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In this work, we study the existence and stability of constant density (flat-top) solutions to the
Gross-Pitaevskii equation (GPE) in confining potentials. These are constructed by using the so-
called “inverse problem” approach which corresponds to the identification of confining potentials
that make flat-top waveforms exact solutions to the GPE. In the one-dimensional case, the exact
solution is the sum of stationary kink and anti-kink solutions, and in the overlapping region, the
density is constant. In higher spatial dimensions, the exact solutions are generalizations of this wave
function. In the absence of self-interactions, the confining potential is similar to a smoothed out finite
square well with minima also at the edges. When self-interactions are added, terms proportional to
±gψ∗ψ and ±gM with M representing the mass or number of particles in Bose-Einstein Condensates
(BECs) get added to the confining potential and total energy, respectively. In the realm of stability
analysis, we find (linearly) stable solutions in the case with repulsive self-interactions which also are
stable to self-similar deformations. For attractive interactions, however, the minima at the edges of
the potential get deeper and a barrier in the center forms as we increase the norm. This leads to
instabilities at a critical value of M . Comparing the stability criteria from Derrick’s theorem and
Bogoliubov-de Gennes analysis stability results, we find that both predict stability for repulsive self-
interactions and instability at a critical mass M for attractive interactions. However, the numerical
analysis gives a much lower critical mass. The numerical analysis shows that the initial instabilities
violate the symmetry x→ −x assumed by Derrick’s theorem.

I. INTRODUCTION

The study of Bose-Einstein condensates (BECs) [1, 2]
plays a fundamental role in many investigations related
to addressing timely questions in Physics. Indeed, it has
recently been suggested that some fundamental questions
concerning the unification of the theory of General Rel-
ativity (GR) and Quantum Mechanics (QM) can be ex-
plored by considering the gravitational interaction be-
tween two BECs [3]. One problem that has been less
well studied in the BEC literature, and which has been
an experimental challenge is how one can confine BECs
in configurations which have constant density. Efforts in
this direction through the use of an optical box trap have
been reported by Gaunt, et.al. [4], and by Lin, et. al. [5]
for a BEC in a uniform light-induced vector potential.
Morever, flat-top solitary waves have been found in not
only nonlinear optics [6, 7] but also in cubic-quintic non-
linear media [8] and in cubic nonlinear media with non-
Hermitian potentials [9]. The numerical investigations
in [10] suggest the existence of linearly stable flat-top so-
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lutions which can be obtained by spatially modulating
the cubic nonlinear interaction. Exact one dimensional
flat-top solitons have also been found in the cubic-quintic
Nonlinear Schrödinger equation (NLSE) by Konar et.
al. [11], and their stability in harmonic traps have been
studied in a variational approximation by Baizakov et.
al. [12].

The analytic form we take for the flat-top soliton is
the well-known kink-antikink wave function and its gen-
eralizations in higher spatial dimensions. In the con-
text of compact domains this type of flat-top soliton is
called a “kovaton” and was first discovered numerically
by Pikovsky and Rosenau [13, 14] in the so-called K(cos)
equation:

∂tu+ ∂x cosu+ ∂xxx cosu = 0 . (1)

We use the “inverse problem” method to determine the
confining potential which makes this analytic form to be
an exact solution of the Gross-Pitaevskii equation (GPE)
in this external potential. This method has previously
been used by Malomed and Stepanyants [15] to determine
potentials that have Gaussian-like exact solutions. In
our recent paper [16], we adopted this “inverse problem”
method (that we called “reverse engineering” method)
and explored blowup in the NLSE with arbitrary nonlin-
earity by considering Gaussian initial data. In that set-
ting we were able to compare analytic results for blowup
found using a generalized Derrick’s theorem exploiting
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an energy landscape as well as a variational method and
a numerical linear stability analysis. We found that the
criteria for instabilities to set in were reasonably well cap-
tured by the energy landscape approach and the varia-
tional method.

