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1 Abstract

12 The Delta-Notch system plays a vital role in many areas of biology and typically forms a salt
13 and pepper pattern in which cells strongly expressing Delta and cells strongly expressing Notch
1+ are alternately aligned via lateral inhibition. In this study, we consider cell rearrangement events,
15 such as cell mixing and proliferation, that alter the spatial structure itself and affect the pattern
16 dynamics. We model cell rearrangement events by a Poisson process and analyze the model while
17 preserving the discrete properties of the spatial structure. We investigate the effects of the inter-
18 mittent perturbations arising from these cell rearrangement events on the discrete spatial structure
10 itself in the context of pattern formation and by using an analytical approach, coupled with nu-
20 merical simulation. We find that the homogeneous expression pattern is stabilized if the frequency
21 of cell rearrangement events is sufficiently large. We analytically obtain the balanced frequencies of
2 the cell rearrangement events where the decrease of the pattern amplitude, as a result of cell rear-

23 rangement, is balanced by the increase in amplitude due to the Delta-Notch interaction dynamics.

26 OQur framework, while applied here to the specific case of the Delta-Notch system, is applicable

27 more widely to other pattern formation mechanisms.

2 I. INTRODUCTION

2 Discrete cell models can provide different pattern dynamics to those arising from contin-
30 uous cell density models. Because living tissue is made up of cells, which act as the smallest
a1 discrete units in space, pattern formation on discrete spatial structures is observed in the
2 context of biological pattern formation on a cellular scale. We study the effects of typical
33 perturbations on the discrete spatial structure itself - flipping and duplication of the lattice

s - on pattern dynamics using analytical methods.

s As a mechanism that generates periodic pattern on a cellular scale, we will consider
3 the Delta-Notch system. The Delta-Notch system is a well-studied cell-cell communication
w system and plays a critical role in many developmental processes [1-15]. Delta and Notch
38 are, respectively, cell surface ligands and receptors. Delta expression in the neighborhood of

30 a cell increases Notch expression in that cell which, in turn, decreases its Delta expression -



w0 a process known as “lateral inhibition”. As a result, cells strongly expressing Delta and cells
a strongly expressing Notch are aligned alternately (the so-called, “salt and pepper” pattern)
o [5].

i3 Collier et al. [2] constructed the first mathematical model for the Delta-Notch system,
s which consisted of a spatially discrete ordinary differential equation system which was then
s analyzed, and necessary and sufficient conditions for a salt and pepper pattern were derived.
s To account for stochasticity in the cell-cell interactions and gene expression in signal trans-
# duction [16-18], a number of subsequent theoretical studies have incorporated stochasticity
ss and revealed that, while low-intensity noise contributes to fine-grained pattern formation,

 high-intensity noise disrupts the salt and pepper pattern [16, 19, 20].

so  However, little research has been conducted to investigate the effect of positional pertur-
s1 bations arising from cell mixing and proliferation, despite these phenomena being generally
s2 observed [21-25]. Therefore, cell rearrangement by cell mixing and proliferation should sig-
s3 nificantly affect Delta-Notch pattern formation since the cells of interacting neighbors are
s« changing. Germano et al. have used a computational model to show that excessive cell
ss turnover homogenizes Delta expression [26], while Stepanova et al.[27] developed a com-
ss putational model to investigate how vascular structures are rearranged in response to the
sz VEGF-Delta-Notch system. However, to analytically understand the effect of cell rearrange-

ss ment on pattern formation, a simpler model is required.

so  In this study, we provide a framework to analytically evaluate the effect of stochastic
0 and spatial perturbations arising from cell mixing and proliferation. We construct a simple

1 stochastic differential equation model that incorporates Delta-Notch interaction and cell

o

s2 rearrangement events (cell mixing and proliferation) in one spatial dimension. Our numerical
63 simulations show that the effect of cell rearrangement is to stabilize the homogeneous steady
e state, and we provide a framework to analytically evaluate the stability of the pattern
s dynamics. Our analytical framework is consistent with numerical calculations, and provides
s insight into how model parameters and frequencies of flipping or proliferation balance in the

o7 context of pattern formation. Furthermore, we experimentally confirm our ideas through
o5 Observations of the murine retinal vasculature.



e II. METHODS AND MODELS

70 A. Numerical simulations

7 The numerical simulations were performed using Mathematica (Wolfram) and Julia
2 (MIT), and we used periodic boundary conditions and an explicit Euler scheme.

73 For simulation of the Collier model (1), we used the following conditions, unless otherwise
2 stated in the figure captions. Initial cell number n = 100, time step At = 0.001, duration ¢ =
75 1000 (iteration 1000000), and parameter set (v, 3, h,r) = (1,100, 4,40). Initial conditions
. are D, (0) = D° + k and N,(0) = NY + k. Here D" and N° are the spatially homogeneous
77 steady state values (Appendix A), and « is an independent random variable from the uniform
7 distribution in [—0.0001,0.0001]).

7o To incorporate cell flipping and proliferation in the Delta-Notch model (1), we assumed

g0 that these events occur following a Poisson process with rates p and ¢, respectively.

81 B. Classical Delta-Notch model

s2  'To model the effect of cell mixing or proliferation on Delta-Notch pattern formation, we
&3 started with a version of the Collier model [2]. In this model, the Delta and Notch activities

sa Of a cell z (D, and N,, respectively) in a one-dimensional cell line were modeled (Fig. 1(A))

dD 1
()
dt 1+ BN,

de o r (Dac—l + D;r+1>
dt 147 (Dyy + Dopr)

g5 as below:

— N,. (1)

s Here, the parameter v denotes the reaction speed of Delta dynamics relative to that of Notch.
&7 The parameters h and 3 denote the Hill coefficient and the intensity of Delta suppression by
ss Notch, respectively. As the Delta activity in neighboring cells (D,_1 + D, 1) increases, the
g0 activation of the Notch activity also increases, reaching a saturation level. The parameter r
o is a measure of the intensity of Notch activation by the Delta presented in neighboring cells.
o The number of cells is n and the position of the cell is z (z € N;1 < x < n).

o We used a one-dimensional model because it is tractable analytically, and the distinct

o3 salt and pepper pattern of Delta-Notch expression has been reported in endothelial cells
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e which are aligned one-dimensionally [8, 13, 14]. We assume that the number of cells is
os sufficiently large so that we can use periodic boundary conditions. This is because the effect
o of boundary conditions is confined near the boundary, and the global pattern we focused
o7 on is minimally affected by the precise form of the boundary conditions if the system size
s is large. We confirmed, using numerical simulation, that the main results of this study are
e robust to different imposed boundary conditions (results not shown).

