This is typical of a snap-through transition. Near the transition, the equilibrium configurations
obtained in our numerics compare well with the experimental data obtained in [3] (inset Fig 1D). The time-evolution
of the snapping event is shown in Fig. 1G by plotting the midpoint deflection versus time right after passing the
threshold µ∗. In the inset of Fig. 1G, we plot the evolution of the quantity w(s = L/2, t)− w(s = L/2, t = 0) on a
logarithmic scale in order to observe how the strip goes away from its initial configuration during the snapping event.
Clearly, the strip monotonically moves from UA to UB in an algebraic manner, as observed and explained in [3].
In the symmetric case, the branch corresponding to the UA configuration suddenly disappears at µ∗ ≈ 1.973, and,

thereafter only UB is observed (Fig. 1E square symbols). When the strip in the inverted UA configuration reaches
the end of this branch, it has to snap to the other configuration. Interestingly, when the strip in the UA configuration
is pushed beyond the threshold µ∗, the strip first exhibits damped oscillations and then suddenly snaps to the UB

configuration as shown in Fig. 1H and 1I. This differs from the transition observed in the asymmetric case.
In the antisymmetric case, the transition is smooth (Fig. 1F square symbols). At the transition value µ∗ ≈ 1.967, the

two equilibrium shapes UA and UB smoothly collapse onto each other and a single equilibrium configuration remains
available thereafter. When approaching the transition, the shape of the strip varies sharply but in a continuous
manner. For an infinitesimal variation δµ, the variation of the mid-point deflection remains infinitesimal, which is
also true for all points along the strip. This differs drastically from the two other types of actuation that lead to
snap-through.

III. STATIC EQUILIBRIA IN THE EULER-BEAM MODEL

We carry out an analysis of the static equilibria of the strip under the three types of boundary actuation studied
in Fig. 1 in the context of the Euler-beam model. Namely, we approximate the arclength s by the x-coordinate
for x ∈ [−L/2, L/2], and we describe the deflection w(x, t) by the linear Euler-beam equation [18]. Using the non-
dimensional quantities [3],

W =
w√
L∆L

, X =
x

L
, T =

√

B

ρbhL4
t, (2)

the linear Euler-beam equation [18] takes the form

∂2W

∂T 2
+

∂4W

∂X4
+ Λ2 ∂

2W

∂X2
= 0, (3)

where Λ2 = FL2/B is the non-dimensional longitudinal compression force. To close the model, (3) is complemented
by a nonlinear incompressibility constraint that expresses the longitudinal confinement imposed to the beam by the
boundaries [3, 9],

∫ 1/2

−1/2

(

∂W

∂X

)2

dX = 2, (4)
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and a set of four boundary conditions that depend on the three types of actuation. Specifically, the boundary
conditions at both ends X = −1/2, 1/2 of the strip are given in terms of the dimensionless parameter µ = α

√

L/∆L,

W |X=−1/2 = W |X=1/2 = 0,
∂W

∂X

∣

∣

∣

∣

X=−1/2

= µ,

asymmetric:
∂W

∂X

∣

∣

∣

∣

X=1/2

= 0, symmetric:
∂W

∂X

∣

∣

∣

∣

X=1/2

= −µ, antisymmetric:
∂W

∂X

∣

∣

∣

∣

X=1/2

= µ.

(5)

The static equilibria Weq(X) of the elastic strip are solutions of the steady counterpart of (3),

d4Weq

dX4
+ Λ2

eq

d2Weq

dX2
= 0, (6)

whose general solution is of the form

Weq(X) = A sin(ΛeqX) +B cos(ΛeqX) + CX +D. (7)

Here, A, B, C, D are 4 unknown constants that must be chosen so that (7) satisfies the appropriate boundary
conditions. Writing the boundary conditions of the elastic strip yields a system of equations of the form, Mv = b,
where v = (A,B,C,D). The geometric constraint (4) implies that the equilibrium configurations must also satisfy

∫ 1/2

−1/2

(

∂Weq

∂X

)2

dX = 2. (8)

Together, the system of equations Mv = b and (8) determine the eigenvalue Λeq and eigenfunction Weq(X) by
providing conditions to solve for Λeq and (A,B,C,D). Semi-analytic solutions are tabulated in the Supplemental
Document of [19].
The homogeneous system Mv = 0 corresponds to equilibrium states of the Euler-buckled strip. This case admits an

infinite number of eigenvalues Λ and corresponding eigenmodes v, that come in pairs of increasing values of bending
energy Eb; the two smallest eigenvalues and associated eigenmodes correspond to the two first buckling modes UA and
UB. As expected, the two equilibria associated with the second mode possess a S-like shape and are denoted by SA
and SB, and those associated with the third mode possess a W-like shape and are denoted by WA and WB (Fig. 2,
top row).
Antisymmetric, symmetric, and asymmetric boundary actuation results in non-zero right-hand side b, for which the

eigenvalues Λ and eigenvectors v = (A,B,C,D) are given in [19]. For each boundary actuation, there exists an infinite
number of eigenvalues and corresponding eigenmodes that describe how the equilibrium modes of the Euler-buckled
strip are modified under the corresponding rotational actuation of the boundary. Each type of boundary actuation
affects differently the equilibrium states of the strip.
For asymmetric boundary actuation, UA monotonically approaches SB until they merge and both disappear at

µ∗ = 2 (Fig. 2 and Fig. 1D). This value of µ∗ corresponds to the threshold value where an abrupt snap-through
transition is observed in our numerical simulations. For µ > µ∗, UB is the only available equilibrium. This analysis
was carried out in [3] but reviewed here to compare to the other cases.
Symmetric boundary actuation tends to symmetrize the two shapes SA and SB until they both merge with UA in

a first bifurcation at µ∗ = 2 (Fig. 2 and 1E). On the bifurcation diagram (Fig. 1E), SA and SB are indistinguishable
as, by symmetry of the system, they both have the same mid-point deflection (Fig. 1E). However, plotting the same
bifurcation diagram in term of the deflection at X = −1/4 (Fig. 1H inset) confirms that they both collapse on UA at
the exact same value of µ and that they approach the latter from both sides. For slightly larger values of µ the branch
issued from these three branches merges with WB in a second bifurcation at µ∗

2 ≈ 2.012. At this bifurcation, the two
branches – one representing WB and the other representing the branch issued from the merging of UA with SA and
SB – disappear (Fig. 1H). For larger values of µ, UB is the only equilibrium available. Our numerical simulations
seem to indicate that the strip snaps to UB after reaching the first bifurcation at µ∗ = 2, which confirms Gomez et

al. assertion that the strip snaps from an equilibrium that becomes unstable rather than from an equilibrium that
suddenly disappears as in the asymmetric case [3].
Antisymmetric actuation tends to anti-symmetrize the symmetric modes UA and UB until they both merge with

SB at µ∗ = 2 (Fig. 2 and Fig. 1F). As shown on the bifurcation diagram, for larger value of µ the branch issued from
these three branches (UA, UB, and SB) remains the only equilibrium observed in the numerical simulations.
The µ∗ values obtained with the Euler beam model slightly differ from those obtained in the numerical simulations

based on the discrete Cosserat model; see summary in Table I. The reason for this discrepancy is that the Euler beam
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Figure 3. Linear stability analysis gives access to the eigenvalues associated with the modes of perturbation of the static equilibria.
For each equilibrium configuration, we show the evolution in terms of µ of the eigenvalue that has the smallest absolute value (fundamental
mode). Data obtained from numerical analysis of the impulse response of the strip (Fig. 4) are shown as dotted symbols for comparison.
In the Symmetric case, for the UA equilibrium, both the lowest eigenvalue for UA (fundamental mode) and the second lowest eigenvalue
UA (first harmonic) are shown.

model analysis is valid in the ∆L/L → 0 limit which leads to an overestimation of µ∗ as demonstrated in [11, Fig. 3B].
However, we will show next that the dynamical behavior of the strip at a distance ∆µ = µ− µ∗ from this bifurcation
point is the same in both the Euler beam model and discrete Cosserat equations, as long as ∆µ is measured from the
corresponding µ∗ value.

