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Abstract11

The Delta-Notch system plays a vital role in many areas of biology and typically forms a salt12

and pepper pattern in which cells strongly expressing Delta and cells strongly expressing Notch13

are alternately aligned via lateral inhibition. In this study, we consider cell rearrangement events,14

such as cell mixing and proliferation, that alter the spatial structure itself and affect the pattern15

dynamics. We model cell rearrangement events by a Poisson process and analyze the model while16

preserving the discrete properties of the spatial structure. We investigate the effects of the inter-17

mittent perturbations arising from these cell rearrangement events on the discrete spatial structure18

itself in the context of pattern formation and by using an analytical approach, coupled with nu-19

merical simulation. We find that the homogeneous expression pattern is stabilized if the frequency20

of cell rearrangement events is sufficiently large. We analytically obtain the balanced frequencies of21

the cell rearrangement events where the decrease of the pattern amplitude, as a result of cell rear-22

rangement, is balanced by the increase in amplitude due to the Delta-Notch interaction dynamics.23

Our theoretical results are qualitatively consistent with experimental results, supporting the notion24

that the heterogeneity of expression patterns is inversely correlated with cell rearrangement in vivo.25

Our framework, while applied here to the specific case of the Delta-Notch system, is applicable26

more widely to other pattern formation mechanisms.27

I. INTRODUCTION28

Discrete cell models can provide different pattern dynamics to those arising from contin-29

uous cell density models. Because living tissue is made up of cells, which act as the smallest30

discrete units in space, pattern formation on discrete spatial structures is observed in the31

context of biological pattern formation on a cellular scale. We study the effects of typical32

perturbations on the discrete spatial structure itself - flipping and duplication of the lattice33

- on pattern dynamics using analytical methods.34

As a mechanism that generates periodic pattern on a cellular scale, we will consider35

the Delta-Notch system. The Delta-Notch system is a well-studied cell-cell communication36

system and plays a critical role in many developmental processes [1–15]. Delta and Notch37

are, respectively, cell surface ligands and receptors. Delta expression in the neighborhood of38

a cell increases Notch expression in that cell which, in turn, decreases its Delta expression -39
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a process known as “lateral inhibition”. As a result, cells strongly expressing Delta and cells40

strongly expressing Notch are aligned alternately (the so-called, “salt and pepper” pattern)41

[5].42

Collier et al. [2] constructed the first mathematical model for the Delta-Notch system,43

which consisted of a spatially discrete ordinary differential equation system which was then44

analyzed, and necessary and sufficient conditions for a salt and pepper pattern were derived.45

To account for stochasticity in the cell-cell interactions and gene expression in signal trans-46

duction [16–18], a number of subsequent theoretical studies have incorporated stochasticity47

and revealed that, while low-intensity noise contributes to fine-grained pattern formation,48

high-intensity noise disrupts the salt and pepper pattern [16, 19, 20].49

However, little research has been conducted to investigate the effect of positional pertur-50

bations arising from cell mixing and proliferation, despite these phenomena being generally51

observed [21–25]. Therefore, cell rearrangement by cell mixing and proliferation should sig-52

nificantly affect Delta-Notch pattern formation since the cells of interacting neighbors are53

changing. Germano et al. have used a computational model to show that excessive cell54

turnover homogenizes Delta expression [26], while Stepanova et al.[27] developed a com-55

putational model to investigate how vascular structures are rearranged in response to the56

VEGF-Delta-Notch system. However, to analytically understand the effect of cell rearrange-57

ment on pattern formation, a simpler model is required.58

In this study, we provide a framework to analytically evaluate the effect of stochastic59

and spatial perturbations arising from cell mixing and proliferation. We construct a simple60

stochastic differential equation model that incorporates Delta-Notch interaction and cell61

rearrangement events (cell mixing and proliferation) in one spatial dimension. Our numerical62

simulations show that the effect of cell rearrangement is to stabilize the homogeneous steady63

state, and we provide a framework to analytically evaluate the stability of the pattern64

dynamics. Our analytical framework is consistent with numerical calculations, and provides65

insight into how model parameters and frequencies of flipping or proliferation balance in the66

context of pattern formation. Furthermore, we experimentally confirm our ideas through67

observations of the murine retinal vasculature.68
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II. METHODS AND MODELS69

A. Numerical simulations70

The numerical simulations were performed using Mathematica (Wolfram) and Julia71

(MIT), and we used periodic boundary conditions and an explicit Euler scheme.72

For simulation of the Collier model (1), we used the following conditions, unless otherwise73

stated in the figure captions. Initial cell number n = 100, time step ∆t = 0.001, duration t =74

1000 (iteration 1000000), and parameter set (v, β, h, r) = (1, 100, 4, 40). Initial conditions75

are Dx(0) = D0 + κ and Nx(0) = N0 + κ. Here D0 and N0 are the spatially homogeneous76

steady state values (Appendix A), and κ is an independent random variable from the uniform77

distribution in [−0.0001, 0.0001]).78

To incorporate cell flipping and proliferation in the Delta-Notch model (1), we assumed79

that these events occur following a Poisson process with rates p and q, respectively.80

B. Classical Delta-Notch model81

To model the effect of cell mixing or proliferation on Delta-Notch pattern formation, we82

started with a version of the Collier model [2]. In this model, the Delta and Notch activities83

of a cell x (Dx and Nx, respectively) in a one-dimensional cell line were modeled (Fig. 1(A))84

as below:85

dDx

dt
= v

(
1

1 + βNx
h
−Dx

)
dNx

dt
=

r (Dx−1 +Dx+1)

1 + r (Dx−1 +Dx+1)
−Nx. (1)

Here, the parameter v denotes the reaction speed of Delta dynamics relative to that of Notch.86

The parameters h and β denote the Hill coefficient and the intensity of Delta suppression by87

Notch, respectively. As the Delta activity in neighboring cells (Dx−1 +Dx+1) increases, the88

activation of the Notch activity also increases, reaching a saturation level. The parameter r89

is a measure of the intensity of Notch activation by the Delta presented in neighboring cells.90

The number of cells is n and the position of the cell is x (x ∈ N, 1 ≤ x ≤ n).91

We used a one-dimensional model because it is tractable analytically, and the distinct92

salt and pepper pattern of Delta-Notch expression has been reported in endothelial cells93
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which are aligned one-dimensionally [8, 13, 14]. We assume that the number of cells is94

sufficiently large so that we can use periodic boundary conditions. This is because the effect95

of boundary conditions is confined near the boundary, and the global pattern we focused96

on is minimally affected by the precise form of the boundary conditions if the system size97

is large. We confirmed, using numerical simulation, that the main results of this study are98

robust to different imposed boundary conditions (results not shown).99

In the Collier model we use (1), whether or not a salt and pepper pattern emerges depends100

on the model parameters (v, β, h, r). The necessary and sufficient conditions for salt and101

pepper pattern formation are obtained by performing a standard linear stability analysis102

(Appendix A), requiring that the maximum eigenvalue be greater than zero:103

λmax =
−(a+ d) +

√
(a+ d)2 − 4(ad− 2bα))

2
> 0, (2)

where a = v, b = (βhv(N0)h−1)/
(
1 + β(N0)h

)2
, d = 1, α = r/((1 + 2rD0)

2
) and (D0, N0)104

is the spatially homogeneous steady state of the Collier model (1). For example, the pa-105

rameter β, which indicates the intensity of Delta suppression by Notch, broadens the region106

where λ(θ) is positive and increases λmax (Appendix A and Fig. S1 [28]). Based on this107

analysis, we proceeded to investigate how pattern formation is altered by cell mixing and108

proliferation.109

C. Cell mixing model110

To introduce the effect of cell mixing on the Collier model (1), we modeled cell mixing as a111

series of flips between neighboring cells. We made several assumptions as follows (Fig. 1(B)):112