1w In the Collier model we use (1), whether or not a salt and pepper pattern emerges depends
101 on the model parameters (v, 5, h,7). The necessary and sufficient conditions for salt and
102 pepper pattern formation are obtained by performing a standard linear stability analysis

103 (Appendix A), requiring that the maximum eigenvalue be greater than zero:

N — —(a+d)++/(a —|-2d)2 — 4(ad — 2ba)) -0, 2)

ws where a = v, b= (Bho(N°)"1)/ (1 + B(No)h)Q, d=1,a=r/((1+2rD?) and (D°, N°)
105 is the spatially homogeneous steady state of the Collier model (1). For example, the pa-
s rameter 3, which indicates the intensity of Delta suppression by Notch, broadens the region
17 where A(f) is positive and increases Amax (Appendix A and Fig. S1 [28]). Based on this
108 analysis, we proceeded to investigate how pattern formation is altered by cell mixing and

109 proliferation.

110 C. Cell mixing model

w To introduce the effect of cell mixing on the Collier model (1), we modeled cell mixing as a

12 series of flips between neighboring cells. We made several assumptions as follows (Fig. 1(B)):

13 (M1) The positions of the neighboring cells are randomly exchanged by cell flips in a single

114 step.
us (M2) Flips occur according to a Poisson process with intensity p in each pair of the cells.

ue  Let the vertical vectors D and IN, respectively, denote Delta and Notch expression in

17 each cell as below:

D:(DhDQ"' 7D337"' 7Dn)T
N = (N17N27”' 7N:EJ'” 7NTL)T7 (3)



us and a flip between cells © = j and x = j + 1 is described by multiplication with the n x n
110 matrix A7, which is generated by swapping the j-th and j + 1-th rows of the identity matrix

120 as below:
(1 if (k=mand k # j,j + 1)
or (k=jandm=7+1)

(A7}, =9 , (4)

or (k=j+1and m = j)

(| 0 otherwise

11 where j+1 is regarded as 1 if j = n (periodic boundary condition). The effect of cell flipping
122 was introduced by stochastically multiplying the matrix A’ by D and N. Hence, our cell

123 mixing model is defined by the system of stochastic differential equations as below:

dD = f(Dth+Z J— 1) D dL?

7=1

AN = g(D, N)dt + Z ) N dLP. (5)

7=1
124 where the functions f and g are the reaction terms of the Collier model (1), the matrix I de-

15 notes the identity matrix and LY 7 is the Poisson process with intensity p, which corresponds

126 to the flip between cells j and j + 1.

17 D. Cell proliferation model

s To introduce the effect of cell proliferation on the Collier model (1), we modeled cell

120 proliferation as the duplication of a cell. We also made several assumptions as follows

130 (Fig. 1(C))
131 (P1) The duplication process occurs in a single step.

132 (P2) The new cell is placed to the right of the original cell and inherits the same levels of
133 Delta and Notch of the original cell.

13 (P3) The duplication process occurs according to the Poisson process with intensity ¢ in

135 each cell.

13 Assumptions (P2) and (P3) implicitly assume, respectively, that Delta and Notch activities

137 are determined by their concentrations [29], and cell proliferation follows a memoryless
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138 stochastic process [30]. We denote Delta and Notch expression by the vertical vectors D,, =
159 (D1, Do, -+, D,)T and N,, = (Ny, Ny, -+, N,)T, respectively. Note that the number of cells
1o (the dimension of the vectors D,, and IN,,) n increases with time. Under these assumptions,
11 duplication of cell j is accounted for by defining the (n+1) x n matrix B7, which is generated

12 by duplicating the j-th row of the identity matrix as below:

1 if (k=m and k < j)
{Bj}km: or (k=m+1and k> j), (6)

0 otherwise

13 and stochastically multiplying this matrix by D,, and IN,,, respectively:

If 4189 — 0, D, (t + dt) = D,(t) + f(D,, N, )dt
N, (t +dt) = N, (t) + g(D,,, N,,)dt -
: 7
If 418 — 1 D,y1(t +dt) = B [D,(t) + f(Dy, N,)dt]
Ny (t+dt) = B [Dy(t) + f(Dy, N,)dt]

s Note that n will increase with time according to the Poisson process, so the size of B/ will

145 also increase with time.
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FIG. 1. (A) Schematic of the Delta-Notch interaction in the Collier model. Notch expression
inhibits Delta expression, Delta expression promotes Notch expression in adjacent cells, and Delta
and Notch themselves naturally decay. (B) Schematic of the flip event in the cell mixing model
and the matrix A7 in (4). The flip event occurs according to the Poisson process with intensity p
in each pair of cells. (C) Schematic of the duplication event in the cell proliferation model and the
matrix B’ in (6). The duplication event occurs according to the Poisson process with intensity ¢

in each cell.
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us III. RESULTS
17 A. Numerical simulations with cell rearrangement

s We set the parameters (v, 8, h,r) such that linear analysis predicts the salt and pepper
1o pattern when there is no cell rearrangement (without cell mixing or proliferation) and we
150 simulated the model (Fig. 2(A)). We then included cell rearrangement and found that the
151 heterogeneity of the Delta-Notch pattern was decreased by cell rearrangement, and the ho-
152 mogeneous steady state became stable again for a sufficiently high level of cell rearrangement
153 (Fig. 2(B)). More precisely, when the flip frequency p = 0.001, the salt and pepper pattern
15« was largely maintained. However, for increasing values of p, the amplitude of the pattern
155 became smaller. When p was sufficiently large, the amplitude was almost 0 for the whole
15 region, and the system relaxed to the spatially homogeneous steady state (Fig. 2(B)). In
157 addition, as p increases, the expression pattern shows an envelope structure, in which the
155 amplitude of the periodic pattern follows a longer pattern that oscillates. Similar results
150 were obtained with the cell proliferation model (Fig. 2(C)). With increasing proliferation
10 frequency ¢, the amplitude of the pattern became smaller and, finally, the system settled
11 back to a homogeneous steady state. These results are robust to 100 different runs of nu-
12 merical simulations for each parameter set. Corresponding results are also obtained with
163 different values of 5 and r (Fig. S2 and Fig. S3 [28]), suggesting that the stabilization of the
16« homogeneous steady state by cell rearrangement events is a robust phenomenon.

s To quantify the heterogeneity of the expression pattern, we introduce the heterogeneity

166 function, H(t), as the variance of the Delta expression:

H<t) = = Z [Dac<t)2 - <D(t)>2} ) (8)

167 where

(D) =~ 3" Dult). Q)

168 If the salt and pepper pattern is completely formed, then H(t) is close to the squared value
160 Oof the amplitude of the pattern. If Delta expression is spatially homogeneous at the steady
o state, then H(t) = 0.

i In both models, at the onset of the simulation, H(t) decreases and then either increases