IV. STABILITY ANALYSIS

We analyze the dynamics of the strip around the static equilibria using two approaches: we carry a stability analysis
based on the Euler-beam model, and we investigate the dynamics numerically using the discrete Cosserat rod model.
Starting from the Euler beam model (3-4), we consider the dynamic evolution of a small perturbation about the

equilibrium state characterized by the shape of the strip Weq(X) and the compression force Λeq. For this purpose,
we write the shape W (X,T ) and compression force Λ(T ) as follows [1, 9],

W (X,T ) = Weq(X) + ǫWp(X)eσT , Λ(T ) = Λeq + ǫΛpe
σT . (9)

Here, Wp(X) is the shape of the perturbation, ǫ its amplitude (considered small ǫ ≪ 1), and σ its growth rate.
Substituting these expressions in (3) and (4), we get at first order in ǫ,

σ2Wp +
d4Wp

dX4
+ Λ2

eq

d2Wp

dX2
= −2ΛeqΛp

d2Weq

dX2
,

∫ 1/2

−1/2

dWeq

dX

dWp

dX
dX = 0. (10)

These equations describe the linear dynamic of the perturbation modeWp(X) around a given equilibrium configuration
Weq(X). We require the general solution of the non-homogeneous ODE in (10) to satisfy the geometrical constraint in
(10) and the appropriate boundary conditions. We obtain a nonlinear eigenvalue problem of the form Mp(σ

2)vp = 0,
with eigenvalue σ2 and eigenvector vp. This eigenvalue problem admits a solution only when det(Mp) = 0, which
yields a nonlinear equation of σ2 that cannot be solved analytically. To obtain the eigenvalues σ2 associated with
each equilibrium configuration, we numerically search for eigenvalues in a specific domain (here, we checked in the
range 0 < |σ2| < 50000), thus excluding all eigenvalues that are beyond this range.
For µ = 0, for the two first equilibria UA and UB, we find only negative eigenvalues, indicating that these funda-

mental equilibria are stable. This result agrees with our numerical simulations based on the Cosserat rod theory. The
remaining equilibria (SA, SB, WA, WB, etc.) possess at least one positive eigenvalue, confirming that these modes
are unstable. This explains why they are not observed in forward-time numerical simulations.
We next examine the evolution of the eigenvalues σ2 associated with UA,B, SA,B, andWA,B when the strip boundaries

are rotated (Fig. 3). For each equilibrium shape, we focus on the fundamental eigenvalue that possesses the smallest
absolute value.
For the asymmetric actuation (Fig. 3A), the equilibrium configuration UB remains stable for all values of µ consid-

ered, whereas the fundamental eigenvalue of UA monotonically increases until it reaches the zero axis and disappears.
Indeed, as µ increases, the left boundary is rotated to the opposite side compared to the buckling side of the stable
UA configuration, and this equilibrium becomes less favorable, and thus less stable. Simultaneously, the eigenvalue of
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SB monotonically decreases until its positive eigenvalue hits the zero axis at the exact location (µ∗ ≈ 1.7812) where
UA disappears. This is indicative of a saddle-node bifurcation as demonstrated in [3].

For the symmetric actuation (Fig. 3B), as µ increases, both boundaries are rotated towards the buckling side of
UB. This equilibrium becomes more favorable, which explains the monotonic decrease of the eigenvalue observed for
this equilibrium in Fig. 3B. Meanwhile, UA has to bend more to satisfy the boundary conditions and becomes less
stable as µ increases. This is reflected by the monotonic increase of the associated eigenvalues. The fundamental
mode of perturbation becomes unstable at µ∗ = 2 where its eigenvalue (labelled UA0) crosses zero (inset in Fig. 3B).
Meanwhile, the fundamental eigenvalues of the two S shapes remain equal to each other for all values of µ; they slowly
decrease until they reach zero at µ∗ = 2 where they both disappear. That is, at µ∗ = 2, the two unstable solutions
SA and SB collapse onto the stable solution UA and disappear while the latter becomes unstable; this is typical of a
subcritical pitchfork bifurcation.

Interestingly, a second bifurcation occurs at µ∗

2 ≈ 2.012, the eigenvalue (labelled UA1) corresponding to the first
harmonic mode of perturbation around UA (i.e., the mode associated with the eigenvalue that has the second smallest
absolute value) and the one associated with the fundamental mode of perturbation around WB both vanish. At this
point, the two corresponding equilibria (UA and WB) suddenly disappear. That is, at µ∗

2 ≈ 2.012, an unstable mode
of perturbation associated with WB and a stable mode associated with UA collapse and suddenly disappear. This is
typical of a saddle-node bifurcation.

For the antisymmetric case (Fig. 3C), as µ increases, the eigenvalues associated with UA and UB evolve in the same
way. The eigenvalues increase monotonically until they reach zero at µ∗ = 2 where they disappear. Meanwhile, the
eigenvalues of SA and SB evolve in the opposite way. The eigenvalue of SA (not plotted on the figure) monotonically
increases (becoming more unstable) with increasing µ while SB monotonically decreases. This is due to the direction
of rotation of the boundaries which makes SA (respectively SB) a less favorable (respectively more favorable) state
as µ increases. The eigenvalue of SB decreases until reaching zero at µ∗ = 2, beyond which it becomes negative
causing the corresponding mode to switch from unstable to stable. Thus, at µ∗ = 2, the two stable equilibria UA

and UB collapse on the unstable equilibrium SB and disappear while the latter becomes stable, this is indicative of a
supercritical pitchfork bifurcation.

To complete this analysis, we probe the linear dynamics of the strip around its equilibria numerically using the
Cosserat rod theory. The general process is illustrated in Fig. 4 in the case of the symmetric boundary actuation.
We first hold the strip in a stable configuration, with the value of µ held fixed. At t = 0, we impose a sudden kick
to the strip by applying an instantaneous point force in the transverse direction at a vertex of the Cosserat rod in
order to obtain its impulse response (Fig. 4A). The magnitude of this force is chosen such that the amplitude of
the subsequent oscillations remains small. Following this kick, the strip is left free to oscillate (Fig. 4B), and its
response is analyzed by performing a Fourier transform of the signal obtained from measuring the vertical position
of one vertex of the strip against time (Fig. 4C). The associated frequencies reflect the eigenfrequencies

√

|σ2| of the
perturbation; In Fig. 4C, we show the fundamental mode and the first harmonic of perturbation only. The process
is repeated for different values of µ, corresponding to various distances ∆µ = µ− µ∗ from the bifurcation point. The
eigenfrequencies decrease with decreasing ∆µ as the system gets closer to the bifurcation point. This ‘slowing down’
phenomenon, studied in [3] for the asymmetric actuation, is typical of systems that are approaching a transition [20].

We repeated this procedure for all three types of boundary actuation. The frequencies obtained from this vibration
analysis are superimposed onto 3 (colored markers). These data points are quantitatively consistent with the data
obtained from the linear stability analysis (solid lines) except in the very vicinity of the bifurcation where the fre-
quencies obtained numerically hit the zero axis before the ones obtained analytically (inset in Fig. 4C). Indeed, the
quasi-linear Euler beam model overestimate the value of the bifurcation point, which can also be observed from the
static analysis reported in the previous section (Fig. 1D-F).