(M1) The positions of the neighboring cells are randomly exchanged by cell flips in a single113

step.114

(M2) Flips occur according to a Poisson process with intensity p in each pair of the cells.115

Let the vertical vectors D and N , respectively, denote Delta and Notch expression in116

each cell as below:117

D = (D1, D2 · · · , Dx, · · · , Dn)T

N = (N1, N2, · · · , Nx, · · · , Nn)T, (3)

5



and a flip between cells x = j and x = j + 1 is described by multiplication with the n × n118

matrix Aj, which is generated by swapping the j-th and j+ 1-th rows of the identity matrix119

as below:120

{
Aj
}
k,m

=



1 if (k = m and k 6= j, j + 1)

or (k = j and m = j + 1)

or (k = j + 1 and m = j)

0 otherwise

, (4)

where j+1 is regarded as 1 if j = n (periodic boundary condition). The effect of cell flipping121

was introduced by stochastically multiplying the matrix Aj by D and N . Hence, our cell122

mixing model is defined by the system of stochastic differential equations as below:123

dD = f(D,N )dt+
n∑
j=1

(Aj − I) D dLp,jt

dN = g(D,N )dt+
n∑
j=1

(Aj − I) N dLp,jt , (5)

where the functions f and g are the reaction terms of the Collier model (1), the matrix I de-124

notes the identity matrix and Lp,jt is the Poisson process with intensity p, which corresponds125

to the flip between cells j and j + 1.126

D. Cell proliferation model127

To introduce the effect of cell proliferation on the Collier model (1), we modeled cell128

proliferation as the duplication of a cell. We also made several assumptions as follows129

(Fig. 1(C)):130

(P1) The duplication process occurs in a single step.131

(P2) The new cell is placed to the right of the original cell and inherits the same levels of132

Delta and Notch of the original cell.133

(P3) The duplication process occurs according to the Poisson process with intensity q in134

each cell.135

Assumptions (P2) and (P3) implicitly assume, respectively, that Delta and Notch activities136

are determined by their concentrations [29], and cell proliferation follows a memoryless137
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stochastic process [30]. We denote Delta and Notch expression by the vertical vectors Dn =138

(D1, D2, · · · , Dn)T and Nn = (N1, N2, · · · , Nn)T, respectively. Note that the number of cells139

(the dimension of the vectors Dn and Nn) n increases with time. Under these assumptions,140

duplication of cell j is accounted for by defining the (n+1)×n matrix Bj, which is generated141

by duplicating the j-th row of the identity matrix as below:142

{
Bj
}
k,m

=


1 if (k = m and k ≤ j)

or (k = m+ 1 and k ≥ j)

0 otherwise

, (6)

and stochastically multiplying this matrix by Dn and Nn, respectively:143

If dLq,jt = 0,

Dn(t+ dt) = Dn(t) + f(Dn,Nn)dt

Nn(t+ dt) = Nn(t) + g(Dn,Nn)dt

If dLq,jt = 1,

Dn+1(t+ dt) = Bj [Dn(t) + f(Dn,Nn)dt]

Nn+1(t+ dt) = Bj [Dn(t) + f(Dn,Nn)dt]

. (7)

Note that n will increase with time according to the Poisson process, so the size of Bj will144

also increase with time.145

(B) (C)(A)
Cell Cell

Notch

Notch

Delta

Delta

FIG. 1. (A) Schematic of the Delta-Notch interaction in the Collier model. Notch expression

inhibits Delta expression, Delta expression promotes Notch expression in adjacent cells, and Delta

and Notch themselves naturally decay. (B) Schematic of the flip event in the cell mixing model

and the matrix Aj in (4). The flip event occurs according to the Poisson process with intensity p

in each pair of cells. (C) Schematic of the duplication event in the cell proliferation model and the

matrix Bj in (6). The duplication event occurs according to the Poisson process with intensity q

in each cell.
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III. RESULTS146

A. Numerical simulations with cell rearrangement147

We set the parameters (v, β, h, r) such that linear analysis predicts the salt and pepper148

pattern when there is no cell rearrangement (without cell mixing or proliferation) and we149

simulated the model (Fig. 2(A)). We then included cell rearrangement and found that the150

heterogeneity of the Delta-Notch pattern was decreased by cell rearrangement, and the ho-151

mogeneous steady state became stable again for a sufficiently high level of cell rearrangement152

(Fig. 2(B)). More precisely, when the flip frequency p = 0.001, the salt and pepper pattern153

was largely maintained. However, for increasing values of p, the amplitude of the pattern154

became smaller. When p was sufficiently large, the amplitude was almost 0 for the whole155

region, and the system relaxed to the spatially homogeneous steady state (Fig. 2(B)). In156

addition, as p increases, the expression pattern shows an envelope structure, in which the157

amplitude of the periodic pattern follows a longer pattern that oscillates. Similar results158

were obtained with the cell proliferation model (Fig. 2(C)). With increasing proliferation159

frequency q, the amplitude of the pattern became smaller and, finally, the system settled160

back to a homogeneous steady state. These results are robust to 100 different runs of nu-161

merical simulations for each parameter set. Corresponding results are also obtained with162

different values of β and r (Fig. S2 and Fig. S3 [28]), suggesting that the stabilization of the163

homogeneous steady state by cell rearrangement events is a robust phenomenon.164

To quantify the heterogeneity of the expression pattern, we introduce the heterogeneity165

function, H(t), as the variance of the Delta expression:166

H(t) =
1

n

n∑
x=1

[
Dx(t)

2 − 〈D(t)〉2
]
, (8)

where167

〈D(t)〉 =
1

n

n∑
x=1

Dx(t). (9)

If the salt and pepper pattern is completely formed, then H(t) is close to the squared value168

of the amplitude of the pattern. If Delta expression is spatially homogeneous at the steady169

state, then H(t) = 0.170

In both models, at the onset of the simulation, H(t) decreases and then either increases171

or still decreases depending on the value of p in the cell mixing model or the value of q in172
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(B) Cell mixing model

(C) Cell proliferation model

Cell position

E
xp

re
ss

io
n

(A) No cell rearrangement

Salt-and-pepper pattern

E
xp

re
ss

io
n

E
xp

re
ss

io
n

Cell position

Cell position

FIG. 2. Numerical simulations of the standard Delta-Notch model (1), the cell mixing model (5)

and the cell proliferation model (7). (A) Standard model (no cell rearrangement). The red line

represents Notch expression and the black line represents Delta expression. Delta and Notch are

alternately expressed, and the classical salt and pepper pattern emerges. (B) Cell mixing model

(5). Numerical simulations are performed for different flipping frequencies p = 0.001, 0.003, 0.006.

(C) Cell proliferation model (7). Numerical simulations are performed for different proliferation

frequencies q = 0.001, 0.003, 0.006. The expression patterns of the first 100 cells are shown. Initial

cell number n = 100, time step ∆t = 0.01, duration t = 1000, and (v, β, h, r) = (1, 100, 4, 40).