12 or still decreases depending on the value of p in the cell mixing model or the value of ¢ in
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FIG. 2. Numerical simulations of the standard Delta-Notch model (1), the cell mixing model (5)
and the cell proliferation model (7). (A) Standard model (no cell rearrangement). The red line
represents Notch expression and the black line represents Delta expression. Delta and Notch are
alternately expressed, and the classical salt and pepper pattern emerges. (B) Cell mixing model
(5). Numerical simulations are performed for different flipping frequencies p = 0.001, 0.003, 0.006.
(C) Cell proliferation model (7). Numerical simulations are performed for different proliferation
frequencies ¢ = 0.001, 0.003,0.006. The expression patterns of the first 100 cells are shown. Initial
cell number n = 100, time step At = 0.01, duration ¢t = 1000, and (v, 3, h,r) = (1,100,4,40).
Initial condition, D,(0) = D° + k, and N,(0) = N° + k,, where D? and N° are the spatially
homogeneous steady state values (Appendix A), and k, is a random variable from the uniform

distribution in [—0.02,0.02]).

the cell proliferation model (Figs. S4 and S5 [28]). This is because, at the onset, the initial
random state is smoothened by the Delta-Notch dynamics. As we are interested in pattern
growth after a sufficient time has elapsed, we define Hy as the minimum heterogeneity in

the time evolution of the no cell rearrangement model (Fig. S4 and Table. S1 [28]);
Hy = Min (H(t)). (10)
Then we define the normalized heterogeneity H*(t) as H*(t) = H(t)/Hy, which is plotted
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s in Fig. 3. Figure 3 shows that H*(t) switches between increasing and decreasing depending
o on the values of p and ¢. In the cell mixing model, it appears that H*(¢) increases for
10 p < 0.005 and decreases for p > 0.005 (Fig. 3(A) and Fig. S5(A) [28]). In the cell proliferation
1e1 model, H*(¢) increases for ¢ < 0.0045 and decreases for ¢ > 0.0045 (Fig. 3(B) and Fig. S5(B)
12 [28]). These results suggest that there exist balanced frequencies p* and ¢* for which the
183 attenuation of the pattern by cell rearrangement and its formation by the Delta-Notch
18« dynamics are balanced.

185 We numerically estimated the balanced frequencies and the growth rate of the hetero-
186 geneity.

17 For the balanced frequencies p* and ¢*, we estimated the intersection points of the plot of
188 In H*(t) as a function of p and ¢ and the plot of In H*(¢) = 0. We performed linear regression
150 for the data points whose value of log,, H* € [—8,4] in Fig. 3, and estimated p* and ¢* as
1o the intersection points of the fitted lines and the function In H*(t) = 0 (Figs. 4(C) and 4(F),
01 black dots). For the growth rate of the heterogeneity, we estimated the slope of the line
102 that was fitted to the plot of In H*(t) against ¢. Similarly, we performed linear regression
103 for the data points in the range log,, H* € [—8,4] in Fig. S5 [28], and estimated y and j as
104 the slopes of the fitted lines (Figs. 4(A) and 4(D), black dots).

s B. Analysis of the cell rearrangement models

ws  To quantify the effects of cell rearrangement (mixing and proliferation), we analyzed
17 the stability of the pattern dynamics and the balanced frequencies p* and ¢*. The “tug-
108 of-war” of the cell rearrangement and the Delta-Notch dynamics was represented as the
100 growth or attenuation of the heterogeneity H(t). Therefore, we focused on the effect of cell
200 Tearrangement on H (t).

20 The heterogeneity H(t) can also be calculated from the power spectrum of the Delta
202 expression pattern. The power spectrum P, of the Delta expression pattern are the squared
203 absolute values of the Fourier coefficients 0y, of Delta expression (Appendix A), so Py can be

204 calculated as:
2

Py(t) = |0x(t)* = (11)

1 - —i27kx
~N "D, ()e T
- ; (t)e

205 Note that k takes integer values from 0 to n — 1, and n increases with time in the cell

10
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FIG. 3. Log plots of the normalized heterogeneity of the pattern H*(¢) against the frequencies
of the cell rearrangement events for ¢ = 500 and 1000. The black dashed line represents the
plot of H*(t) = 1 and the circles and triangles represent H*(1000) and H*(500), respectively.
(A) In the cell mixing model, H*(1000) > H*(500) > 1 with p < 0.005 (red horizontal stripe
region) and H*(1000) < H*(500) < 1 with p > 0.005 (blue vertical stripe region). (B) In the cell
proliferation model, similar inequalities hold, and the threshold value is ¢ = 0.0045. We calculated
the heterogeneity at 21 different frequencies of p and ¢, which are taken in the range 0 to 0.01 at
equal intervals of 0.0005 in each model. The heterogeneity H*(t) shown in this figure was calculated
by taking the average of H(t) over 400 different simulation runs, and then normalized by Hy, for
each p and ¢g. Other conditions are as in Fig. 2. Initial conditions are randomly determined from

the same distribution as in Fig 2 for each of the runs.

206 proliferation model. From Parseval’s theorem,

S D02 = Al) (12)

207 and from (11),
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r=

208 By substituting (12) and (13) into (8), H(t) was calculated as below:

H(t) = i Py(t). (14)

SRS

200 Therefore, H(t) is equal to the sum of squares of the amplitudes of all wavenumber compo-
210 nents in the pattern.

an The balanced frequencies p* and ¢* are independent of the definition of the heterogeneity
22 H(t). If we adopted the variance of the Notch expression instead of the Delta expression,
213 then the dispersion relation and the effect of the cell rearrangement events A7 and B’ are
14 the same as for Delta expression, and we obtained the same p* and ¢* as before. In addition,
215 we can obtain the same p* and ¢* values if we defined the heterogeneity by the average of
26 the squared values. For example, if we adopt [2(D, — D,1)%]/n as the heterogeneity, then
217 we obtain the same p* and ¢* since this value is also calculated from the linear summation
21 of the power spectrum (Fig. S6 [28]). We now proceed to analyze the stability of the power

210 spectrum Py (t) in the cell mixing and proliferation models.

220 1. Cell mizing model

21 First, we will transform the cell mixing model (5) into the corresponding system of
22 stochastic differential equations that represent the time evolution of the Fourier coefficients
223 0. To find the balanced frequency p* and the onset of pattern formation, we assume
24 that H(t) is small since we set the initial condition to be a small perturbation about the
»s homogeneous steady state, so the reaction terms f(-) and g(-) can be regarded as linear
26 operators since D, ~ D° and N, ~ N° Therefore, the effect of the Delta-Notch dynamics
27 on the Fourier coefficients 0, of D, is described by the diagonal matrix A from the linear

28 stability analysis (Appendix A) as below:
A= Diag<>\07)\17"' 7)\n—1)7 (15>

20 wWhere

M — —(a+d)+ /(a+d)? —24(ad + 2ba cos (2wk /n))) . (16)

12



20 The effect on the Fourier coefficients d;, of a cell flip is given by the n x n matrix CV:
CV=FAF, (17)

231 where F' is the discrete Fourier transform matrix. The components of the matrices F' and
2 F~1 are given as below:
1 —i2w(l-1)(m—1)/n
{F}l m = %6 ) (18)

{F l}lm — n 1271'1 1)(m—1)/n' (19)

233 Therefore, the time evolution of the Fourier coefficients d can be described by:

dé = Addt + Z 0&dLP (20)

j=1
o where & = (8o(t), 01 (t), -+, 0p(t), -+, 0n_1(t))T.
25 Furthermore, we obtain the expected time evolution of the power spectrum by calculating
236 the average of the effect of the cell flip on the power spectrum for j (Appendix B) as below:

237

dP = 2Re[A]Pdt + W PdL!™. (21)

ss Here P = (Py(t), Py(t), -, Pu(t), -, P,_1(t))T, LY" is the Poisson process with intensity

230 pn, and the components of the matrix W are given as below:

“Ea? T (4 D) (12 )
{W}l,m = 2

(22)
(% sin ”(17:1) sin Wﬁ;”) (otherwise).