Taken together, our stability analysis and numerical investigation reveal the stability of the static equilibria of the
strip and indicate the type of bifurcation that occurs near shape transitions. In order to confirm the nature of the
bifurcation and get a better understanding of the strip behavior in the vicinity of these transitions, we perform an
asymptotic analysis near the bifurcation for each type of boundary actuation as discussed next.

V. ASYMPTOTIC ANALYSIS

When a strip starts from rest in a configuration that is close to its equilibrium configuration at the bifurcation
point µ∗, we expect its dynamic evolution to be slow due to the critical slowing down of dynamical systems near
a bifurcation [3, 20, 21]. This is evident from the linear dynamic analysis in §IV; as the eigenvalues vanish at the
bifurcation point, the typical time scale associated with the corresponding modes diverges to infinity. To capture this
slowing down, we introduce a slow time τ = ∆µaT (see [3]). To describe the dynamics of the strip in the vicinity of
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Figure 4. Linear dynamics of the strip around the equilibrium configurations. (A.) From a strip that remains at its equilibrium
configuration, we apply an instantaneous point force on a vertex of the Cosserat rod in the transverse direction ey . Starting from the
UA equilibrium, we apply an initial kick at the longitudinal coordinate s = −L/4. (B.) We then obtain the impulse response of the

strip by recording the transverse position at the longitudinal coordinate s = −L/4 after the initial kick. (C.) The eigenpulsations
√

|σ2|
associated with the vibrations of the strip are obtained by performing a Fourier transform of this signal. The process is repeated for
different equilibrium configurations at different distances ∆µ = µ − µ∗ from the bifurcation point. Here, the procedure is shown for the
Symmetric case but is repeated in the exact same way for the two other configurations.

the bifurcation, we expand its state (W (X, τ),Λ(τ)) at a given time τ in terms of powers of ∆µ as follows,

W (X, τ) = W ∗

eq(X) + ∆µbW0(X, τ) + ∆µb1W1(X, τ) + h.o.t.,

Λ(τ) = Λ∗

eq +∆µcΛ0(τ) + ∆µc1Λ1(τ) + h.o.t,
(11)

where typically b1 = min(2b, b+ c) and c1 = min(2c, b+ c) and so on for higher-order terms.
The values of the three parameters a, b, and c depend on the intrinsic properties of the system. In [3], a was set to

a = 1/4 and it was postulated that b = c = 1/2. In [7], the same values for a, b and c were found starting from the
assumptions that a > 0 and b = c ∈ ]0, 1[. Here, we show that the values of a, b and c, can be obtained, for all three
set of boundary conditions, by exploiting the results of our static analysis and linear dynamic analysis reported in the
previous sections. In particular, we find that the values postulated in [3] for the asymmetric case are correct but are
different from the values obtained for the symmetric and antisymmetric cases, where we find that b 6= c, in contrast
to the main assumption in [3, 7].

A. Slow Time Scale Near the Bifurcation

Our goal is to determine the scaling laws that govern the behavior of the strip near each bifurcation as a function
of the perturbation ∆µ = µ− µ∗ away from the bifurcation.
We first determine the value of a, which characterizes how the typical time scale of the system slows down when

approaching the bifurcation. This typical time scale is simply related to the value of σ associated with the critical
modes. In Fig. 5A-C, using the data from Fig. 3, we plot

√

|σ2| associated with each of these modes as a function
of the distance |∆µ| from the bifurcation. Because the discrete Cosserat and Euler-beam models lead to different µ∗

values, the values of ∆µ = µ− µ∗ are calculated using the corresponding bifurcation value (Table I). The results are
shown on a logarithmic scale. In the very vicinity of the bifurcation (∆µ ≪ 1), the slopes associated with these data
sets reveal the slowing down exponent a. Clearly, the typical time scale associated with the dynamics of the strip
diverges when approaching the bifurcation for all three boundary actuation. However, details of the slowing down
vary depending on the type of boundary actuation.
For the asymmetric case (Fig. 5A), the typical time scale diverges as T ∼ ∆µ−1/4, thus a = 1/4 as proposed in [3].

In [3], this result was confirmed experimentally by measuring the typical time of snapping as the system is pulled to
the right of the bifurcation, which we reproduce numerically using the Cosserat model in Appendix A. The results
in Fig. 5A provide an analytical justification for the choice a = 1/4 and confirm the robustness of the empirical
observations in [3] by demonstrating the existence of the same scaling law to the left of the bifurcation.
For the symmetric case (Fig. 5B), although the three equilibrium shapes UA and SA,B that interact at the first

bifurcation have different
√

|σ2| values, the scaling is the same for all three. This scaling corresponds to a = 1/2.
Except very close to the bifurcation (∆µ ≪ 1) where the Cosserat data (green markers) exhibit a stronger slowing
down (see discussion in appendix B). In Fig. 5B, we also plot the eigenfrequency of the first harmonic (second
eigenvalue) of UA and fundamental mode (first eigenvalue) associated with WB. These two modes interact through a
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Figure 5. Scaling of the different variables in the vicinity of the shape transition When the system is pulled away from the
bifurcation point, the different variables of the problem go away from their values at the bifurcation following a characteristic scaling.
Here, for each configuration, we plot: (A, B, C) the eigenpulsations/growth rates, (D, E, F) the quantity ∆w and (G, H, I) the quantity
∆Λ, against the distance to the bifurcation |∆µ| on a logarithmic scale. The data obtained from the static and stability analysis (full
lines) are compared to the numerical data (dotted markers). For the equilibria that exist on both sides of the bifurcation, two branches
are visible, each of them corresponding to one side of the bifurcation (∆µ < 0 and ∆µ > 0).

secondary bifurcation and the slowing down associated with it follows the scaling a = 1/4. Our asymptotic analysis
is concerned with the primary bifurcation for which a = 1/2.
For the antisymmetric case (Fig. 5C), the typical time scale associated with the fundamental mode of perturbation

of UA, UB, and SB follows the same scaling with a = 1/2.

B. Asymptotic Expansion Near the Bifurcation

To estimate the values of b and c in the asymptotic expansions in (11), which characterize how quickly the shape
W (X) and compression force Λ move away from their respective values W ∗

eq(X) and Λ∗

eq at the bifurcation, we plot,

as a function of ∆µ, the L1 norms ∆W (Fig. 5D-F) and ∆Λ (Fig.5G-I) for the equilibria involved at the bifurcation,

∆W =

∫ 1

0

√

(

Weq(X,∆µ)−W ∗

eq(X)
)2
dX, ∆Λ =

√

(Λeq(∆µ) − Λ∗

eq)
2. (12)

Close to the bifurcation, ∆W and ∆Λ provide estimates of the amplitude of the leading order mode in (11).
Clearly, ∆W and ∆Λ scale differently with ∆µ based on the type of boundary actuation. For the asymmetric case,

the two equilibria UA and SB follow the same scalings ∆W ∝ |∆µ|1/2 and ∆Λ ∝ |∆µ|1/2. This analysis implies
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that there is only one route (one mode) available to go away from the bifurcation point and provides an analytic
justification for the choice b = 1/2 and c = 1/2 adopted in [3].
For the symmetric and antisymmetric cases, there are two different routes available to go away from the bifurcation:

following either the SA,B branch or UA,B branch. In the symmetric case, the system goes away from the bifurcation
following the UA branch for ∆µ > 0 and SA,B for ∆µ < 0. In the antisymmetric case, the system goes away from the
bifurcation following the SB branch for ∆µ > 0 and UA,B for ∆µ < 0. This leads to the existence of two different
forms of scaling: in the symmetric case, following UA results in ∆W ∝ |∆µ| and ∆Λ ∝ |∆µ| while following SA,B

results in ∆W ∝ |∆µ|1/2 and ∆Λ = 0 (Fig. 5E and inset in Fig. 5H); in the antisymmetric case, following SB results
in ∆W ∝ |∆µ| and ∆Λ ∝ |∆µ| while following UA,B results in ∆W ∝ |∆µ|1/2 and ∆Λ = 0 (Fig. 5F and inset in
Fig. 5I). This suggests two different expansions of W (X, τ) and Λ(τ) depending on the route the strip takes to move
away from the bifurcation: in one route, W (X, τ) would be expanded in powers of ∆µ1/2 and Λ would be constant,
whereas in the other route, W (X, τ) and Λ would be expanded in powers of ∆µ. In general, the solution could follow
any linear combination of these two routes. Thus, the general expansion of W (X, τ) and Λ(τ) in terms of ∆µ would
be associated with b = 1/2 and c = 1 with subsequent exponents that satisfy