Initial condition, Dx(0) = D0 + κx and Nx(0) = N0 + κx, where D0 and N0 are the spatially

homogeneous steady state values (Appendix A), and κx is a random variable from the uniform

distribution in [−0.02, 0.02]).

the cell proliferation model (Figs. S4 and S5 [28]). This is because, at the onset, the initial173

random state is smoothened by the Delta-Notch dynamics. As we are interested in pattern174

growth after a sufficient time has elapsed, we define H0 as the minimum heterogeneity in175

the time evolution of the no cell rearrangement model (Fig. S4 and Table. S1 [28]);176

H0 = Min (H(t)) . (10)

Then we define the normalized heterogeneity H∗(t) as H∗(t) = H(t)/H0, which is plotted177
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in Fig. 3. Figure 3 shows that H∗(t) switches between increasing and decreasing depending178

on the values of p and q. In the cell mixing model, it appears that H∗(t) increases for179

p ≤ 0.005 and decreases for p > 0.005 (Fig. 3(A) and Fig. S5(A) [28]). In the cell proliferation180

model, H∗(t) increases for q ≤ 0.0045 and decreases for q > 0.0045 (Fig. 3(B) and Fig. S5(B)181

[28]). These results suggest that there exist balanced frequencies p∗ and q∗ for which the182

attenuation of the pattern by cell rearrangement and its formation by the Delta-Notch183

dynamics are balanced.184

We numerically estimated the balanced frequencies and the growth rate of the hetero-185

geneity.186

For the balanced frequencies p∗ and q∗, we estimated the intersection points of the plot of187

lnH∗(t) as a function of p and q and the plot of lnH∗(t) = 0. We performed linear regression188

for the data points whose value of log10H
∗ ∈ [−8, 4] in Fig. 3, and estimated p∗ and q∗ as189

the intersection points of the fitted lines and the function lnH∗(t) = 0 (Figs. 4(C) and 4(F),190

black dots). For the growth rate of the heterogeneity, we estimated the slope of the line191

that was fitted to the plot of lnH∗(t) against t. Similarly, we performed linear regression192

for the data points in the range log10H
∗ ∈ [−8, 4] in Fig. S5 [28], and estimated y and j as193

the slopes of the fitted lines (Figs. 4(A) and 4(D), black dots).194

B. Analysis of the cell rearrangement models195

To quantify the effects of cell rearrangement (mixing and proliferation), we analyzed196

the stability of the pattern dynamics and the balanced frequencies p∗ and q∗. The “tug-197

of-war” of the cell rearrangement and the Delta-Notch dynamics was represented as the198

growth or attenuation of the heterogeneity H(t). Therefore, we focused on the effect of cell199

rearrangement on H(t).200

The heterogeneity H(t) can also be calculated from the power spectrum of the Delta201

expression pattern. The power spectrum Pk of the Delta expression pattern are the squared202

absolute values of the Fourier coefficients δk of Delta expression (Appendix A), so Pk can be203

calculated as:204

Pk(t) = |δk(t)|2 =

∣∣∣∣∣ 1n
n∑
x=1

Dx(t)e
−i2πkx

n

∣∣∣∣∣
2

. (11)

Note that k takes integer values from 0 to n − 1, and n increases with time in the cell205
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(A)

(B)

8.6 cm

FIG. 3. Log plots of the normalized heterogeneity of the pattern H∗(t) against the frequencies

of the cell rearrangement events for t = 500 and 1000. The black dashed line represents the

plot of H∗(t) = 1 and the circles and triangles represent H∗(1000) and H∗(500), respectively.

(A) In the cell mixing model, H∗(1000) > H∗(500) > 1 with p ≤ 0.005 (red horizontal stripe

region) and H∗(1000) < H∗(500) < 1 with p > 0.005 (blue vertical stripe region). (B) In the cell

proliferation model, similar inequalities hold, and the threshold value is q = 0.0045. We calculated

the heterogeneity at 21 different frequencies of p and q, which are taken in the range 0 to 0.01 at

equal intervals of 0.0005 in each model. The heterogeneity H∗(t) shown in this figure was calculated

by taking the average of H(t) over 400 different simulation runs, and then normalized by H0, for

each p and q. Other conditions are as in Fig. 2. Initial conditions are randomly determined from

the same distribution as in Fig 2 for each of the runs.

proliferation model. From Parseval’s theorem,206

n∑
x=1

Dx(t)
2 =

n−1∑
k=0

Pk(t), (12)

and from (11),207
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〈Dx(t)〉2 =

(
1

n

n∑
x=1

Dx(t)

)2

= P0(t). (13)

By substituting (12) and (13) into (8), H(t) was calculated as below:208

H(t) =
1

n

n−1∑
k=1

Pk(t). (14)

Therefore, H(t) is equal to the sum of squares of the amplitudes of all wavenumber compo-209

nents in the pattern.210

The balanced frequencies p∗ and q∗ are independent of the definition of the heterogeneity211

H(t). If we adopted the variance of the Notch expression instead of the Delta expression,212

then the dispersion relation and the effect of the cell rearrangement events Aj and Bj are213

the same as for Delta expression, and we obtained the same p∗ and q∗ as before. In addition,214

we can obtain the same p∗ and q∗ values if we defined the heterogeneity by the average of215

the squared values. For example, if we adopt [Σ(Dx −Dx+1)2]/n as the heterogeneity, then216

we obtain the same p∗ and q∗ since this value is also calculated from the linear summation217

of the power spectrum (Fig. S6 [28]). We now proceed to analyze the stability of the power218

spectrum Pk(t) in the cell mixing and proliferation models.219

1. Cell mixing model220

First, we will transform the cell mixing model (5) into the corresponding system of221

stochastic differential equations that represent the time evolution of the Fourier coefficients222

δk. To find the balanced frequency p∗ and the onset of pattern formation, we assume223

that H(t) is small since we set the initial condition to be a small perturbation about the224

homogeneous steady state, so the reaction terms f(·) and g(·) can be regarded as linear225

operators since Dx ∼ D0 and Nx ∼ N0. Therefore, the effect of the Delta-Notch dynamics226

on the Fourier coefficients δk of Dx is described by the diagonal matrix Λ from the linear227

stability analysis (Appendix A) as below:228

Λ = Diag(λ0, λ1, · · · , λn−1), (15)

where229

λk =
−(a+ d) +

√
(a+ d)2 − 4(ad+ 2bα cos (2πk/n)))

2
. (16)
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The effect on the Fourier coefficients δk of a cell flip is given by the n× n matrix Cj:230

Cj = FAjF−1, (17)

where F is the discrete Fourier transform matrix. The components of the matrices F and231

F−1 are given as below:232

{F}l,m =
1√
n
e−i2π(l−1)(m−1)/n, (18){

F−1
}
l,m

=
1√
n
ei2π(l−1)(m−1)/n. (19)

Therefore, the time evolution of the Fourier coefficients δ can be described by:233

dδ = Λδdt+
n∑
j=1

(Cj − I)δdLp,jt , (20)

where δ = (δ0(t), δ1(t), · · · , δk(t), · · · , δn−1(t))T.234

Furthermore, we obtain the expected time evolution of the power spectrum by calculating235

the average of the effect of the cell flip on the power spectrum for j (Appendix B) as below:236

237

dP = 2Re[Λ]P dt+WP dLpnt . (21)

Here P = (P0(t), P1(t), · · · , Pk(t), · · · , Pn−1(t))T, Lpnt is the Poisson process with intensity238

pn, and the components of the matrix W are given as below:239

{W}l,m =

−
8
n

sin2 π(l−1)
n

+
(

4
n

sin2 π(l−1)
n

)2

(l = m)(
4
n

sin π(l−1)
n

sin π(m−1)
n

)2

(otherwise).
(22)

Both the average and variance of the Poisson process Lpnt are pnt, so those of Lpnt /n are pt240

and pt/n, respectively. Therefore, when n is sufficiently large, dLpnt /n can be approximated241

by pdt and equation (21) is approximated by:242

d

dt
P ' YpP , (23)

where243

Yp = 2Re[Λ] + pnW. (24)