20 Both the average and variance of the Poisson process L™ are pnt, so those of L™ /n are pt
21 and pt/n, respectively. Therefore, when n is sufficiently large, dL}" /n can be approximated

22 by pdt and equation (21) is approximated by:

d
ZpP~Y,P, 2
dt (23)

243 where

Y, = 2Re[A] + pnW. (24)

s Therefore, by using the maximum eigenvalue and the corresponding eigenvector of the matrix

25 Y, we can derive the expected pattern dynamics.

13



us  If y is the maximum eigenvalue of Y, and P* = (B}, Pf,--- , P )" is the corresponding
7 eigenvector, then P ~ eY'P* for values of ¢ in a range sufficiently large so that other
s eigenvectors no longer affect the power spectrum, but not so large for nonlinear effects to
210 come into play. The scaling law H(t) ~ e¥" also holds since H(t) is a linear summation of
250 the power spectrum Py (t). Therefore, the maximum eigenvalue y corresponds to the growth
21 rate of the heterogeneity dIn H(t)/dt. Figure 4(A) shows that the value of y derived from
252 equation (23) agrees with the numerically estimated growth rate d1n H(t)/dt, and Fig. 4(B)
253 shows how the shape of the corresponding eigenvector P* depends on p. Note that the effect
254 of the Delta-Notch interaction 2Re[A] on Py is determined by the value of 27k /n, so we plot
s P against 27k /n in Fig. 4(B).

6 ' To obtain the balanced frequency p*, we used Newton’s method to derive the value of
257 p such that the maximum eigenvalue of Y, is 0. The values of p* obtained in this way
258 are in very good agreement with the corresponding values estimated from the numerical
250 simulations of (5) for varying § (Fig. 4(C) and S7 [28]) and r (Fig. S8 [28]). In addition,
260 the values of y and p* obtained in Figs. 4(A) and 4(C) are almost identical for n > 100
261 (Figs. S9(A) and S9(B) [28]).

22 Furthermore, we obtain the growth rate dln H(t)/dt and the balanced frequency p* as
263 1 — 00 as solutions of the integral equations (Supplementary text A [28]). They are also in
s very good agreement with the numerically estimated values.

%s  We can derive an approximation to the balanced frequency p* from the linear stability
6 analysis of the spatially uniform steady state in the deterministic system that is obtained

27 by regarding the effect of cell mixing as a diffusion process:
dD 1
— =v|——-——-D, D, 1+ Dy —2D,
o U<1+5Nxh >+p( 1+t Do )
de o T(Dz—l +Da:+1)
dt 1+ 7(Dyq+ Dyyq)

— N, +p(Ny_1 + Nyyy — 2N,). (25)

268 System (25) has the same spatially homogeneous steady state as in (1), so we can linearize

20 the system as in Appendix A, and obtain the Jacobian matrix:

- —a — 4psin®(7k/n —b
M, = p (mk/n) ‘ (26)
2cccos(2nk/n)  —d — 4psin®(rk/n)

a0 The eigenvalue A\, with the larger real part, obtained from the matrix My, is:

N k
A = A\p — 4psin? %, (27)

14



on where A is given by (A9), so the time evolution of the power spectrum can be approximated
272 byI
d

k
= (QRe[)\k] — 8psin? %) P. (28)

213 This equation corresponds to the system that is obtained by ignoring the non-diagonal
2r components of the matrix Y), in (23). From (28), the balanced frequency p* is approximated
o5 a8 p such that:

Max {Re[A(@)] — 4psin? g] =0. (29)

0€[0,2m)
26 When the range of 6 for which A(f) is positive is sufficiently narrow, the values of Py,
o except around k = n/2, quickly decay. Hence, the non-diagonal components of the matrix
218 Y), are ignorable and we can approximate the effect of cell mixing as a diffusion of the Delta
279 and Notch activities.
20  Figure 4(C) shows that the estimation in equation (29) is a good approximation for
21 95 < B < 120. If A(f) is positive only in the region that is very close to § = 7, then we can

262 obtain the simpler form of (29):
P" = Amax/4- (30)

23 Here A\pay is given by equation (2), and we used the approximation sin?(6/2) ~ 1 in the
264 Tegion that is close to = 7. Consistent with (30), Apax was 0.02 and the balanced frequency

285 p° was estimated around 0.005 for the conditions used in Fig. 3.

286 2. Cell proliferation model

27 The cell proliferation model (7) was also analytically transformed into the corresponding
288 system of stochastic differential equations that represent the time evolution of d;. The effect
280 Of a cell proliferation event, which increases the cell number n to n + 1, on the Fourier

200 coefficients 4, is given as below:
¢ = FB;F7, (31)

20 where F'is a square (n + 1) x (n+ 1) matrix, F~' is the square (n X n) matrix defined in

22 (19), and Bj is the (n + 1) x n matrix given by (6). The matrix F is defined by:

. 1 .
F} _ o—i2r(I=1)(m=1)/(n+1) 39
{ l,m vn + 1 ( )
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203 Therefore, the time evolution of d,(t) is given as below:

O, (t +dt) = M5, (1) if dLI7 =0
) . (33)
Opi(t+dt) = Cielg,(t) if ALY’ = 1.

20 By calculating the average of the effect of the cell proliferation event for j, the expected

205 time evolution of the power spectrum P, (t) is given (Appendix C) by:

P,(t + dt) = e®elNdt p (1) if dL{" =0

(34)
P, (t+dt) = SR p () if dLT" =1,
206 where the components of the matrix S are given by:
(n+1)/n (ifl=m=1)
{S}l’m - 1 sin? Tm . (35)
R T) s ( L (otherwise).