W (X, τ) = W ∗

eq(X) + ∆µ1/2W0(X, τ) + ∆µW1(X, τ) +O(∆µ3/2),

Λ(τ) = Λ∗

eq +∆µΛ0(τ) +O(∆µ3/2).
(13)

A few comments on the results in Fig. 5 are in order. The numerical data obtained from solving the discrete
Cosserat equations (green markers) and the analytical data obtained from the Euler beam model (colored lines) show
a very good agreement once ∆µ is measured from the proper bifurcation value µ∗ (Table I). Although the two systems
of equation do not give the same bifurcation values, their dynamical behaviour in the vicinity of the bifurcation is
nearly identical. This is quite remarkable. As we show later in this paper, these dynamical properties are related
to the nature of the bifurcation the system undergoes in µ⋆ and thus apply to both systems of equation (see also
discussion in S10E in the supplemental document associated with [22]).

C. Asymptotic analysis

We substitute τ = ∆µaT in the system of equations (3,4,5) and simplify to arrive at

∆µ2a ∂
2W

∂τ2
+

∂4W

∂X4
+ Λ2∂

2W

∂X2
= 0,

∫ 1

0

(

∂W

∂X

)2

dX = 2,

W |X=0 = W |X=1 = 0,
∂W

∂X

∣

∣

∣

∣

X=0

= µ∗ +∆µ,

asymmetric:
∂W

∂X

∣

∣

∣

∣

X=1

= 0, symmetric:
∂W

∂X

∣

∣

∣

∣

X=1

= −µ∗ −∆µ, antisymmetric
∂W

∂X

∣

∣

∣

∣

X=1

= µ∗ +∆µ.

(14)

We next substitute the expansion (11) into (14), with the appropriate exponents for each type of actuation, and
write the leading order mode (W0(X, τ),Λ0(τ)) in terms of its shape Φ0(X) and amplitude A(τ),

W0(X, τ) = A(τ)Φ0(X), Λ0(τ) = A(τ). (15)

For the asymmetric case, with the scaling a = 1/4, b = 1/2 and c = 1/2, the problem is solved by Gomez et al.

[3]. Here, we perform the same analysis for the symmetric and antisymmetric cases, which have the same scaling
a = 1/2, b = 1/2 and c = 1. The system obtained for these two cases is the same and only the boundary conditions
are different. Introducing the linear operator L,

L(·) = ∂4(·)
∂X4

+ (Λ∗

eq)
2 ∂

2(·)
∂X2

, (16)

we get, at the leading order O(∆µ1/2),

L(Φ0) = 0,

∫ 1

0

dW ∗

eq

dX

dΦ0

dX
dX = 0,

Φ0|X=0 = Φ0|X=1 = 0,
∂Φ0

∂X

∣

∣

∣

∣

X=0

= 0,
∂Φ0

∂X

∣

∣

∣

∣

X=1

= 0.

(17)
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This leading order system is homogeneous with homogeneous boundary conditions. The solution to (17) provides an
expression for the eigenmode Φ0(X) of the form Φ0(X) = A0 sin(Λ

∗

eqX) +B0 cos(Λ
∗

eqX) +C0X +D0, where A0, B0,
C0 and D0 are determined from boundary conditions. Using the corresponding expression for W ∗

eq(X), we arrive at

symmetric: Φ0(X) = sin
(

Λ∗

eqX
)

− Λ∗

eqX +
Λ∗

eq − sin(Λ∗

eq)

cos(Λ∗

eq)− 1

(

cos(Λ∗

eqX)− 1
)

,

antisymmetric: Φ0(X) = cos(Λ∗

eqX)− 1.

(18)

At O(∆µ), we get the system

L(W1) = −2Λ∗

eqΛ0

d2W ∗

eq

dX2
,

∫ 1

0

dW ∗

eq

dX

∂W1

∂X
dX = −1

2
A2

∫ 1

0

(

dΦ0

dX

)2

dX,

W1|X=0 = W1|X=1 = 0,
∂W1

∂X

∣

∣

∣

∣

X=0

= 0, symmetric:
∂W1

∂X

∣

∣

∣

∣

X=1

= −1, antisymmetric:
∂W1

∂X

∣

∣

∣

∣

X=1

= 1.

(19)

At this order, the system is non-homogeneous with non-homogeneous boundary conditions, but contrary to the
asymmetric case (see [3]), it is independent of time because of the higher value of a in the symmetric and antisymmetric
actuation. The time derivative comes into play only at next order. The solution of (19) is of the form

W1(X) = A1

{

sin(Λ∗

eqX)− Λ∗

eqX
}

+B1

{

cos(Λ∗

eqX)− 1
}

+X

{

1 +
Λ0

Λ∗

eq

(

dW ∗

eq

dX
− µ∗

)}

. (20)

To obtain this form of the solution, we used the two boundary conditions at X = 0. Expressions for A1, B1 and Λ0

must be determined from the two remaining boundary conditions and the geometrical constraint. For the symmetric
case, we get

A1 =
Λ∗

eq − Λ0µ
∗

(

1 + cos(Λ∗

eq)
)

(Λ∗

eq)
2

, B1 =
2Λ0µ

∗ − Λ∗

eq +A1Λ
∗

eq

(

Λ∗

eq − sin(Λ∗

eq)
)

Λ∗

eq

(

cos(Λ∗

eq)− 1
) , Λ0 = C1 + C2A2, (21)

where C1 and C2 are two constants given by

C1 =
4Λ∗

eq

2µ∗
,

C2 =
(Λ∗

eq)
2
{

2(Λ∗

eq)
3 + 4Λ∗

eq

[

cos(Λ∗

eq)− cos(2Λ∗

eq)− Λ∗

eq sin(Λ
∗

eq)
]

− (Λ∗

eq)
2 sin(2Λ∗

eq) + 2 sin(Λ∗

eq)− 4 sin(Λ∗

eq)
}

8(µ∗)2 sin4(Λ∗

eq/2)
.

(22)

For the antisymmetric case, we get

A1 =
1

Λ∗

eq

, B1 = 0, Λ0 = −
2Λ∗

eq

3(µ∗)2

(

A2(Λ∗

eq)
2

2
+ µ∗

)

. (23)

At order O(∆µ3/2), the system of equations is given by

L(W2) = −2Λ∗

eqΛ0A
d2Φ0

dX2
− Φ0

d2A
dτ2

,

∫ 1

0

dW ∗

eq

dX

∂W2

∂X
dX = −

∫ 1

0

(

∂Φ0

∂X

)(

∂W1

∂X

)

dX,

W2|X=0 = W2|X=1 = 0,
∂W2

∂X

∣

∣

∣

∣

X=0

= 0,
∂W2

∂X

∣

∣

∣

∣

X=1

= 0.