Therefore, by using the maximum eigenvalue and the corresponding eigenvector of the matrix244

Yp, we can derive the expected pattern dynamics.245
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If y is the maximum eigenvalue of Yp and P ∗ = (P ∗0 , P
∗
1 , · · · , P ∗n−1)T is the corresponding246

eigenvector, then P ∼ eytP ∗ for values of t in a range sufficiently large so that other247

eigenvectors no longer affect the power spectrum, but not so large for nonlinear effects to248

come into play. The scaling law H(t) ∼ eyt also holds since H(t) is a linear summation of249

the power spectrum Pk(t). Therefore, the maximum eigenvalue y corresponds to the growth250

rate of the heterogeneity d lnH(t)/dt. Figure 4(A) shows that the value of y derived from251

equation (23) agrees with the numerically estimated growth rate d lnH(t)/dt, and Fig. 4(B)252

shows how the shape of the corresponding eigenvector P ∗ depends on p. Note that the effect253

of the Delta-Notch interaction 2Re[Λ] on Pk is determined by the value of 2πk/n, so we plot254

P ∗k against 2πk/n in Fig. 4(B).255

To obtain the balanced frequency p∗, we used Newton’s method to derive the value of256

p such that the maximum eigenvalue of Yp is 0. The values of p∗ obtained in this way257

are in very good agreement with the corresponding values estimated from the numerical258

simulations of (5) for varying β (Fig. 4(C) and S7 [28]) and r (Fig. S8 [28]). In addition,259

the values of y and p∗ obtained in Figs. 4(A) and 4(C) are almost identical for n ≥ 100260

(Figs. S9(A) and S9(B) [28]).261

Furthermore, we obtain the growth rate d lnH(t)/dt and the balanced frequency p∗ as262

n→∞ as solutions of the integral equations (Supplementary text A [28]). They are also in263

very good agreement with the numerically estimated values.264

We can derive an approximation to the balanced frequency p∗ from the linear stability265

analysis of the spatially uniform steady state in the deterministic system that is obtained266

by regarding the effect of cell mixing as a diffusion process:267

dDx

dt
= v

(
1

1 + βNx
h
−Dx

)
+ p(Dx−1 +Dx+1 − 2Dx)

dNx

dt
=

r (Dx−1 +Dx+1)

1 + r (Dx−1 +Dx+1)
−Nx + p(Nx−1 +Nx+1 − 2Nx). (25)

System (25) has the same spatially homogeneous steady state as in (1), so we can linearize268

the system as in Appendix A, and obtain the Jacobian matrix:269

M̃k =

 −a− 4p sin2(πk/n) −b

2α cos(2πk/n) −d− 4p sin2(πk/n)

 . (26)

The eigenvalue λ̃k with the larger real part, obtained from the matrix M̃k, is:270

λ̃k = λk − 4p sin2 πk

n
, (27)
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where λk is given by (A9), so the time evolution of the power spectrum can be approximated271

by:272

d

dt
Pk =

(
2Re[λk]− 8p sin2 πk

n

)
Pk. (28)

This equation corresponds to the system that is obtained by ignoring the non-diagonal273

components of the matrix Yp in (23). From (28), the balanced frequency p∗ is approximated274

as p such that:275

Max
θ∈[0,2π)

[
Re[λ(θ)]− 4p sin2 θ

2

]
= 0. (29)

When the range of θ for which λ(θ) is positive is sufficiently narrow, the values of Pk,276

except around k = n/2, quickly decay. Hence, the non-diagonal components of the matrix277

Yp are ignorable and we can approximate the effect of cell mixing as a diffusion of the Delta278

and Notch activities.279

Figure 4(C) shows that the estimation in equation (29) is a good approximation for280

95 < β < 120. If λ(θ) is positive only in the region that is very close to θ = π, then we can281

obtain the simpler form of (29):282

p∗ = λmax/4. (30)

Here λmax is given by equation (2), and we used the approximation sin2(θ/2) ' 1 in the283

region that is close to θ = π. Consistent with (30), λmax was 0.02 and the balanced frequency284

p∗ was estimated around 0.005 for the conditions used in Fig. 3.285

2. Cell proliferation model286

The cell proliferation model (7) was also analytically transformed into the corresponding287

system of stochastic differential equations that represent the time evolution of δk. The effect288

of a cell proliferation event, which increases the cell number n to n + 1, on the Fourier289

coefficients δn, is given as below:290

Ĉj = F̂BjF
−1, (31)

where F̂ is a square (n + 1) × (n + 1) matrix, F−1 is the square (n × n) matrix defined in291

(19), and Bj is the (n+ 1)× n matrix given by (6). The matrix F̂ is defined by:292 {
F̂
}
l,m

=
1√
n+ 1

e−i2π(l−1)(m−1)/(n+1). (32)
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Therefore, the time evolution of δn(t) is given as below:293 δn(t+ dt) = eΛdtδn(t) if dLq,jt = 0

δn+1(t+ dt) = ĈjeΛdtδn(t) if dLq,jt = 1.
(33)

By calculating the average of the effect of the cell proliferation event for j, the expected294

time evolution of the power spectrum Pn(t) is given (Appendix C) by:295 Pn(t+ dt) = e2Re[Λ]dtPn(t) if dLqnt = 0

Pn+1(t+ dt) = Se2Re[Λ]dtPn(t) if dLqnt = 1,
(34)

where the components of the matrix S are given by:296

{S}l,m =


(n+ 1)/n (if l = m = 1)

1
n(n+1)

sin2 πm
n

sin2( πl
n+1
−πm

n
)

(otherwise).
(35)

Since the matrix S is non-square, the stability of the homogeneous steady state cannot297

be determined as in the cell mixing model. Hence we approximate the matrix S by a square298

matrix, as below.299

The power spectrum Pn is represented by the superposition of the cosine waves from300

the symmetry Pk = Pn−k. By assuming that the shortest wavelength component of SPn301

is negligible, the matrix S is approximated by the square matrix Σ (given below) and the302

equation (34) is approximated by (Appendix C):303

dPn ' 2Re[Λ]Pndt+ (Σ− I)PndL
qn
t , (36)

where I is the identity matrix. When n is even, the components of the matrix Σ are given304

by:305

{Σ}l,m =
2

n

n/2∑
k=2

cos
2π(m− 1)(k − 1)

n

[
k − 1

n+ 1
cos

2π(l − 1)(k − 2)

n
+

(
1− k − 1

n+ 1

)
cos

2π(l − 1)(k − 1)

n

]
+

1

n

(
1 + (−1)m+k−2

(
1− n

n+ 1
sin2 π(m− 1)

n

))
, (37)

and when n is odd:306

{Σ}l,m =
2

n

(n+1)/2∑
k=2

cos
2π(m− 1)(k − 1)

n

[
k − 1

n+ 1
cos

2π(l − 1)(k − 2)

n
+

(
1− k − 1

n+ 1

)
cos

2π(l − 1)(k − 1)

n

]
+

1

n
. (38)
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As in the cell mixing model, assuming n is sufficiently large, Lqnt /n is approximated by307

qt as in the cell mixing model, so the time evolution of Pn in (36) is approximated by:308

d

dt
Pn ' JqPn, (39)

where309

Jq = 2Re[Λ] + qn(Σ− I). (40)