27 Since the matrix S is non-square, the stability of the homogeneous steady state cannot
208 be determined as in the cell mixing model. Hence we approximate the matrix S by a square
200 Matrix, as below.

s0  The power spectrum P, is represented by the superposition of the cosine waves from
s the symmetry P, = P, ;. By assuming that the shortest wavelength component of SP,
302 is negligible, the matrix S is approximated by the square matrix > (given below) and the

303 equation (34) is approximated by (Appendix C):
dP, ~ 2Re[A|P,dt + (£ — [)P,dL", (36)

s00 where [ is the identity matrix. When n is even, the components of the matrix 3 are given
305 by:

n/2

2 2nm—1)(k—1) [k—1 2n(l—1)(k—2) k—1 2n(l —1)(k —1)
193] i = ;COS " [n 7 oo - + (1 T 1) cos }

4 i (1 4 (—1)mthe2 (1 ~ " sin? M)) : (37)

n n+1 n

306 and when n is odd:

"D omm—O)(k—1) [E—1 _ 2x(l—1)(k—2) k1) e 2r =Dk — 1)
3 cos [ +(1— ) }

OS
n n+1 n

Sh =

n

1C
o n -+ n
1
- 38
- (38)
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7 As in the cell mixing model, assuming n is sufficiently large, L{"/n is approximated by

208 gt as in the cell mixing model, so the time evolution of P, in (36) is approximated by:

d
—P, ~ J,P,,
P, (39)
300 where
Jy = 2Re[A] +gn(X —I). (40)

s Therefore, by using the maximum eigenvalue and the corresponding eigenvector of the
su matrix J,, we can approximately derive the expected pattern dynamics.

sz Figure 4(D) shows that the maximum eigenvalue of the matrix J, is in very good agree-
n13 ment with the numerically estimated growth rate dln H(t)/dt, and Fig. 4(E) shows how the
si4 shape of the corresponding eigenvector P depends on gq.

a5 To obtain the balanced frequency ¢*, we used Newton’s method to derive the value of
6 ¢ such that the maximum eigenvalue of J, is 0. Figure 4(F) shows that the values of ¢*
s1i7 obtained in this way are in very good agreement with the numerically estimated ¢*. The
s values obtained in Figs. 4(D) and 4(F) are almost identical for n > 100 (Fig. S9 [28]),

a10 although the definition of the matrix ¥ is different whether n is odd or even.

20 8. The eigenvalue problems corresponding to (23) and (36) explain the pattern dynamics.

;21 In the above analysis, we have shown that the pattern dynamics of the cell mixing model
322 and the cell proliferation model can be captured by solving for the maximum eigenvalue
323 problem of the matrices Y, (24) and J, (40), respectively, and yield results that agree well
24 With our numerical simulations of the full model.

25 First, the maximum eigenvalue of Y}, and J, capture the growth or attenuation rate of the
26 heterogeneity of the pattern. Figs. 4(A) and 4(D) show that the exponents are consistent
37 with the maximum eigenvalue y and j. Therefore, the balanced frequencies p* and ¢* are
»s derived as the frequencies that make y = 0 and j = 0, respectively (Figs. 4(C), 4(F) and
20 Fig. S8).

0 Second, the maximum eigenvalues y and j also explain the time for the pattern to be
s established. Figures S10(A) and (C) [28] show that the time required for H(t) to reach a
s saturated value extends as p and ¢ increase. Here, we define the characteristic time t*, as

33 the time required for H*(t) to reach H*(10000)/e, and find that the values of yt* and jt*

17



s for each p and ¢ are within an error margin of 8.2 % and 7.3 %, respectively (Figs. S10(B)
15 and S10(D) [28]). Therefore, cell mixing and cell proliferation extend the time required for
136 pattern establishment, as t* ~ 1/y and t* ~ 1/j, respectively.

w7 In addition, the eigenvectors corresponding to y and j, shown in Figs. 4(B) and 4(E),
18 explain the pattern envelope in Fig. 2. Figure 4 shows that, in the model that includes
330 only the Delta-Notch interaction, the eigenvector corresponding to the maximum eigenvalue
310 has non-zero component only for & = n/2. On the other hand, in the model that includes
sa cell mixing and proliferation, the eigenvector takes non-zero values for several wavenum-
s2 bers. When several wavelength components are mixed at a similar scale, the corresponding
u3 envelope pattern structure is generated.

sas Although cell mixing and proliferation similarly affect the pattern dynamics as discussed
us above, their individual effects on the power spectrum are qualitatively different. We per-
16 formed numerical simulations of the model including only one of the processes (cell mixing,
a7 cell proliferation) (without the Delta-Notch interaction) setting the salt and pepper pattern
us as the initial state. The results show that cell mixing, unsurprisingly, “scrambles” the pat-
s tern and the power spectrum is uniformly distributed, while cell proliferation elongates the
50 periodic length of the pattern and shifts the power spectrum to the long-wavelength region
s (Fig. S11 [28]). This is because both effects are regarded as the redistribution of the power
352 spectrum in frequency space since the determinants of W and ¥ in equations (22) and (37
53 and 38) are 1. Their eigenvectors, corresponding to the maximum eigenvalues, are shown in
s Fig. S11(E) [28]. The components of the eigenvector of W are all equal to each other, and
35 that of ¥ has only one non-zero components for (k = 0). These results mean that cell mixing
16 coarsens the power spectrum so that it becomes uniformly distributed, while cell prolifer-
ss7 ation shifts the distribution of the power spectrum to the long-wavelength region. These
sss difference correspond, in the absence of cell-cell interaction, to the scrambling of existing
50 patterns due to cell mixing, and elongation of an existing pattern due to cell proliferation.
w0 However, when they are incorporated into the Delta-Notch model, the pattern dynamics
1 are dominated by the interaction between the increasing power spectrum around k = n/2
2 by Delta-Notch interaction and its redistribution by cell rearrangement, and the pattern
33 dynamics in cell mixing and proliferation model become similar.

s Based on the above discussion, the pattern dynamics of the Delta-Notch interaction with

365 cell rearrangement events results in the growth and redistribution of the power spectrum. In
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66 the model that includes only Delta-Notch interaction, the power spectrum around k = n/2
67 grows according to the dispersion-relation, while the rest of the spectrum decays (Appendix
38 A). As a result, the power spectrum finally concentrates around k& = n/2, which corresponds
30 to the salt and pepper pattern. However, when cell mixing and proliferation are introduced,
w0 the power spectrum around k = n/2 is distributed to other regions and undergoes attenua-
sn tion. If the attenuation of the redistributed power spectrum exceeds the growth of the power
w2 spectrum around k = n/2, then the sum of the power spectrum decreases, which means that
;3 the homogeneous steady state is stabilized. The cell flip or proliferation frequency at the
s balanced point is the balanced frequency p* and ¢*. Note that cell mixing and proliferation
ss themselves do not stabilize the homogeneous steady state, but require the attenuation of the
a6 redistributed power spectrum due to the Delta-Notch interaction. Therefore, if the Delta and
sr7 Notch activities are bistable without spatial interactions, as reported by Formosa-Jordan et
ws al. [31], then the redistributed power spectrum is not attenuated. Hence the pattern is not

a9 homogenized, only disturbed.