(24)

The second order time derivative of the leading order mode comes into play on the right-hand side of the PDE in (24).
Following the same procedure as in [3], we now seek a solvability condition for (24) by requiring the non-homogeneous
right hand side to be orthogonal to the adjoint solution. As with the operator for the asymmetric case, L is self-adjoint
relative to the standard Cartesian scalar product and the adjoint solution is simply Φ0(X). The resulting solvability
condition takes the form

d2A
dτ2

=
2Λ∗

eqΛ0I2

I1
A, (25)
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where I1 =
∫ 1

0 Φ2
0dX and I2 =

∫ 1

0 (dΦ0/dX)2dX . Substituting the expression of Λ0 yields an expression of the form

d2A
dτ2

= b1,(·)A+ b2,(·)A3, (26)

where, for the symmetric case, b1,sym and b2,sym are two positive constants defined by

b1,sym =
2Λ∗

eqI2C1
I1

, b2,sym =
2Λ∗

eqI2C2
I1

, (27)

and for the antisymmetric case, b1,antisym and b2,antisym are two negative constants defined by

b1,antisym = −
4(Λ∗

eq)
4

9µ∗
, b2,antisym = −

2(Λ∗

eq)
6

9(µ∗)2
. (28)

Equation (26) describes the dynamics of the amplitude of the leading order mode. For both symmetric and
antisymmetric actuation, the reduced form has the same functional form with one linear term and one cubic term
and only the sign and values of the multiplicative constants in front of the linear and cubic terms are different. This
functional form is different from the reduced form obtained in [3] for the asymmetric case which takes the form

d2A
dτ2

= a1 + a2A2, (29)

where the expression of the two positive constants a1 and a2 can be found in [3].
These different forms of the amplitude equations reflect the different kinds of bifurcation the three systems undergo

at the shape transition.

VI. ANALYSIS OF THE AMPLITUDE EQUATIONS

The solvability conditions (29) and (26) in the very vicinity of the bifurcation under asymmetric, symmetric and
antisymmetric actuation are dynamical equations that describe the slow-time evolution of A(τ) of the leading order
mode Φ0(X) at the bifurcation. In this section, we introduce the unscaled amplitude A(T ) of the leading order mode
Φ0(X) which characterizes how the strip goes away from its bifurcation shape in real time T as opposed in rescaled
time τ . We then analyze the resulting amplitude equations to highlight the dynamical features in the vicinity of the
elastic shape transitions under asymmetric, symmetric, and antisymmetric actuation.

A. Amplitude equations

We substitute (15) back into (13), and neglect terms of orderO(∆µ) and higher. We get that the amplitude A(τ) can
be obtained directly from the asymptotic expansion ofW (X, τ) such thatA(τ) = ∆µ−1/2(W (X, τ)−W ∗

eq(X))/Φ0(X).
By analogy, we introduce the unscaled amplitude A(T ) of the leading order mode Φ0(X), which is related to A via
the following scaling

A(T ) ≡
W (X,T )−W ∗

eq(X)

Φ0(X)
= ∆µ1/2A(τ = ∆µaT ). (30)

In the case of asymmetric actuation, we substitute the amplitude equation (29) into (30) to arrive at the evolution
equations of the amplitude A(T ),

d2A

dT 2
= a1∆µ+ a2A

2, (31)

and for symmetric and antisymmetric actuation, we use (26) to get

d2A

dT 2
= b1,(·)∆µA+ b2,(·) A

3. (32)

Equations (31) and (32) are, respectively, the normal forms for a saddle-node and pitchfork bifurcation [21]. They
describe the structure of the dynamic equations in the very vicinity of the bifurcation. A simple analysis of these
reduced equations gives access to all the dynamical features observed in the vicinity of the transition.
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B. Static equilibria

Equation (31) admits two equilibria for ∆µ ≤ 0 given by

Aeq1
=

√

a1
a2

√

−∆µ, Aeq2
= −

√

a1
a2

√

−∆µ. (33)

These equilibria disappear suddenly at ∆µ = 0+. They corresponds to the two equilibria SB and UA, respectively.
The two equilibria in (33) have the same dependence on ∆µ (summarized in Table I), as observed in Fig. 5D and 5G
where we identified only one route to go away from the bifurcation configuration.
Equations (32) admits three static equilibria

Aeq1
= 0, ∀ ∆µ ∈ R, Aeq2

= C1

√

−∆µ, Aeq3
= −C1

√

−∆µ, ∀ ∆µ ∈ ]−∞, 0] . (34)

where C1 =
√

b1,(·)/b2,(·), that correspond to the equilibria UA, SB and SA for the symmetric case and to the equilibria
SB, UB and UA for the antisymmetric case. Here, Aeq2

and Aeq3
have the same dependence on ∆µ (summarized in

Table I), but Aeq1
is independent of ∆µ. This is consistent with the observations in Fig. 5E,H (respectively, Fig.

5F,I) where SA,B of the symmetric case (respectively, UA,B of the antisymmetric case) go away from the bifurcation
following the same route while UA of the symmetric case (respectively, SB for the antisymmetric case) goes away
following a higher order scaling.

C. Linear dynamics

We perturb around each equilibrium such that A(t) = Aeq
i
+ Ap exp(σt), where Ap is the initial (infinitesimal)

amplitude of the perturbation and σ its growth rate. We substitute back into (31) and linearize to get the standard
results

σ2
Aeq1

= 2
√
a1a2

√

−∆µ, σ2
Aeq2

= −2
√
a1a2

√

−∆µ. (35)

The first equilibrium Aeq1
(≡ SB) possesses two real roots: a negative root that corresponds to a rapidly attenuated

mode and a positive that corresponds to a perturbation with an exponentially growing amplitude making Aeq1
an

unstable equilibrium for (31). The second equilibrium Aeq2
(≡ UA) has two purely imaginary roots implying stable

oscillations. In Fig. 5A, we compare the eigenvalues in (35) (black lines) to the results obtained from the Cosserat
model (green symbols) and Euler beam model (colored lines), showing perfect agreement for ∆µ ≪ 1.
For the symmetric and antisymmetric cases, we find

σ2
Aeq1

= b1,(·)∆µ, σ2
Aeq2

= −2b1,(·)∆µ, σ2
Aeq3

= −2b1,(·)∆µ. (36)

For the symmetric case, b1,sym is positive, and thus Aeq1
(UA) admits two purely imaginary roots for ∆µ < 0 that

correspond to stable oscillations. For ∆µ ≥ 0, it admits two real roots, one of which is positive, making this equilibrium
unstable to the right of the bifurcation. The two other equilibria Aeq2

(SB) and Aeq3
(SA) exist only for ∆µ ≤ 0 and,

according to (36), they are both unstable. For the antisymmetric case, b1,antisym is negative, and thus Aeq1
(SB) is an

unstable equilibrium for ∆µ ≤ 0. For ∆µ > 0, this equilibrium admits two purely imaginary roots that correspond
to stable oscillations. The two equilibria Aeq2

(UB) and Aeq3
(UA) exist only for ∆µ ≤ 0 and are stable.