Therefore, by using the maximum eigenvalue and the corresponding eigenvector of the310

matrix Jq, we can approximately derive the expected pattern dynamics.311

Figure 4(D) shows that the maximum eigenvalue of the matrix Jq is in very good agree-312

ment with the numerically estimated growth rate d lnH(t)/dt, and Fig. 4(E) shows how the313

shape of the corresponding eigenvector P ∗
n depends on q.314

To obtain the balanced frequency q∗, we used Newton’s method to derive the value of315

q such that the maximum eigenvalue of Jq is 0. Figure 4(F) shows that the values of q∗316

obtained in this way are in very good agreement with the numerically estimated q∗. The317

values obtained in Figs. 4(D) and 4(F) are almost identical for n ≥ 100 (Fig. S9 [28]),318

although the definition of the matrix Σ is different whether n is odd or even.319

3. The eigenvalue problems corresponding to (23) and (36) explain the pattern dynamics.320

In the above analysis, we have shown that the pattern dynamics of the cell mixing model321

and the cell proliferation model can be captured by solving for the maximum eigenvalue322

problem of the matrices Yp (24) and Jq (40), respectively, and yield results that agree well323

with our numerical simulations of the full model.324

First, the maximum eigenvalue of Yp and Jq capture the growth or attenuation rate of the325

heterogeneity of the pattern. Figs. 4(A) and 4(D) show that the exponents are consistent326

with the maximum eigenvalue y and j. Therefore, the balanced frequencies p∗ and q∗ are327

derived as the frequencies that make y = 0 and j = 0, respectively (Figs. 4(C), 4(F) and328

Fig. S8).329

Second, the maximum eigenvalues y and j also explain the time for the pattern to be330

established. Figures S10(A) and (C) [28] show that the time required for H(t) to reach a331

saturated value extends as p and q increase. Here, we define the characteristic time t∗, as332

the time required for H∗(t) to reach H∗(10000)/e, and find that the values of yt∗ and jt∗333
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for each p and q are within an error margin of 8.2 % and 7.3 %, respectively (Figs. S10(B)334

and S10(D) [28]). Therefore, cell mixing and cell proliferation extend the time required for335

pattern establishment, as t∗ ∼ 1/y and t∗ ∼ 1/j, respectively.336

In addition, the eigenvectors corresponding to y and j, shown in Figs. 4(B) and 4(E),337

explain the pattern envelope in Fig. 2. Figure 4 shows that, in the model that includes338

only the Delta-Notch interaction, the eigenvector corresponding to the maximum eigenvalue339

has non-zero component only for k = n/2. On the other hand, in the model that includes340

cell mixing and proliferation, the eigenvector takes non-zero values for several wavenum-341

bers. When several wavelength components are mixed at a similar scale, the corresponding342

envelope pattern structure is generated.343

Although cell mixing and proliferation similarly affect the pattern dynamics as discussed344

above, their individual effects on the power spectrum are qualitatively different. We per-345

formed numerical simulations of the model including only one of the processes (cell mixing,346

cell proliferation) (without the Delta-Notch interaction) setting the salt and pepper pattern347

as the initial state. The results show that cell mixing, unsurprisingly, “scrambles” the pat-348

tern and the power spectrum is uniformly distributed, while cell proliferation elongates the349

periodic length of the pattern and shifts the power spectrum to the long-wavelength region350

(Fig. S11 [28]). This is because both effects are regarded as the redistribution of the power351

spectrum in frequency space since the determinants of W and Σ in equations (22) and (37352

and 38) are 1. Their eigenvectors, corresponding to the maximum eigenvalues, are shown in353

Fig. S11(E) [28]. The components of the eigenvector of W are all equal to each other, and354

that of Σ has only one non-zero components for (k = 0). These results mean that cell mixing355

coarsens the power spectrum so that it becomes uniformly distributed, while cell prolifer-356

ation shifts the distribution of the power spectrum to the long-wavelength region. These357

difference correspond, in the absence of cell-cell interaction, to the scrambling of existing358

patterns due to cell mixing, and elongation of an existing pattern due to cell proliferation.359

However, when they are incorporated into the Delta-Notch model, the pattern dynamics360

are dominated by the interaction between the increasing power spectrum around k = n/2361

by Delta-Notch interaction and its redistribution by cell rearrangement, and the pattern362

dynamics in cell mixing and proliferation model become similar.363

Based on the above discussion, the pattern dynamics of the Delta-Notch interaction with364

cell rearrangement events results in the growth and redistribution of the power spectrum. In365
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the model that includes only Delta-Notch interaction, the power spectrum around k = n/2366

grows according to the dispersion-relation, while the rest of the spectrum decays (Appendix367

A). As a result, the power spectrum finally concentrates around k = n/2, which corresponds368

to the salt and pepper pattern. However, when cell mixing and proliferation are introduced,369

the power spectrum around k = n/2 is distributed to other regions and undergoes attenua-370

tion. If the attenuation of the redistributed power spectrum exceeds the growth of the power371

spectrum around k = n/2, then the sum of the power spectrum decreases, which means that372

the homogeneous steady state is stabilized. The cell flip or proliferation frequency at the373

balanced point is the balanced frequency p∗ and q∗. Note that cell mixing and proliferation374

themselves do not stabilize the homogeneous steady state, but require the attenuation of the375

redistributed power spectrum due to the Delta-Notch interaction. Therefore, if the Delta and376

Notch activities are bistable without spatial interactions, as reported by Formosa-Jordan et377

al. [31], then the redistributed power spectrum is not attenuated. Hence the pattern is not378

homogenized, only disturbed.379

IV. DISCUSSION380

To our knowledge, this paper is the first to provide a framework to analytically evaluate381

the effect on Delta-Notch pattern formation of cell rearrangement arising from migration382

or proliferation in a one-dimensional line of cells. We model cell rearrangement events as383

occurring intermittently and randomly in a discrete spatial linear structure. We modeled384

the intermittency of cell rearrangement events by a jump process and analyzed the model385

while maintaining the discreteness of the spatial structure by considering the time evolution386

of the power spectrum. In our framework, the stochastic and intermittent effects of cell387

rearrangement were approximated by the deterministic effects on the power spectrum. Ac-388

cordingly, the instabilities of the pattern dynamics were analyzed by solving the maximum389

eigenvalue problem of the resultant systems (23) and (39).390

Our model predicts that an increase in the frequency of cell rearrangement events will391

result in a more homogeneous pattern. It has been observed that endothelial cells within the392

retinal vasculature manifest a one-dimensional configuration, Delta-Notch pattern formation393

[8, 13, 14], with reported occurrences of both cell mixing and proliferation [23, 24, 32].394

The expression pattern of Delta-like ligand 4 (Dll4) mRNA is alternating in arteries and395
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homogeneous in veins (Fig. S12(A)). [8, 13, 14]. Our preliminary experiments indicated396

that endothelial cell motility and proliferation rates are higher in veins than in arteries397

(Supplementary Text B and Figure S12 [28]). This relationship has also been reported398

in the developing zebrafish vasculature [33, 34]. Our theoretical predictions regarding the399

relationship between the frequency of cell rearrangement events and expression patterns are400

consistent with these experimental findings.401

In this study, we assumed that the daughter cells inherit the same activity of Delta and402

Notch in the cell proliferation model. However, if we adopt an asymmetric inheritance rule,403

we obtain different pattern dynamics. Figure S13 [28] shows how the magnitude of the404

perturbation to the expression in daughter cells caused by asymmetric cell division affects405

heterogeneity in the cell proliferation model (7). Although the steady value of H(t) decreases406

with q as in the symmetric inheritance rule case, the time required to establish the pattern407

decreases and the pattern maintains a certain degree of heterogeneity even for large q, and408

does not converge to the homogeneous steady state (Figs. S13(B) and S13(C)). It should be409

noted, however, that the results exhibited in the symmetric inheritance rule are robust if410

the perturbation is small enough in the asymmetric inheritance rule (Fig. S13(D)).411