In this paper we start with the GPE [17, 18] (i.e., the
NLSE in an external potential), and first construct a
simple wave function (kink-antikink and its generaliza-
tions) that has a constant density in one, two and three
spatial dimensions (respectively denoted as 1D, 2D, and
3D, hereafter). We then determine the confining potential
which makes this wave function an exact solution by the
inverse method. After finding these potentials, we nu-
merically study their stability by using spectral stability
(or Bogoliubov-de Gennes) analysis [19]. We also study
their stability with respect to self-similar deformations
of the wave functions (Derrick’s Theorem) [20]. Both
approaches lead to the conclusion that when the self-
interactions are repulsive, the solutions are stable. (These
are the dark solitons commonly found in most BECs). For
the case of attractive self-interactions, for which the
NLSE supports bright solitons found in 7Li BECs [21],
our analysis shows there is a critical mass M related to
the number of atoms N in the BEC above at which the
solution becomes unstable. The numerical analysis shows
that the most unstable modes break parity symmetry and
that the soliton then travels toward the boundary of the
confining potential. For the flat-top bright solitons, Der-
rick’s theorem is not a useful guide in predicting when
the soliton becomes unstable as a function of M . This is
due to the fact that the second derivative of the energy
functional with respect to the scaling parameter β is al-
ways positive at β = 1 for fixed M (here β is the scaling
parameter x → βx). Therefore we cannot use the cri-
teria that this derivative becoming zero determines the
critical mass) . A variant of Derrick’s Theorem which
studies how the energy landscape changes when we vary
the position of one of the kinks gives results more in ac-
cord with the numerics. This is in sharp contrast to the
case of Gaussian solitons, where Derrick’s theorem gave
an excellent estimate of a critical mass for blowup [16].

The trapping potentials that we find by the “inverse
method” consist of two terms. The first term is present
in the linear Schrödinger equation, and is similar to a
finite “square well” and its generalizations, except the
hard edges of the potential are smoothed out. There are
also shallow minima near the edges of the potential. The
second term therein is proportional to ±|ψ(x, t)|2, which
depends on the norm M or number of particles N . In
the repulsive case the second term makes the well pro-
gressively deeper, and the flat-top solutions are always
stable. In the attractive case the second term adds a
positive term proportional to the density which makes
the minimum at the edges deeper, and starts a barrier at
the center of the potential. This leads to the instability
of the solution. We want to stress that in this paper the
treatment of the BEC is purely classical. Quantum fluc-
tuations around the BEC solution will also play a role in

the stability of the BEC, such as losses to the continuum.
That will be the subject of a future study.

The paper is organized as follows. In Section II, we
present the general methodology to construct exact flat-
top soliton solutions to the GPE in any spatial dimen-
sion by using the inverse problem method. Then, Sec. III
presents the 1D flat-top soliton solutions together with
their stability analysis results emanating from Derrick’s
theorem as well as the energy landscape as a function of
a collective position coordinate for one of the kinks which
breaks the parity symmetry. In Sec. IV, we consider 2D
square and radial flat-top soliton solutions, and similar
to Sec. III, we utilize Derrick’s theorem to discuss their
stability. The stability analysis results of Secs. III and IV
are compared with numerical results that are presented
in Sec. V. We briefly discuss the generalization of our ap-
proach to 3D flat-top solitons in Sec. VI, and in Sec. VII,
we state our conclusions.

II. FINDING EXACT FLAT-TOP SOLITON
SOLUTIONS BY THE INVERSE PROBLEM

METHOD

The time-dependent, non-linear Schrödinger equa-
tion (NLSE) with an external potential [or the Gross-
Pitaevskii equation (GPE)] is given by

{−∇2 + g |ψ(r, t)|2 + V (r) }ψ(r, t) = i ∂t ψ(r, t) , (2)

where ψ(r, t) ∈ C is the wave function, and ∇2 is the
Laplacian operator in the respective spatial dimension.
The real-valued function V (r) is the external potential
in the NLSE. For this form of the equation, g > 0 refers
to the repulsive case pertinent to the study of most BECs.
On the other hand, the case with g < 0 is the one usually
studied in connection with blowup of bright solitons in
the NLSE [22].