In Fig. 5B, C, we compare the eigenvalues in (36) (black lines) to the data obtained from the Cosserat (green
symbols) and the Euler beam (colored lines) models. For ∆µ ≪ 1, we observe good agreement except for the
symmetric case (Fig. 5B) where the numerical data go away from the analytical results, in the very vicinity of the
bifurcation. In this region, the system switches from an underdamped to an overdamped regime (see Appendix B).
Although the stability analysis carried out in §IV based on the Cosserat and Euler-beam equations provides a

better prediction for the linear dynamics of the strip because it is valid even for finite ∆µ values, it comes at a
cost: it requires to solve a nonlinear eigenvalue problem for each value of µ. This nonlinear system cannot be solved
analytically (even for standard Euler buckled configurations µ = 0); it is classically solved numerically (see §IV and
[1, 9, 23]). The eigenvalues (35) and (36) obtained from the reduced normal forms provide good analytical estimates
of these eigenfrequencies as long as the system is close to the bifurcation. A similar asymptotic analysis is carried out
in [24] to predict the vibration frequency of beams beyond the Euler buckling threshold.
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Figure 6. Snap Through dynamics. Numerical analysis of the snap-through dynamics associated with (A,D,G) Asymmetric, (B,E,H)
Symmetric, and (C,F,I) Antisymmetric boundary actuation. The snap-through dynamic is analyzed for different values ∆µ and represented
in term of the evolution of the amplitude A(t). (A-C) schematic representation of the procedure we followed to move the strip away from the
equilibrium at µ∗. (D-F) Snap-through dynamic represented on a logarithmic-logarithmic scale (Asymmetric) and on a linear-logarithmic
scale (Symmetric and Antisymmetric). (G-I) Same data represented in term of the rescaled amplitude A and rescaled time τ .

VII. NONLINEAR SNAP-THROUGH DYNAMICS

We analyse the snap-through dynamics obtained from numerical simulations, and compare it to the dynamics
described by (31) and (32). For the asymmetric and symmetric actuation, we study the snap-through dynamics when
the system is pulled to the right of the bifurcation (∆µ > 0), such that the equilibrium shape of the strip (UA)
suddenly disappears or becomes unstable and the strip snaps towards the only remaining stable equilibrium (UB).
For the antisymmetric actuation, we pull the system to the left of the bifurcation point (∆µ < 0) and release it from
the unstable equilibrium SB, causing the strip to snap towards the stable equilibrium UA (Fig. 6A-C).

A. Asymmetric actuation

In our Cosserat simulations, we obtain the snapping dynamics for different values of ∆µ by employing a technique
similar to that introduced experimentally in [3]. We start with the strip equilibrium configuration (W ∗

eq,Λ
∗

eq) at the
bifurcation point µ∗. We then pull the system to the right of the bifurcation by increasing the angle applied at the
left boundary to the value µ = µ∗ + ∆µ. During this process, the midpoint of the strip is maintained at its initial
position by applying an additional boundary condition at the centerline of the Cosserat rod (which plays the role of
the indenter used in [3]). When we reach the desired value of µ, the midpoint constraint is suddenly released (after
waiting enough time for the strip to reach equilibrium), and the strip snaps to the UB configuration.
From these simulations, we contrust the evolution of A(T ). The process is repeated for several values of ∆µ (Fig.

6D). In Fig. 6G, as done in [3], we show the results in non-dimensional form by plotting A = ∆µ−1/2A as a function
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of τ = ∆µ1/4T which are the natural spatial and temporal scales in the vicinity of the bifurcation. Clearly, all the
data collapse on the same master curve. We compare these data to the dynamics described by (31) (black lines).
For this purpose, we integrate (31) in time using a 4th order Runge-Kutta (RK4) integrator with initial conditions
(A(T = 0), dA(T = 0)/dT = 0). The dynamics of the normal forms compares well with the Cosserat data (green lines)
at short time. At larger time however, as explained in [3], the dynamics described by (31) blows off to infinity while
the numerical data plateau. This plateau is observed when the strip reaches the new equilibrium UB. The latter is far
from the bifurcation point (Fig. 6A) and is therefore not captured by the asymptotic analysis (UB does not appear
on the bifurcation diagram associated with the reduced form in [22]). The saturation observed in the numerics comes
from the role played by higher order terms that are neglected in the asymptotic analysis but that become dominant
as soon as the conditions ∆µ ≪ 1, ∆W ≪ 1 and ∆Λ ≪ 1 are no longer satisfied.

B. Symmetric actuation

We conduct a similar analysis: for each value of ∆µ, we start from the unstable configuration UA and analyse
how the strips snaps towards the stable configuration UB. We carry out Cosserat simulations where we initialize the
strip using the solution obtained from the static Euler-beam equation, which does not satisfy the discrete Cosserat
equations leading to transient numerical shocks. After these spurious initial shocks, we observe the snapping dynamics
of the strip (6E). In Fig. 6H, we plot the obtained evolution of A = ∆µ−1/2A as a function of τ = ∆µ1/2T . These are
the natural spatial and temporal time scales in the vicinity of a pitchfork bifurcation. The data shown in the figure
are taken after the spurious initial shocks have disappeared. These numerical data are compared to the dynamics
described by (32) (black line) with initial conditions (A(T = 0) = 0, dA(T = 0)/dT = v0), where v0 is the initial
speed obtained from the numerical simulations after the initial shocks have disappeared. This initial velocity is small
but non-zero and is responsible for the initial kick observed in Fig. 6E, H. At early time, the dynamics is linear and
the amplitude grows as the sum of the two exponential modes given in (36). After this initial phase, the amplitude
blows off to infinity due to the destabilizing cubic term in (32). The numerical data, however, plateau when the strip
reaches the new equilibrium UB. As for the asymmetric case, the latter is far from the bifurcation point and is not
captured by our asymptotic analysis.

C. Antisymmetric actuation

We study the dynamics of the strip starting from the unstable equilibrium SB to the left of the bifurcation. To
initialize the simulations, we follow the same procedure as the one employed for the symmetric case. The numerical
data are shown in Fig. 6F for different ∆µ values. In Fig. 6I, these data are rescaled and plotted as A = ∆µ−1/2A
in term of τ = ∆µ1/2T and compared to the dynamics described by (32) (black line). The early dynamic of snapping
follows a similar pattern as the one obtained for the symmetric case. At early time, the dynamic is linear and A(T )
grows as the sum of the two independent modes given in (36). Then, A(T ) reaches a plateau and oscillates when the
cubic term in (32) saturates the linear term (Fig. 6F,I). Contrary to the two other cases, the saturation observed
when the strip reaches the new equilibrium (UA or UB) is well captured here. This is because the first and only
nonlinear term considered in our asymptotic analysis is stabilizing, whereas it is destabilizing in the asymmetric and
symmetric cases where the saturation comes from higher order nonlinear terms.

VIII. DISCUSSION

The analysis presented in this paper relates the dynamic characteristics of an elastic structure in the vicinity of a
shape transition to the nature of the underlying bifurcation. In particular, the critical slowing down in the vicinity of
the bifurcation µ∗ is responsible for the extreme sensitivity of the snap-through time to the external control parameter
∆µ = µ − µ∗ [3] and follows a precise scaling that depends on the type of bifurcation and on whether the system
is in an overdamped or underdamped regime (see §B and I for a summary). This scaling is a universal feature
of the corresponding bifurcation and is observed near such bifurcations in different contexts, including turbulence
intermittency [25, 26] and electronics [27, 28].
To demonstrate the utility of our analysis, we discuss how the critical slowing down properties could be exploited

to anticipate when the system is approaching a bifurcation and even to predict the exact position of the bifurcation
point µ∗ when it is not known a priori.
According to our analysis, the typical time scale T = 1/

√

|σ2| associated with the dynamics of how the strip
diverges away from its equilibrium shape near the bifurcation µ∗ scales as T ∝ ∆µ−a, equivalently, the distance from
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Figure 7. Anticipate shape transitions (A, B, C) We measure the typical time scale associated with the dynamic of the strip (i.e
period of the fundamental mode of vibration around a stable equilibrium) using Cosserat simulations. We note a significant increase of
this time scale when a certain value of µ is approached (green dots). This indicate that the system is getting close to a shape transition.
When the time scale becomes about ten times larger than the time scale far from the bifurcation (red dot), we use this measurement and
the previous one (D, E, F) to evaluate the function f(µ) = 1/τ1/a and extrapolate linearly until f(µ) = 0. This provides an estimation of
µ∗ the bifurcation point. The grey dot symbols are known from the previous study but are not exploited here for this prediction.