Our analysis can be applied to a wide range of pattern formation mechanisms. For exam-412

ple, a Delta-Notch interaction model that includes cis-interaction, which is the inhibition of413

Notch activity by Delta activity, is proposed by Sprinzak et al [3]. This model (S47) consists414

of three variables and has different interaction terms when compared to the Collier model415

(1). We find that cell rearrangement events also inhibit salt and pepper pattern formation416

in the Sprinzak model, and our analysis yields expressions for the balanced frequencies p∗417

and q∗ that are consistent with the numerical results (Supplementary text C and Fig. S14418

[28]). To determine the stability of the homogeneous steady state, our method is effective419

regardless of the details of model, such as the number of variables and the interaction terms,420

and could be applied to the models including the effect of other ligands in the Delta-Notch421

system, such as Delta-Notch-Jagged system [35].422

In addition, phase synchronization phenomena in coupled agent-based models can be in-423

vestigated by our analysis. Uriu et al. [36] showed that the exchange of positions in a coupled424

phase oscillator system in a one-dimensional array promoted phase synchronization, and the425

relaxation time is consistent with the mean-field approximation if the exchange frequency is426

sufficiently large. This phase synchronization model is similar to the model we used, in the427
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sense that interactions between neighboring cells are affected by positional perturbations,428

suggesting we can also capture this phenomenon by interpreting phase synchronization as429

convergence to a homogeneous steady state of the pattern composed of the agents’ phase430

state. We can generalize our method by replacing the effects of flip and proliferation by a431

linear operator acting on the power spectrum.432
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Appendix A: Dispersion-relation of the Collier model439

To derive the necessary and sufficient conditions for pattern formation, we performed a440

linear stability analysis of the Collier model (1).441

The homogeneous steady state (D0, N0) in the Collier model (1) with periodic boundary442

conditions is given by:443

D0 =
1

1 + β(N0)h
(A1)

N0 =
2rD0

1 + 2rD0
. (A2)

By setting Dx = D0 + dx, Nx = N0 + nx, where |dx| � 1, |nx| � 1, the Collier model (1)444

can be linearized to obtain:445

d

dt
dx = −adx − bnx

d

dt
nx = −dnx + α(dx−1 + dx+1), (A3)

where a = v, b = (βhv(N0)h−1)/
(
1 + β(N0)h

)2
, d = 1, α = r/ (1 + 2rD0)

2
.446

To examine the stability of the homogeneous steady state in the Collier model (1), we447
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consider a discrete Fourier transformation of dx, nx as below:448

δk(t) =
1√
n

n∑
x=1

dx(t)e
i2πkx/n

νk(t) =
1√
n

n∑
x=1

nx(t)e
i2πkx/n, (A4)

where,449

dx(t) =
1√
n

n−1∑
k=0

δk(t)e
−i2πkx/n

nx(t) =
1√
n

n−1∑
k=0

νk(t)e
−i2πkx/n. (A5)

Here, k is the wavenumber and takes integer values from 0 to n − 1, while δk(t) and νk(t)450

are the Fourier coefficients that take complex values.451

Substituting (A5) into (A3), we obtain a system of ordinary differential equations for the452

coefficients δk and νk as below:453

d

dt

 δk(t)

νk(t)

 = Mk

 δk(t)

νk(t)

 , (A6)

where454

Mk =

 −a −b

2α cos (2πk/n) −d

 . (A7)

Setting455  δk(t)

νk(t)

 =

 δk(0)

νk(0)

 eλkt, (A8)

we find that λk is an eigenvalue of Mk, and the solution is dominated by the larger eigenvalue456

of the Jacobian matrix Mk (if both eigenvalues are real). Therefore, whether the components457

δk, νk grow or decay is determined by the sign of λk, where:458

λk =
−(a+ d) +

√
(a+ d)2 − 4(ad+ 2bα cos (2πk/n)))

2
. (A9)

Note that if λk is complex, then the real part of λk is negative and so the perturbation459

decays with time. In the Collier model (1), λk in (A9) takes its largest value at k = n/2 and460

negative values in the long-wavelength region (Fig. S1). As a result, |deltak| exponentially461

grow if k is near n/2 and attenuate in the other region. It is correspond to the salt and462
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pepper pattern, and the necessary and sufficient condition for pattern formation is obtained463

as below:464

λmax =
−(a+ d) +

√
(a+ d)2 − 4(ad− 2bα))

2
> 0. (A10)

From (A1) and (A2), we have that,465

β(N0)h+1 = −(2r + 1)N0 + 2r. (A11)

Thus,466

b =
hv(2r − (2r + 1)N0

4r2(1−N0)2
(A12)

α = (1−N0)2r, (A13)

and467

2bα = hv

(
1−N0 − N0

2r

)
. (A14)

Since ad = v and 0 < N0 < 1 from (A2), ad > 2bα if h ≤ 1, so that the inequality (A10)468

does not hold. Hence a necessary condition for (A10) to hold is h > 1.469

Appendix B: Derivation of the time evolution equation for the power spectrum470

(21)471

From equation (20), the value of δk(t+ dt) is given by:472

δk(t+ dt) = δk(t) + λkδk(t)dt+
n∑
j=1

n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t)dL
p,j
t . (B1)

The value of the power spectrum Pk(t+dt) = |δk(t+dt)|2 is obtained by multiplying δk(t+dt)473

in (B1) by its complex conjugate δk(t+ dt) as below:474

|δk(t+ dt)|2 = |δk(t)|2 + λk |δk(t)|2 dt+ λk |δk(t)|2 dt

+
n∑
j=1

[(
δk(t)

n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t) + δk(t)
n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t)

)

+

(
n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t)

)(
n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t)

)]
dLp,jt

+O(dLp,j dt) +O(dt2). (B2)
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Here we used the result:475

(dLp,jt )(dLp,ξt ) =

0 if j 6= ξ

dLp,jt if j = ξ.
(B3)

By denoting ajk =
∑n−1

l=0 {Cj}k+1,l+1 δl, we obtain:476

n−1∑
l=0

{
Cj − I

}
k+1,l+1

δl(t) = ajk(t)− δk(t). (B4)

Substituting (B4) into (B2), we obtain:477

|δk(t+ dt)|2 = |δk(t)|2 + 2Re[λk] |δk(t)|2 dt+
n∑
j=1

[
|ajk(t)|

2 − |δk(t)|2
]
dLp,jt

= |δk(t)|2 + 2Re[λk] |δk(t)|2 dt+
n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2

− |δk(t)|2
 dLp,jt .

(B5)

The third term on the right-hand side of (B5) is the effect of the cell flip on the power478

spectrum for the flip position j. Based on the symmetry of the cell position j in the system479

(5), we assume that the third term on the right-hand side of (B5) is approximated by480

replacing the effect of each flip event with Wk, which is the averaged effect for the flip481

position j as below:482

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2

− |δk(t)|2
 dLp,jt ' n∑

j=1

WkdL
p,j
t =WkdL

pn
t , (B6)

where,483

Wk =
1

n

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2

− |δk(t)|2


=
1

n

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2
− |δk(t)|2 (B7)

Here, we used
∑n

j=1 dL
p,j
t = dLpnt and note that484

1

n

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2
 =

1

n

n−1∑
m=0

n−1∑
l=0

[
δlδm

(
n∑
j=1

{
Cj
}
k+1,l+1

{Cj}k+1,m+1

)]
.