Suppose that u(r) ∈ R is the solution to Eq. (2) at
t = 0. If we assume a time-dependent solution for ψ(r, t)
given by the separation of variables ansatz:

ψ(r, t) = u(r) e−iωt , (3)

then Eq. (2) is written as:

ω u(r) +∇2u(r)− g u2(r)u(r) = V (r)u(r) . (4)

If we have an analytic expression for u(r), we can then
find the potential that makes u(r) an exact solution to
Eq. (4), and thus to Eq. (2) through Eq. (3). We note
in passing that Eq. (4) can be directly compared with
the time-independent GPE for the condensate wave func-
tion [17, 18] (see Appendix A for units) given by:{

− ~2

2m
∇2 + V (r) + U0 u

2(r)
}
u(r) = µu(r) , (5)

where U0 = 4π~2as/m is the coupling constant, and as
is the s-wave scattering length of two interacting bosons.
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The norm of the wave function, denoted by M is a con-
stant of motion, and is given by

M =

∫
d3xu2(r) . (6)

Thus ω can be identified with the chemical potential µ,
and the norm M with the particle number N up to a
rescaling. Throughout this paper, we will use M and N
interchangeably.

For a given u(r), exact solutions to Eq. (4) are pos-
sible provided that we can find a well-behaved external
potential function V (r) such that

V (r) = ω + [∇2u(r) ]/u(r)− g u2(r) . (7)

In our inverse problem method, the density ρ(r) = u2(r)
is specified a priori and does not depend on ω. As
a result, this determines a V (r) from Eq. (7) so that
u(r)e−iωt is an exact solution of the NLSE. Although
changing ω shifts the potential by a constant, this shift
has no effect on the stability of the solutions, so for con-
venience we will set ω = ω0 in all our plots, where ω0 is
chosen so that V (r)→ 0 as r →∞. For arbitrary ω, the
potential as well as the energy per particle gets shifted
by ω − ω0.

The conserved energy for solutions of Eq. (2) is given
by

E[ψ,ψ∗] =

∫
ddx

{
|∇ψ|2+(g/2) |ψ|4+V (r) |ψ|2

}
, (8)

and the conserved particle number by

M [ψ,ψ∗] =

∫
d3x |ψ|2 . (9)

Varying the energy E[ψ,ψ∗] while holding the normal-
ization M [ψ,ψ∗] constant leads to the time-independent
GPE [cf. Eq. (5)] with Lagrange multiplier µ.

III. FLAT-TOP SOLITONS IN ONE
DIMENSION

In one spatial dimension (1D), we create a flat-top soli-
ton by the following combination of kink and anti-kink
solutions:

u(x) = A [ tanh(q − x) + tanh(q + x) ] , (10)

where A and 2q are its amplitude and width, respectively.
The conserved particle number is given by

M = 4A2 [ 2q coth(2q)− 1 ] , (11)

which fixes A in terms of M and q of the distribution.
We thus find

ρ(x) = u2(x) (12)

=
M sinh2(2q)sech2(q − x)sech2(q + x)

4(2q coth(2q)− 1)
.
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FIG. 1: One-dimensional condensate density ρ(x) and po-
tentials V (x) for q = 5 and ω = −4 for g = ±1.

To determine the 1D potential in this case, we substitute
Eq. (10) into Eq. (7), and obtain:

V (x) = V0(x)− gρ(x) , (13)

V0(x) = ω +
cosh(4x)− 2 cosh(2q) cosh(2x)− 3

2 [ cosh2(q) + sinh2(x) ]2
.