Table II. Comparison of the predicted value µ∗

extrap for the bifurcation point with the actual value µ∗ obtained from our
numerical simulations.

Asymmetric Symmetric Antisymmetric

µ∗ 1.762708132 1.972550 1.9670

µ∗

prediction 1.762637064 1.972976 1.9661

the bifurcation scales as ∆µ ∝ T−1/a. Theoretically, this knowledge, together with knowing the value of a, can be
used to predict the location of the bifurcation µ∗: by performing multiple simulations at various values of µ (say

using the analysis in Fig. 3 and §IV), one can calculate σ2 and T = 1/
√

|σ2| and plot ∆µ = T−1/a as a function

of µ. By extrapolation, the intercept where ∆µ = T−1/a = 0 gives the value of the bifurcation µ∗. However, T (µ)
follows the expected scaling only in the vicinity of the bifurcation (see Fig. 5). Thus, to predict the position of the
shape transition accurately using this extrapolation method, one must make sure that the system is close enough
from the bifurcation point and that T (µ) follows the expected scaling. This is challenging given only the value of the
bifurcation parameter µ, without knowing the distance to the bifurcation ∆µ.

A remedy is readily available: the critical slowing down is known to be a robust early warning signal of the vicinity
of a transition [20, 29–31]. Thus, by measuring T (µ) at different values of µ, one should notice a significant increase
of the characteristic time scale when approaching the bifurcation. This feature can be exploited to determine if the
system is already close enough to the bifurcation and to predict the position of the bifurcation by extrapolating
T−1/a(µ). We next apply this approach to the asymmetric, symmetric, and antisymmetric systems for which we have
already determined the position µ∗ of the bifurcation to probe the efficacy of such algorithm in anticipating the value
of µ∗.

We start from µ = 0, we measure the typical time scale T (µ) associated with the fundamental mode of vibration
(Fig. 4 and §IV) for increasing values of µ. In Fig. 7 A-C, we plot, for each actuation, the typical time scale of the
system obtained from the numerical measurements performed in§IV. We assume that we do not have access to the
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data points in grey and stop the measurements when T (µ) starts to significantly increase. As a criteria, we increase
µ until T (µ) exceeds its value far from the bifurcation (here, the value at µ = 0) by one order of magnitude. The first
measurements that satisfies this criteria is highlighted in red in Fig. 7. We use this last measurement and nearest
measurement to the left to calculate T−1/a(µ) and linearly extrapolate until we find the zero-intercept (Fig. 7 D-F).
The value of µ for which T−1/a(µ) = 0 gives an estimate for the bifurcation point. In Table II, we compare the values
µ∗

predication predicted from this method to the actual value µ∗ reported in Table I. These estimates can be refined
further by using more measurements closer to the bifurcation point. We note that a similar method was proposed
in [32] to estimate the pull-in voltage in MEMS devices. However, the estimation there was performed using the
snap-through time to the right of the bifurcation. Our method instead, can anticipate the transition without taking
the system through the bifurcation point.

This analysis depends on apriori knowledge of the scaling. The value of a depends only on the type of bifurcation the
system undergoes, which can be predicted from symmetry-breaking considerations [19], with a = 1/4 for a saddle-node
and a = 1/2 for a pitchfork. This scaling is valid for underdamped systems (for an overdamped system, a = 1/2 for a
saddle-node and a = 1 for a pitchfork; see Appendix B). Thus, to employ this kind of predictive analysis, in addition
to knowing the type of transition, one has to carefully check whether the system is underdamped or overdamped.
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Appendix A: Snap-through time

For asymmetric actuation, Gomez et al. measured the typical snap-through time, the time to transition from UA to
UB, when the system is pulled by a distance ∆µ to the right of the bifurcation (see supplemental document of [3]). In
the experiments of [3], the strip was carefully placed at the bifurcation and the mid-point of the strip was maintained
at its bifurcation position using an indenter while µ was varied by pulling the system to the right of the bifurcation,
where no equilibrium is available, by a distance ∆µ. The indenter was suddenly released letting the strip free to
snap towards the far away equilibrium UB. In Fig. 3, we obtained the slowing down scaling by analyzing the linear
dynamics of the strip around the equilibria to the left of the bifurcation point. Here, we show that the same kind of
procedure as the one introduced experimentally by Gomez et al. can be exploited in our numerical simulations.
We use the static equilibrium at the bifurcation point µ∗ as initial condition, and maintain the mid-point vertex at

this position by constraining the center line of the Cosserat rod to remain at this initial position while the angle µ at
the left endpoint is increased. When the target value of µ is reached, the mid-point constraint is suddenly removed
letting the strip free to snap to the UB configuration. The snapping time is taken as the duration between the time at
which the constraint is released and the time at which the mid-point position first hits its final equilibrium position.
The resulting non-dimensional snapping time (tsnap) is reported in Fig. A.1 (green dots) in term of the distance ∆µ
to the bifurcation and compared to the experimental data obtained by Gomez et al. [3]. Our numerical data collapse
almost perfectly on their analytic prediction (black line) for the snapping time (i.e., the time for which the amplitude
of the leading order mode diverges to infinity) except very close to the bifurcation. In this region, the system passes
from an underdamped to an overdamped regime (see Appendix B).
These data validate the numerical method exploited here and in the companion paper [19] to solve the nonlinear

Cosserat equations. They also highlight an advantage for carrying out numerical simulations as opposed to real
experiments: numerical simulations allow to analyze the dynamics of the strip much closer to the bifurcation (∆µ ≪ 1)
than accessible experimentally.

Appendix B: Over-damped boundary layer

The numerical data (green symbols) presented in Fig. 5B and Fig.A.1 seem to deviate from the analytical prediction
(black lines) obtained from the reduced equations in §V and §VI. This difference in behavior is associated with
dissipation mechanisms, that despite being small, become predominant in the very vicinity of the bifurcation due to
the critical slowing down.
In our numerical simulations, a small damping term is added to mimic material dissipation in the elastic strip.

Taking this effect into account in our analysis would introduce a damping term into (3) such that

∂2W

∂T 2
+ ξ

∂W

∂T
+

∂4W

∂X4
+ Λ2 ∂

2W

∂X2
= 0. (B1)

Here, ξ = νL2/
√
ρbhB with ν being the dynamic viscosity coefficient used in our numerical implementation of the

Cosserat equations, is a non dimensional parameter that compares viscous forces acting over the inertial time scale
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Figure A.1. Snapping time. Comparison of snapping times when the system is placed to the right of the bifurcation by a distance ∆µ
between our 3D Cosserat simulations and the experiments carried out by Gomez et al. [3]. Their experimental data were obtained with
strips made of PET with L = 240mm α = 21.34◦ (PET1), L = 290mm α = 19.85◦ (PET2) and L = 430mm α = 21.17◦ (PET3) and
strips made from steel with L = 280mm α = 17.14◦ (Steel1) and L = 140mm α = 22.51◦ (Steel2). The black line represents the analytical
prediction they obtained.