0 IV. DISCUSSION

i1 To our knowledge, this paper is the first to provide a framework to analytically evaluate
2 the effect on Delta-Notch pattern formation of cell rearrangement arising from migration
83 or proliferation in a one-dimensional line of cells. We model cell rearrangement events as
s occurring intermittently and randomly in a discrete spatial linear structure. We modeled
35 the intermittency of cell rearrangement events by a jump process and analyzed the model
386 while maintaining the discreteness of the spatial structure by considering the time evolution
se7 of the power spectrum. In our framework, the stochastic and intermittent effects of cell
388 Tearrangement were approximated by the deterministic effects on the power spectrum. Ac-
89 cordingly, the instabilities of the pattern dynamics were analyzed by solving the maximum
0 eigenvalue problem of the resultant systems (23) and (39).

s Our model predicts that an increase in the frequency of cell rearrangement events will
se2 Tesult in a more homogeneous pattern. It has been observed that endothelial cells within the
303 retinal vasculature manifest a one-dimensional configuration, Delta-Notch pattern formation
s [8, 13, 14], with reported occurrences of both cell mixing and proliferation [23, 24, 32].

s The expression pattern of Delta-like ligand 4 (DIl4) mRNA is alternating in arteries and
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6 homogeneous in veins (Fig. S12(A)). [8, 13, 14]. Our preliminary experiments indicated
s7 that endothelial cell motility and proliferation rates are higher in veins than in arteries

s (Supplementary Text B and Figure S12 [28]). This relationship has also been reported

3

o

3

©

o in the developing zebrafish vasculature [33, 34]. Our theoretical predictions regarding the

a0 relationship between the frequency of cell rearrangement events and expression patterns are

o

w01 consistent with these experimental findings.

[=}

w2 In this study, we assumed that the daughter cells inherit the same activity of Delta and

4

[=}

s Notch in the cell proliferation model. However, if we adopt an asymmetric inheritance rule,
w4 we obtain different pattern dynamics. Figure S13 [28] shows how the magnitude of the
w05 perturbation to the expression in daughter cells caused by asymmetric cell division affects
w6 heterogeneity in the cell proliferation model (7). Although the steady value of H(t) decreases
w7 with ¢ as in the symmetric inheritance rule case, the time required to establish the pattern
w8 decreases and the pattern maintains a certain degree of heterogeneity even for large ¢, and
00 does not converge to the homogeneous steady state (Figs. S13(B) and S13(C)). It should be
a0 noted, however, that the results exhibited in the symmetric inheritance rule are robust if
au the perturbation is small enough in the asymmetric inheritance rule (Fig. S13(D)).

a2 Our analysis can be applied to a wide range of pattern formation mechanisms. For exam-
a3 ple, a Delta-Notch interaction model that includes cis-interaction, which is the inhibition of
s Notch activity by Delta activity, is proposed by Sprinzak et al [3]. This model (S47) consists
a5 of three variables and has different interaction terms when compared to the Collier model
a6 (1). We find that cell rearrangement events also inhibit salt and pepper pattern formation
a7 in the Sprinzak model, and our analysis yields expressions for the balanced frequencies p*
ag and ¢* that are consistent with the numerical results (Supplementary text C and Fig. S14
n9 [28]). To determine the stability of the homogeneous steady state, our method is effective

a20 regardless of the details of model, such as the number of variables and the interaction terms,

]

1 and could be applied to the models including the effect of other ligands in the Delta-Notch

4

]

2 system, such as Delta-Notch-Jagged system [35].

»3  In addition, phase synchronization phenomena in coupled agent-based models can be in-
24 vestigated by our analysis. Uriu et al. [36] showed that the exchange of positions in a coupled
a5 phase oscillator system in a one-dimensional array promoted phase synchronization, and the
6 relaxation time is consistent with the mean-field approximation if the exchange frequency is

a7 sufficiently large. This phase synchronization model is similar to the model we used, in the

20



s sense that interactions between neighboring cells are affected by positional perturbations,
a0 suggesting we can also capture this phenomenon by interpreting phase synchronization as
a0 convergence to a homogeneous steady state of the pattern composed of the agents’ phase
a1 state. We can generalize our method by replacing the effects of flip and proliferation by a

32 linear operator acting on the power spectrum.
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439 Appendix A: Dispersion-relation of the Collier model

w0 To derive the necessary and sufficient conditions for pattern formation, we performed a
s linear stability analysis of the Collier model (1).
a2 The homogeneous steady state (D°, N?) in the Collier model (1) with periodic boundary

a3 conditions is given by:

1
0
T RD (89)
2r DY
0 _
N =T A2

ws By setting D, = D +d,, N, = N° + n,, where |d,| < 1, |n,| < 1, the Collier model (1)

ws can be linearized to obtain:

d

%dm = —ad, — bn,

d

Engc = —dn; + a(dy_1 + dpy1), (A3)

ue where a = v, b= (Bho(N°)"1)/ (1 + ﬁ(No)h)2 ,d=1, a=r/(1+2rD%>

s To examine the stability of the homogeneous steady state in the Collier model (1), we
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ws consider a discrete Fourier transformation of d,, n, as below:

(1) = % é d (t)ei2ke/n
vi(t) = % > ng(t)emm, (A4)

449 Where,

n—1
1 —i2rkx /n
dy(t) = 7n Z5k(t)e 2k
k=0
n—1

na(t) = % vi(t)emi2eke/n. (A5)

ss0 Here, k is the wavenumber and takes integer values from 0 to n — 1, while 05 (¢) and v (t)
»s1 are the Fourier coefficients that take complex values.
ss2  Substituting (A5) into (A3), we obtain a system of ordinary differential equations for the

w53 coefficients 05, and v, as below:

d [ o)) Ok (1)
dt \ y.1) ) A velt) | (A8)
454 Where
—a —b
M, = . (A7)

2accos (2mk/n) —d
455 Setting

O (t 0k (0

vi(t) vi(0)
s we find that Ay is an eigenvalue of M}, and the solution is dominated by the larger eigenvalue
ss7 of the Jacobian matrix My, (if both eigenvalues are real). Therefore, whether the components

a8 Op, 1, grow or decay is determined by the sign of A\, where:

M — —(a+d)+ /(a+d)? —24(ad + 2ba cos (27?1{;/71))) (A9)

0 Note that if A\, is complex, then the real part of A\, is negative and so the perturbation
s0 decays with time. In the Collier model (1), Az in (A9) takes its largest value at k = n/2 and
w1 negative values in the long-wavelength region (Fig. S1). As a result, |deltay| exponentially

w2 grow if k is near n/2 and attenuate in the other region. It is correspond to the salt and
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w63 pepper pattern, and the necessary and sufficient condition for pattern formation is obtained

464 as below:

— —(a+d)++/(a —|—2d)2 — 4(ad — 2bav)) - (A10)

w5 From (A1) and (A2), we have that,

BN = —(2r 4 1)N° + 2. (A11)
466 Thus,
ho(2r — (2r + 1)N°
b= A12
4r2(1 — NO)2 (A12)
a=(1—N%%, (A13)
467 and
fvo
2ba = hv (1 — N° - 2—) : (A14)
T

ws Since ad = v and 0 < NY < 1 from (A2), ad > 2ba if h < 1, so that the inequality (A10)

40 does not hold. Hence a necessary condition for (A10) to hold is h > 1.