Here we choose ω = −4 so that V (x)→ 0 as x→ ±∞.
In Fig. 1, we summarize our analytical results for the

1D case. In particular, we present the condensate density
ρ(x) = u2(x) in panel (a) of the figure for M = 1, 5, 10
with q = 5. The panels (b) and (c) in Fig. 1 depict
the confining potentials for (b) g = 1 and (c) g = −1,
respectively, and for various values of the particle number
M (see the legends therein). We see that for the repulsive
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case the potential is progressively morphed into a finite
square well potential, whereas for the attractive case the
minima near ±q get deeper, and a barrier forms in the

center.
The energy per particle is the sum of three terms:

e(q) = e1(q) + e2(q) + e3(q) with

e1(q) =

∫
dx (u′(x))

2
/M (14a)

=
csch3(2q) (−24q cosh(2q) + 9 sinh(2q) + sinh(6q) )

6 (2q coth(2q)− 1)
,

e2(q,M) =
g

2

∫
dxu4(x)/M (14b)

=
gM csch3(2q) ( 12q (9 cosh(2q) + cosh(6q))− 27 sinh(2q)− 11 sinh(6q) )

48 (2q coth(2q)− 1)2
,

e3(q) =

∫
dxV (x)u2(x)/M =

∫
dx
[
ω u2 − g u4 + uu′′

]
/M (14c)

= ω − 2 e2(q)− e1(q) ,

where in the last term we have used Eq. (4), and inte-
grated by parts. The resulting energy per particle is then
given by

e(q) = e1(q) + e2(q,M) + ω − 2 e2(q,M)− e1(q)

= ω − e2(q,M) . (15)

In Fig. 2, we show the energy per particle as a function
of q emanating from Eq. (15) for values of M = 1 and
g = ±1.

g=+1
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-3.7

q

e(
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FIG. 2: The 1D energy per particle as a function of q with
ω = −4 and M = 1 for g = ±1.

A. Stretching instability

Derrick’s theorem [20] gives a criterion for stability of
a solution of Schrödinger’s equation under a rescaling
x→ βx in the soliton wave function keeping the mass M
fixed. This transformation is a self-similar transforma-
tion. For all the exact solutions we present here, we find
that for the repulsive case, the energy of the stretched

(or contracted) solution is always a minimum at the ex-
act solution value β = 1. However for the attractive case
the energy as a function of β shows an instability as we
increase M in that at β = 1 the minimum gets progres-
sively shallower and the energy has an inflection point
near β = 1. Note that for this problem, where V is con-
sidered an external potential, the confining potential is
actually different for each value of M .

For the stretched wave function, we have:

u(x, β,M) = A(β,M) [ tanh(q − βx) + tanh(q + βx) ] ,
(16)

where now

A(β,M) =

√
βM

4 [ 2q coth(2q)− 1 ]
. (17)

The external potential V (x) is held fixed and is given by:

V (x) = V0(x)− g u2
0(x) , (18)

where V0(x) is given by (13), and u0(x) fixed by

u0(x,M) = A0(M) [ tanh(q − x) + tanh(q + x) ] , (19)

with

A0(M) =

√
M

4 [ 2q coth(2q)− 1 ]
, (20)

and is independent of β. Upon using the notation
hi(β,M) = Ei(β,M)/M , the energy per particle of the
stretched wave function [cf. Eq. (16)] is the sum of three
terms: h(β,M) = h1(β,M)+h2(β,M)+h3(β,M) where
we consider ω0 = −4 as before. These terms are given
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FIG. 3: The 1D energy h(β) as a function of β for g = ±1
and for M0 = 1.

explicitly by:

h1(β,M) =

∫
dx [u′(x, β,M) ]2/M = β2 e1(q) , (21a)

h2(β,M) =
g

2

∫
dxu4(x, β,M)/M = β e2(q) , (21b)

h3(β,M) =

∫
dxV (x)u2(x, β,M)/M

= j1(β,M)− j2(β,M) , (21c)

where e1(q) and e2(q) are given by Eqs. (14a) and (14b)
respectively, and j1(β,M) and j2(β,M) are just numeric
and given by the integrals:

j1(β,M) =

∫ ∞
−∞

dxV0(x)u2(x, β,M)/M , (22a)

j2(β,M) = g

∫ ∞
−∞

dxu2
0(x,M)u2(x, β,M)/M, (22b)

where V0(x) is given in (13). In Fig. 3 we present h(β,M)
as a function of β for q = 5 and g = ±1 for various
values of M (see the legend therein). For the repulsive
case with g = 1 shown in Fig. 3(b), there is a distinct
minimum at β = 1, and so Derrick’s theorem predicts
that this system is stable for all values of M . For the
attractive self-interaction case with g = −1 shown in
Fig. 3(a), it is not clear that there is a minimum at β =
1 for large values of M . It can be discerned from the
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FIG. 4: Plot of h3(a,M) for the 1D case for g = ±1.