(B8)
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From (17), the components of the matrix Cj are given as below:485

{
Cj
}
k,l

=

−
4
n

sin π(l−1)
n

sin π(k−1)
n

e
iπ(2j−1)(k−l)

n if k 6= l

1− 4
n

sin2 π(k−1)
n

if k = l,
(B9)

so,486

n∑
j=1

{
Cj
}
k+1,l+1

{Cj}k+1,m+1 =


0 if l 6= m

16
n

sin2 πk
n

sin2 πl
n

if l = m and k 6= m

n
(
1− 4

n
sin2 πk

n

)2
if k = l = m.

(B10)

Here we used487

n∑
j=1

eiπ(2j−1)(l−m)/n =

0 if l 6= m

n if l = m.
(B11)

Therefore, from (B8) and (B10), we obtain:488

1

n

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2


=
1

n

n−1∑
l=0
l 6=k

[
|δl(t)|2

16

n
sin2 πk

n
sin2 πl

n

]
+ |δk(t)|2

(
1− 8

n
sin2 πk

n
+

16

n2
sin4 πk

n

)

=
n−1∑
l=0

[(
4

n
sin

πk

n
sin

πl

n

)2

|δl(t)|2
]

+

(
1− 8

n
sin2 πk

n

)
|δk(t)|2. (B12)

By replacing the third term on the right-hand side of (B5) by the averaged effect (B6) and489

substituting (B7) and (B12), we obtain:490

|δk(t+ dt)|2 ' |δk(t)|2 + 2Re[λk] |δk(t)|2 dt+
1

n

n∑
j=1

∣∣∣∣∣
n−1∑
l=0

{
Cj
}
k+1,l+1

δl(t)

∣∣∣∣∣
2

− |δk(t)|2
 dLpnt

= |δk(t)|2 + 2Re[λk] |δk(t)|2 dt

+

(
n−1∑
l=0

[(
4

n
sin

πk

n
sin

πl

n

)2

|δl(t)|2
]
− 8

n
sin2 πk

n
|δk(t)|2

)
dLpnt . (B13)

Therefore, the time evolution of the power spectrum can be represented more concisely in491

the form:492

dP = 2 Re[Λ]P dt+WP dLpnt , (B14)

where Λ is given in (15), P = (|δ0(t)|2, |δ1(t)|2, · · · , |δk(t)|2, · · · , |δn−1(t)|2)T and493
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{W}l,m =

−
8
n

sin2 π(l−1)
n

+
(

4
n

sin2 π(l−1)
n

)2

(l = m)(
4
n

sin π(l−1)
n

sin π(m−1)
n

)2

(otherwise).
(B15)

Appendix C: Derivation of the time evolution of the power spectrum (36)494

From equation (31), the components of the matrix Ĉj are given as below:495

{
Ĉj
}
k,l

=


√

(n+ 1)/n (if k = l = 1)

− 1√
n(n+1)

sin(π(l−1)
n )

sin(π(k−1)
n+1

−π(l−1)
n )

eiπ(
(2j−1)(k−1)

n+1
− 2(j−1)(l−1)

n
) (otherwise)

. (C1)

The power spectrum after proliferation of cell j is obtained from the Fourier coefficient δk496

before proliferation as below:497

|δk−1|2
j

after =

(
n∑
l=1

{Ĉj}k,lδl−1

)(
n∑

m=1

{Ĉ
j

k,m}δm−1

)

=
n∑

m=1

n∑
l=1

[
{Ĉj}k,l{Ĉ

j

}k,mδl−1δm−1

]
. (C2)

As in the cell mixing model, the time evolution of the power spectrum is approximated498

by replacing the effect of each proliferation event with an average effect. Considering the499

average effect on the power spectrum, we calculate the average of |δk|2 j
after over j:500

1

n

n∑
j=1

|δk−1|2
j

after =
1

n

n∑
j=1

n∑
m=1

n∑
l=1

[
{Ĉj}k,l{Ĉ

j

}k,mδl−1δm−1

]

=
1

n

n∑
m=1

n∑
l=1

δl−1δm−1

[
n∑
j=1

{Ĉj}k,l{Ĉ
j

}k,m

]
, (C3)

and501

n∑
j=1

{Ĉj}k,l{Ĉ
j

}k,m =


0 if l 6= m

1
(n+1)

sin2 π(l−1)
n

sin2(π(k−1)
n+1

−π(l−1)
n )

if l = m and l 6= 1

(n+ 1) if k = l = m = 1.

(C4)

Here we used the fact that502

n∑
j=1

ei2π(j−1)(l−m)/n =

0 if l 6= m

n if l = m.
(C5)
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Hence,503

1

n

n∑
j=1

|δk−1|2
j

after =


∑n

l=1
1

n(n+1)

sin2(π(l−1)
n )

sin2(π(k−1)
n+1

−π(l−1)
n )
|δl−1|2 if k 6= 1

n+1
n
|δ0|2 + 1

n(n+1)

∑n
l=2 |δl−1|2 if k = 1.

(C6)

Therefore, the effect of a single proliferation event on the power spectrum is represented by504

the matrix S in (34).505

Since the Delta expression Dx are real values, Pk = Pn−k hold. Because of this symmetry,506

Pn is represented by the superposition of cosine waves:507

Pn =
n−1∑
k=0

ekz
n
k , (C7)

znk =

(
1, cos

2πk

n
, cos

4πk

n
, · · · , cos

2(n− 1)πk

n

)T

. (C8)

Here, ek are the coefficients of superposition. From the orthogonality of the trigonometric508

function, we obtain:509

e = ZPn, (C9)

where e = (e0, e1, · · · , en−1)T and Z is a square n× n matrix such that:510

{Z}l,m = cos
2π(l − 1)(m− 1)

n
. (C10)

From the symmetry of Pn, we can also obtain ek as a discrete Fourier transform of Pn. As511

the discrete Fourier transform of the power spectrum is the auto-correlation function (from512

the Wiener-Khinchin theorem), ek corresponds to the averaged auto-correlation function of513

Dx.514

SPn is also represented by the superposition of cosine waves with different coefficients515

êk:516

SPn =
n∑
k=0

êkz
n+1
k . (C11)

Therefore, the power spectra Pn and SPn can be regarded as the sampled values of the517

function P (θ) and P (θ)after, respectively:518

P (θ) =
n−1∑
k=0

ek cos kx (C12)

P (θ)after =
n∑
k=0

êk cos kx. (C13)

27



Then the matrix S can be regarded as a map that transfers the coefficients of superposition519

ek to êk.520

The vector 2Re[Λ]Pn is also regarded as the sampled values of the function 2λ(θ)P (θ),521

where522

λ(θ) = Re

[
−(a+ d) +

√
(a+ d)2 − 4(ad+ 2bα cos θ)

2

]
. (C14)

Therefore, the stability of the power spectrum vector Pn can be examined by approximating523

S with a square matrix Σ such that ΣPn share the same coefficients of the superposition524

with SPn.525

We write526

S =
1

n
ẐQZ, (C15)

where Ẑ is a square (n+1)×(n+1) matrix and Q is an (n+1)×n matrix whose components527

are, respectively,528 {
Ẑ
}
l,m

= cos
2π(l − 1)(m− 1)

n+ 1
, (C16)

and529

{Q}l,m =



(n+ 2− l)/(n+ 1) (if l = m)

(l − 1)/(n+ 1) (if l + 1 = m and l ≥ 2)

1/(n+ 1) (if l = n and m = 1)

0 (otherwise)

. (C17)