√

ρbhL4/B to inertial forces [14]. For large ξ, the second term in the LHS of (B1) dominates the dynamic. For
small ξ, this term is small and can be neglected. In all the numerical experiments carried out in this paper and in
the experiments carried out in [3], ξ is small and (3) can be used instead of (B1). In [14], the authors demonstrated
that this is not true in the very vicinity of the bifurcation. Close to the bifurcation, the dynamics slows down and
even for ξ ≪ 1 there is a boundary layer of thickness ∆µ ∼ ξ1/a where the viscous term is not negligible and where
the dynamic becomes over-damped [14]. Outside this boundary layer (i.e ∆µ ≫ ξ1/a), the second term in (B1) is
negligible and the dynamics is governed by (3); the analysis carried out in the main paper is valid.
In the boundary layer (i.e ∆µ ≪ ξ1/a), the first term in (B1) can be neglected and the dynamics is governed by

(here T̄ = ξ−1T )

∂W

∂T̄
+

∂4W

∂X4
+ Λ2 ∂

2W

∂X2
= 0. (B2)

We repeat the stability analysis done in the main text in this overdamped case. We obtain the exact same eigenvalue
problem but with eigenvalue σ instead of σ2. This yields values for a that are twice larger than the ones found in the
main text (i.e we get a = 1/2 for the asymmetric case and a = 1 for the two other cases). We note that the scaling
observed for our numerical data in Fig. 5B very close to the bifurcation corresponds to a = 1 indeed.
We then perform the asymptotic analysis, starting with the first order in time beam equation and these new values

obtained for a. We obtain the first order in time version of (31) and (32). We note that the values a = 1/2 and a = 1
obtained from the stability analysis correspond to the well known exponent that characterises the critical slowing
down near first order in time saddle-node and pitchfork, respectively.
In our numerical simulations in Fig. 5B and Fig. A.1 the value of ξ is ξ1 ≈ 2×10−4 and ξ2 ≈ 6×10−4, respectively.

From these values and prior knowledge of the value of a we can estimate the thickness of the boundary layer δ = ξ1/a.

With a = 1 and a = 1/2 (first order pitchfork and first order saddle node, respectively) this yields δ1 = ξ
1/a
1 ≈ 2×10−4

for the parameters used in Fig. 5B and δ2 = ξ
1/a
2 ≈ 3.2× 10−7 for those used in Fig. A.1. We note that these values

correspond quantitatively to the minimum value ∆µ under which the numerical data starts to go away from the
under-damped theory (black lines).
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Figure B.2. Energy landscape The bending energy of the three first pairs of equilibrium states (UA, UB, SA, SB, WA, WB) is computed
and plotted on a 2D space spanned by WS

0 and WA
3/4

(see main text for definition). The energy surface between the equilibria is drawn

arbitrarily. A. At µ = 0, the energy landscape is typical of the bi-stable Euler buckled system, with two potential wells UA and UB

separated by two lowest energy barriers SA and SB. The bump at the origin corresponding to the two higher energy barriers WA and WB.
B. At µ = 2, under the symmetric actuation, SA and SB become symmetric and merge with UA. The latter becomes unstable relatively
to an antisymmetric perturbation. However, it is still stable relatively to a symmetric mode of perturbation. The resulting equilibrium is
therefore a saddle with a (actually, an infinite number of) stable and an unstable manifold.

Appendix C: Pre snap-through oscillations

In Fig. 1H and I, the exponential snapping dynamics predicted in [3] and described by (32) is preceded by damped
oscillations (see Fig. 1H and 1I). To elucidate the origin of these pre-snap-through oscillations, we plot in Fig. B.2 a sim-
plified energy diagram of the symmetrically actuated strip at µ = 0 (both boundaries are at a zero angle with the hori-

zontal) and at µ = 2 (first bifurcation). Specifically, we compute the bending energy Eb = EI/2
∫ 1/2

−1/2
(∂2w/∂x2)2dx at

each of the six first static equilibrium modes (UA, UB, SA, SB, WA, WB) based on the static analysis in section III. We
then represented these energy values as a function of a 2D space, where one direction spans the mid-point deflection
of the symmetric modes (U, W) and the second direction spans the deflection at X = 3/4 of the antisymmetric modes
(S) of buckling (see Fig. B.2). The antisymmetric component of the symmetric modes are set to zero and vice versa.

At µ = 0, the energy diagram displays two potential wells that correspond to the two buckled equilibria UA and
UB, which are symmetric under the transformation w → −w and have the same bending energy. Meanwhile, SA and
SB are symmetric under the transformation x → −x and occupy a higher level of bending energy. Lastly, WA and WB

are symmetric under the transformation w → −w with zero mid-point deflection and occupy an even higher energy
level. When the boundaries of the strip are rotated, this standard energy landscape is reshaped until one (or both)
of these two lowest energy barriers ”breaks” therefore allowing the system to transition from one state to another.

In the case of symmetric boundary actuation, the energy levels of UA and WA increase, while those of UB and WB

decrease and those of SA and SB remain the same. At µ = 2, the three equilibria UA, SA and SB merge together at the
same energy level in a subcritical pitchfork bifurcation (Fig. 1). The fundamental mode of perturbation of UA becomes
unstable (Fig. 1H and Fig. 3B where the first eigenvalue of UA crosses the zero axis). This eigenvalue is associated
with an antisymmetric mode of perturbation Wp(X) (§IV) and therefore at this point two routes (depending on the
sign of the amplitude ǫ of this antisymmetric mode) are available for the strip to snap from UA to UB (Fig. B.2).
However, the first harmonic of UA, labelled UA1 in Fig. 3B, still has a negative eigenvalue and is stable. This second
eigenvalue is associated with a symmetric Wp(X). This means that the unstable equilibrium born from the merging
of UA, SA and SB is a saddle and possesses (actually an infinity of) a stable and an unstable manifold (Fig. B.2B).
At the first bifurcation, when µ is suddenly increased from a value slightly smaller to a value slightly higher than
µ∗ the route towards UB suddenly opens (a stable manifold (antisymmetric) is turned into an unstable one). But
at the same time the ”kick” imposed by the actuation is symmetric and pushes the strip along the stable manifold
(symmetric) where the route towards UB is ’closed’. As the system is placed slightly to the right of the bifurcation, the
first eigenvalue becomes positive (unstable) but is infinitesimal (due to the critical slowing down at the bifurcation)
while the second eigenvalue is still negative (stable) and has a finite value (inset Fig. 3B). Therefore, the system
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has time to oscillate along the stable manifold before being attracted along the unstable one. Increasing µ a little
more, this stable manifold becomes unstable at a secondary bifurcation. The eigenvalue corresponding to the first
harmonic of perturbation of UA vanishes with the eigenvalue associated with the fundamental mode of perturbation
of WB at µ ≈ 2.012 where these two equilibria suddenly disappear in what resembles a saddle-node bifurcation. This
is confirmed by looking at how the absolute values of these two eigenvalues decrease when approaching this secondary
bifurcation (Fig. 5B). Note that the slowing down at this secondary bifurcation follows the saddle-node scaling (i.e
√

|σ2| ∼ |∆µ|1/4).
These pre-snapping oscillations are often observed in step-loaded arches (e.g [33, 34]). They are usually described

as “indirect snap-through”, a mechanism where a mode of oscillation acts as a parametric forcing to another mode
and triggers a parametric resonance that leads to snap-through [35]. This is not the case here, where the oscillations
that precede snap-through are fully described by purely linear mechanisms.


	Dynamic behavior of elastic strips near shape transition
	Abstract
	Introduction
	Numerical observations based on the 3D Cosserat rod theory
	Static equilibria in the Euler-Beam Model
	Stability analysis
	Asymptotic analysis
	Slow Time Scale Near the Bifurcation
	Asymptotic Expansion Near the Bifurcation
	Asymptotic analysis

	Analysis of the amplitude equations
	Amplitude equations
	Static equilibria
	Linear dynamics

	nonlinear snap-through dynamics
	Asymmetric actuation
	Symmetric actuation
	Antisymmetric actuation

	Discussion
	References
	Snap-through time
	Over-damped boundary layer
	Pre snap-through oscillations