470 Appendix B: Derivation of the time evolution equation for the power spectrum

ann (21)

w2 From equation (20), the value of 6;(t 4 dt) is given by:

n n—1

Ot +dt) = 0x(t) + Mebp()dt + N {C7 =T}, .\, Gi(t)dLy. (B1)
j=1 1=0
s The value of the power spectrum P, (t+dt) = |6, (t+dt)|? is obtained by multiplying o (¢+dt)
wa in (B1) by its complex conjugate & (t + dt) as below:

10 (t 4+ db)|* = [6k()]> + X |0 (D) dt + N |0,(8)] dt

+3 (&(t) ; [CF = I}y O0(E) + 04(2) 2_: {E - I}HLngl(z&))

j=1 =0 =0
n—1 n—1
j Vol < D:J
+ (lz:; {C [}k+1,l+1 55(75)) <zz=; {C] ]}k+1,l+1 51(75))] dL;
+ O(dLP? dt) + O(dt?). (B2)
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45 Here we used the result:

. 0 if j#¢
(dLP7)(dL}*) = 4 (B3)
dLP? if j = €.

w5 By denoting af = >7 {C7} 41141 01, we obtain:

n—1

{C7 =1}, () = al(t) — ox(t). (B4)

w7 Substituting (B4) into (B2), we obtain:

18t +dt)* = [0x () + 2Re[M] [6(8)]* dt + Y [lag()]* — |6x(t) ] AL}

Jj=1
n n—1 2

= 10k ()* + 2Re[Ae] (850 dt + > | D _{C}, 1 68)] — 10k(@)7 | ALY
j=1 =0

(B5)

w8 The third term on the right-hand side of (B5) is the effect of the cell flip on the power
a0 spectrum for the flip position j. Based on the symmetry of the cell position j in the system
w0 (b), we assume that the third term on the right-hand side of (B5) is approximated by
a1 replacing the effect of each flip event with W, which is the averaged effect for the flip

a2 position j as below:

2

n n—1 n
Z Z {Cj}k+1,l+1 a(t)| — ‘5k<t>|2 dL?j = ZWdef’j = WidLi", (B6)
j=1 =0 j=1
183 Where,
1 n [ n—1 2
Wi = n Z Z {C]}k+1,z+1 a(t)| — o)
j=1 | l1=0
1 n [ n—1 2
=2 |2 e B0 | = Ikt (B7)
j=1 || i=0

s Here, we used » 7| dLy 7 = dLP" and note that

2
1 n n—1 ' 1 n—1 n—1 o n A '
ﬁ Z Z {O]}k-i-l,l—i-l 5l(t) = E Z lélém <Z {C]}k+1,l+1 {C]}k+1,m+1>] :
j=1 1=0 m=0 [=0 Jj=1




ws  From (17), the components of the matrix C7 are given as below:

: —3sin ﬂ(lgl) sin W(ky:l)emmfi)(kil) if k#1
{CJ}M = ) (B9)
1 — dgin2 7L if k=1,
486 SO,
0 ifl #m
Z {Cj}kHJH {Cj}kﬂ,mﬂ = 1—716 sin? %k sin? %l ifl=mand k #m (B10)
=1

n(l—%sinz’%“)2 iftk=l=m

47 Here we used

Z i (2j=1)(l=m)/n _ 0 ifi#m (B11)

j=1 n ifl=m
sss Therefore, from (B8) and (B10), we obtain:

1 n
w2

2

X_: {Cj }k+1,l+1 o(t)

j=1 | li=0
n—1
1 1 1
=23 i i st T a0 (1 Dot T Bt I
n 1=0 n n n n n n
1£k
/4 7k . w\? 8

= 2 [(ﬁ singsin g) 6:() 7 | + (1 - Esm —) |61(1)]?. (B12)

10 By replacing the third term on the right-hand side of (B5) by the averaged effect (B6) and
w0 substituting (B7) and (B12), we obtain:

2

n n—1

1 ] m

|0 (t 4+ dt) > ~|6,(t)]> + 2Re[Ai] |6 (8)|* dt + - N {C7} i S| = 18k(6) | dLE
j=1 =0

=64 (t)[* + 2Re[Ae] [01(¢)] dt

(2; (é sin—sm—) 10;(2)] ] — %sm %kwk( t)| >de”. (B13)

a1 Therefore, the time evolution of the power spectrum can be represented more concisely in

102 the form:

dP = 2Re[A|Pdt + WPdL™, (B14)
w3 where A is given in (15), P = (|6o(t)[2, [51(8)|%, -+, [66(£) 2, -+, [Saet(t)[2)T and
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2
—&sin? —ﬂ(ln_l) + (% sin? —W(l_1)> (I =m)

{W}l,m = ! -1 1 2 " (B15>
(% sin W(; ) sin W(":L_ )> (otherwise).
404 Appendix C: Derivation of the time evolution of the power spectrum (36)
w5 From equation (31), the components of the matrix C7 are given as below:
. (n+1)/n (ifhk=101=1)
J _
{O }kl - 1 sm(““ ) im(ZI=L=D) _ 2G=D(0=1) . : (C1)
Uy T (othervise)

w6 The power spectrum after proliferation of cell j is obtained from the Fourier coefficient o

w07 before proliferation as below:
; n ~ . no—j —
1051 ter = (Z{Cﬂ}kﬁH) (Z{Ck,m}5m—1>
m=1

Z (0l YunbroiBc . )

m=1 =1
w8 As in the cell mixing model, the time evolution of the power spectrum is approximated
a0 by replacing the effect of each proliferation event with an average effect. Considering the
so0 average effect on the power spectrum, we calculate the average of |dy|*

after over j:

—Z|5k 1 ber = = ZZZ [{Cj}kz{c HemOi-18m—1

jlmlll

= —ZZ(Sl 15m 1 Z{C]}kl{c }km ) <C3)

m=1 [=1
501 and
)
0 ifl #m
= G = sin? (=1 .
Z{C’J}M{C Yom = (nil) SmQ(ﬂk,l)iﬂ(l,l)) ifl=mandl #1 (C4)
j:1 n+1 n
(n+1) fk=l=m=1.
\
s2 Here we used the fact that
3 e -nt-mn 0 ifi#m (C5)
j=1 n ifl=m
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503 Hence,