Therefore, the coefficients êk are determined by ek as follows:530

ê0 = e0

êk =
n+ 1− k
n+ 1

ek +
k

n+ 1
ek−1 (1 ≤ k ≤ n− 1)

ên =
n

n+ 1
en−1 +

1

n+ 1
e0. (C18)

This relationship is derived from the formulae in Supplementary text B [28].531

When n is even, we define an n × n square matrix Q̂ by removing the (n/2 + 1)-th row532

of the matrix Q, and then define an n× n square matrix Σ such that:533

Σ = ZQ̂Z. (C19)
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Here,534

{Σ}l,m =
2

n

n/2∑
k=2

cos
2π(m− 1)(k − 1)

n

[
k − 1

n+ 1
cos

2π(l − 1)(k − 2)

n
+

(
1− k − 1

n+ 1

)
cos

2π(l − 1)(k − 1)

n

]
+

1

n

(
1 + (−1)m+l−2

(
1− n

n+ 1
sin2 π(l − 1)

n

))
. (C20)

The n dimensional vector ΣPn is represented as the superposition of the cosine waves:535

ΣPn =

n/2∑
k=0

êkz
n
k +

n−1∑
k=n/2+1

êk+1z
n
k . (C21)

Since znk = znn−k holds and n is even, equation (C11) can be simplified:536

SPn =

n/2∑
k=0

ẽkz
n+1
k (C22)

ẽk =

êk (if k = 0)

êk + ên−k (otherwise)
. (C23)

Equation (C21) can also be simplified:537

ΣPn =

n/2−1∑
k=0

ẽkz
n
k

+ ên/2 z
n
n/2. (C24)

When n is odd, we define an n× n square matrix Q̂ by removing the ((n+ 3)/2)-th row538

of the matrix Q, and define an n× n square matrix Σ such that:539

Σ = ZQ̂Z. (C25)

Here,540

{Σ}l,m =
2

n

(n+1)/2∑
k=2

cos
2π(m− 1)(k − 1)

n

[
k − 1

n+ 1
cos

2π(l − 1)(k − 2)

n
+

(
1− k − 1

n+ 1

)
cos

2π(l − 1)(k − 1)

n

]
+

1

n
. (C26)

The n dimensional vector ΣPn is represented as the superposition of the cosine waves:541

ΣPn =

(n−1)/2∑
k=0

êkz
n
k +

n−1∑
k=(n+1)/2

êk+1z
n
k . (C27)
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Since n is odd, equation (C11) can be simplified:542

SPn =

(n+1)/2∑
k=0

ẽkz
n+1
k (C28)

ẽk =

êk (if k = 0 or (n+ 1)/2)

êk + ên−k (otherwise)
. (C29)

Equation (C27) can also be simplified:543

ΣPn =

(n−1)/2∑
k=0

ẽkz
n
k . (C30)

Comparing (C24) with (C22) and (C30) with (C28), ΣPn and SPn can be represented544

by the same cosine wave superposition except for that of the shortest wavelength (ẽn/2 when545

n is even, ẽ(n+1)/2 when n is odd).546

The shortest wavelength component of the superposition ẽn/2 or ẽ(n+1)/2 corresponds to547

the long-range correlation of the Delta expression pattern Dn. Since the Delta-Notch inter-548

action and cell proliferation locally affects the pattern, we expect the long-range correlation549

to be small. Thus, the contribution of the shortest wavelength component of the cosine wave550

superposition alone to the spectral structure of the power spectrum would be small when551

n is sufficiently large. Therefore, Σ is a square matrix that approximates S, in the sense552

that it preserves the spectral structure of the power spectrum. Based on this assumption,553

we can analyze equation (34) in the same way as in the cell mixing model by replacing S554

with Σ, and find that it gives the results that agree with the numerical results of the cell555

proliferation model (7) (Figs. 4(D) and 4(F)).556

[1] O. L. Mohr, Genetics 4, 275 (1919).557

[2] J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis, J. Theor. Biol. 183, 429 (1996).558

[3] D. Sprinzak, A. Lakhanpal, L. LeBon, L. A. Santat, M. E. Fontes, G. A. Anderson, J. Garcia-559

Ojalvo, and M. B. Elowitz, Nature 465, 86 (2010).560

[4] F. Vilas-Boas, R. Fior, J. R. Swedlow, K. G. Storey, and D. Henrique, BMC Biol. 9, 58561

(2011).562

[5] O. Shaya and D. Sprinzak, Curr. Opin. Genet. Dev. 21, 732 (2011).563

30

https://doi.org/10.1093/genetics/4.3.275
https://doi.org/10.1006/jtbi.1996.0233
https://doi.org/ 10.1038/nature08959
https://doi.org/ 10.1186/1741-7007-9-58
https://doi.org/ 10.1186/1741-7007-9-58
https://doi.org/ 10.1186/1741-7007-9-58
https://doi.org/10.1016/j.gde.2011.07.007


[6] M. Matsuda, M. Koga, E. Nishida, and M. Ebisuya, Sci. Signal 5, ra31 (2012).564

[7] K. Uriu and L. G. Morelli, Dev. Growth Differ. 59, 351 (2017).565

[8] A. M. Herman, A. M. Rhyner, W. P. Devine, S. P. Marrelli, B. G. Bruneau, and J. D. Wythe,566

Biol. Open 7, bio026799 (2018).567

[9] M. E. Pitulescu, I. Schmidt, B. D. Giaimo, T. Antoine, F. Berkenfeld, F. Ferrante, H. Park,568

M. Ehling, D. Biljes, S. F. Rocha, U. H. Langen, M. Stehling, T. Nagasawa, N. Ferrara,569

T. Borggrefe, and R. H. Adams, Nat. Cell Biol. 19, 915 (2017).570

[10] M. Eddison, I. L. Roux, and J. Lewis, Proc. Natl. Acad. Sci. U.S.A. 97, 11692 (2000).571

[11] E. Chrysostomou, J. E. Gale, and N. Daudet, Development 139, 3764 (2012).572
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FIG. 4. Comparison between the analytical and numerical results. (A) The red line and the black

dots represent the maximum eigenvalue y of the matrix Yp in (23) and the growth rate d lnH(t)/dt

estimated from Fig. S1(A) [28], respectively. (B) Normalized corresponding eigenvector P ∗ with the

maximum eigenvalue of the matrix Yp with n = 1000. (C) balanced frequencies p∗ plotted against

the parameter β in the Collier model (1). The blue solid line represents the values of p such that

the maximum eigenvalue of Yp in (23) is 0, the red dashed line represents p∗ derived from (29) and

the black dots represent the values of p∗ that were estimated from Fig. 3(A). (D) The red line and

the black dots represent the maximum eigenvalue of the matrix Jq in (39) and the growth rate

d lnH(t)/dt estimated from Fig. S1(B) [28], respectively. (E) Normalized corresponding eigenvector

P ∗
k with the maximum eigenvalue of the matrix Jq with n = 1000. (F) Balanced frequencies q∗

plotted against the parameter β. The blue line represents the value of q such that the maximum

eigenvalue of Jq in (39) is 0, and the black dots represent the values of q∗ that were estimated from

Fig. 3(B), respectively. The numerically estimated growth rate d lnH(t)/dt (black dots in (A) and

(D)) were calculated from the slope of the lines that were fitted to the plot of lnH(t) against t

(Fig. S1 [28]). The numerically estimated balanced frequencies (black dots in (C) and (F)) were

estimated as the intersection points of the plot of lnH∗(t) as a function of p and q and the plot of

lnH∗(t) = 0 in Fig. 3, respectively.
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