.o m(l-1)
n 1 s — 2 .
1 & : >l et 6P ik #
=D 101 e = D sin® (S5 15 (C6)
n ] n n .
g4 LS k=L

soa Therefore, the effect of a single proliferation event on the power spectrum is represented by
sos the matrix S in (34).
s oince the Delta expression D, are real values, P, = P,_; hold. Because of this symmetry,

so7 P, is represented by the superposition of cosine waves:

n—1
Pn = Z ekz?u (C7>
k=0
onk  Ark 2n — )k "
z,?:(1,cosi,cosi,---,cosu) ) (C8)
n n n

sos Here, e; are the coefficients of superposition. From the orthogonality of the trigonometric

s00 function, we obtain:

e=ZP,, (C9)
s10 where € = (eg, e1,-++ ,€,_1) and Z is a square n X n matrix such that:
2r(l — 1 -1
(2}, = cos U= Dm 1) (C10)
’ n

su From the symmetry of P,, we can also obtain e as a discrete Fourier transform of P,. As
s12 the discrete Fourier transform of the power spectrum is the auto-correlation function (from
s13 the Wiener-Khinchin theorem), e corresponds to the averaged auto-correlation function of
si D,

sis  SP, is also represented by the superposition of cosine waves with different coefficients

516 éki
SP, =) ezt (C11)
k=0

si7 Therefore, the power spectra P, and SP, can be regarded as the sampled values of the

sis function P(0) and P()agier, respectively:

n—1

P(0) = Zek cos kx (C12)
k=0

P(0)ater = Z é, cos k. (C13)
k=0

27



s19 Then the matrix S can be regarded as a map that transfers the coefficients of superposition
520 Cf to ék
s The vector 2Re[A]P, is also regarded as the sampled values of the function 2A(6)P(0),

522 where

—(a+d) ++/(a+ d)? — 4(ad + 2ba cos 0)

A(#) = Re 5

(C14)

s23 Therefore, the stability of the power spectrum vector P, can be examined by approximating
s S with a square matrix ¥ such that X P, share the same coefficients of the superposition
s2s with SP,.

526 We write

1 -

s where Z is a square (n41) X (n+1) matrix and Q is an (n+1) x n matrix whose components

s28 are, respectively,

-~ 2r(l —1 -1
{Z} = cos ul )m ), (C16)
I,m n 4+ 1
s20 and
)
(n+2-10/(n+1) (@(fl=m)
(l-1)/(n+1) (ifl+1=mandl>2)
{Qhm = : (C17)
1/(n+1) (if l=nand m =1)
\ 0 (otherwise)
s30 Therefore, the coefficients é; are determined by e as follows:
é() = €
n+1—k k
R
én_n+1€n 1+ +1€0. (Clg)

su1 This relationship is derived from the formulae in Supplementary text B [28].
s When n is even, we define an n x n square matrix Q by removing the (n/2 + 1)-th row

s33 of the matrix ), and then define an n x n square matrix ¥ such that:

S =207 (C19)
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534 Here,

n/2
—1)(k:—1) kE—1 2r(l — 1)(k — 2) k—1 2r(l —1)(k—1)
{E}ZM— Zcos {n_f_lcos - + 1_n+1 cos -
1 [—1
+-(1+(—1VHF2<1—- n sm?”( ))). (C20)
n n+1 n
s35 The n dimensional vector X P, is represented as the superposition of the cosine waves:
n/2
P, = Zekzk + Z €kt12) - (C21)

k=n/2+1

s3 Since z;' = 2, holds and n is even, equation (C11) can be simplified:

n/2

SP, = Zekz"+1 (C22)
é if & = 0

G=14 ( ) (C23)

ér + €, (otherwise)

s37 Equation (C21) can also be simplified:

n/2—1

YP, = jg: Euzp | + Enp2 2o (C24)
k=0

s When n is odd, we define an n x n square matrix Q by removing the ((n + 3)/2)-th row

s3 of the matrix @), and define an n X n square matrix > such that:

> =207 (C25)
540 Here,
(nil)/2 m—1)k-1) k=1 22(—-1)(k—2) k-1 on(l — 1)(k — 1)
Zh, = Z cos - [n 7 008 - + (1 o 1> cos -
1
2 2
+~ (€26)

s The n dimensional vector X P, is represented as the superposition of the cosine waves:

(n-1)/2

Z ekzk—i— Z Ert12p- (C27)

=(n+1)/2
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s Since n is odd, equation (C11) can be simplified:

(n+1)/2
SP,= Y &zt (C28)
k=0
€ ifk=0or(n+1)/2
e ( (n+1)/2) o)

ér + én_r  (otherwise)

s Equation (C27) can also be simplified:

(n—1)/2
P, = Y ez (C30)
k=0

s Comparing (C24) with (C22) and (C30) with (C28), ¥ P, and SP, can be represented
sss by the same cosine wave superposition except for that of the shortest wavelength (€, when
si6 1 1S even, €(,41y/2 When n is odd).

sev  The shortest wavelength component of the superposition €, /5 or €g,+1)/2 corresponds to
sas the long-range correlation of the Delta expression pattern D,,. Since the Delta-Notch inter-
sa0 action and cell proliferation locally affects the pattern, we expect the long-range correlation
ss0 to be small. Thus, the contribution of the shortest wavelength component of the cosine wave
ss1 superposition alone to the spectral structure of the power spectrum would be small when
ss2 . is sufficiently large. Therefore, X is a square matrix that approximates S, in the sense
ss3 that it preserves the spectral structure of the power spectrum. Based on this assumption,
sse we can analyze equation (34) in the same way as in the cell mixing model by replacing S
sss with 3, and find that it gives the results that agree with the numerical results of the cell

sss proliferation model (7) (Figs. 4(D) and 4(F)).
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FIG. 4. Comparison between the analytical and numerical results. (A) The red line and the black
dots represent the maximum eigenvalue y of the matrix Y}, in (23) and the growth rate d1n H(t)/dt
estimated from Fig. S1(A) [28], respectively. (B) Normalized corresponding eigenvector P* with the
maximum eigenvalue of the matrix Y}, with n = 1000. (C) balanced frequencies p* plotted against
the parameter ( in the Collier model (1). The blue solid line represents the values of p such that
the maximum eigenvalue of Y}, in (23) is 0, the red dashed line represents p* derived from (29) and
the black dots represent the values of p* that were estimated from Fig. 3(A). (D) The red line and
the black dots represent the maximum eigenvalue of the matrix J, in (39) and the growth rate
dIn H(t)/dt estimated from Fig. S1(B) [28], respectively. (E) Normalized corresponding eigenvector
P} with the maximum eigenvalue of the matrix J, with n = 1000. (F) Balanced frequencies ¢*
plotted against the parameter 8. The blue line represents the value of ¢ such that the maximum
eigenvalue of J, in (39) is 0, and the black dots represent the values of ¢* that were estimated from
Fig. 3(B), respectively. The numerically estimated growth rate dln H(t)/dt (black dots in (A) and
(D)) were calculated from the slope of the lines that were fitted to the plot of In H(t) against ¢
(Fig. S1 [28]). The numerically estimated balanced frequencies (black dots in (C) and (F)) were
estimated as the intersection points of the plot of In H*(¢) as a function of p and ¢ and the plot of

In H*(t) = 0 in Fig. 3, respectively.
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