figure that there is a minimum of the potential for M =
1 although the minimum gets exceedingly narrow in its
width and depth for M = 10 and M = 20. For M =
1, the minimum is at β = 1 with a minimum value of
h(1, 1) ≈ −3.94959, and the latter agrees with the exact
value of the energy at q = 5 and M = 1. Similarly, for
M = 20, h(1, 20) ≈ −2.99177, which also agrees with
the exact energy calculation. Since the second derivative
remains positive for all M (see Appendix B), we cannot
use the criterion of the second derivative vanishing at
β = 1 to determine a critical mass Mc. However, from
the curves h(β,M) it is clear that even when M = 10 the
solution is unstable to be driven to larger β by a small
perturbation (i.e. blowup).

The numerical stability simulations we have performed
in Section V indicate that for the attractive self interac-
tion (g = −1), the flat-top soliton becomes unstable at
considerably smaller values of M than we could expect
from the energy landscape as a function of β. The in-
stability breaks the x → −x symmetry and it involves a
solution at the minimum at x = q for a slight deformation
in the positive x direction.

B. Translational instability

Because the numerics indicate that there is a parity
violating instability we would like to see if the flat-top
soliton is stable to an asymmetric translation of the wave
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FIG. 5: Plot of h3(a) for M = 2 for the 1D case for g = −1.
The minimum is at a = 0.023.

function

u(x, q, a,M) = A(M) [ tanh(q + a− x) + tanh(q + x) ] ,

A(M) =

√
M

4 (2(q + a/2) coth(2q + a)− 1)
, (23)

while keeping the particle number M fixed. We have con-
sidered a symmetric version of this transformation previ-
ously in [16, 23], and have shown that the critical particle
number Mc found using this method is the same as that
found by studying the stability of small oscillations in a
four collective coordinate approximation to the dynamics
of a perturbed wave function, and then setting the oscil-
lation frequency of the translational parameter q(t), i.e.
ωq to zero. We now calculate the energy as a function of a
holding M fixed. The confining potential V (x) is given in
Eq. (18). The energy per particle number M is again the
sum of three terms: h(a,M) = h1(M)+h2(M)+h3(a,M)
with h1(M) and h2(M) being unchanged by the asym-
metric shift. As a result, the dependence on a only in-
volves the h3(a,M) term:

h3(a,M) =

∫ ∞
−∞

dxV (x)u2(x, a,M)/M

= j1(a,M)− j2(a,M) , (24)

where j1(a,M) and j2(a,M) and given by the integrals:

j1(a,M) =

∫ ∞
−∞

dxV0(x)u2(x, a,M)/M , (25a)

j2(a,M) = g

∫ ∞
−∞

dxu2
0(x,M)u2(x, a,M)/M, (25b)

(25c)

which are determined numerically with V0(x) given by
Eq. (13).

The results are shown in Fig. 4. The flat-top soliton
looks unstable for both g = +1 and g = −1 for large M .
For the latter case (g = −1) there is a critical mass M for
which the minimum starts moving away from a = 0. For
q = 5 this occurs when M = 1.63. To show this effect we

plot h3(a) as a function of a at M = 2, which is shown
in Fig. 5. For that case we find the minimum occurs at
a = 0.023 showing that the right hand side of the flat-top
soliton wants to move to the right.

Thus we see that if we choose a collective coordinate
that shifts just the position of the kink making up the
right side of the flat-top soliton (here a is proxy for the
position of the kink on the right side of the flat-top soli-
ton) (x > 0) then it will start moving to the right once
it is perturbed with M > 1.63. So this crude way of tak-
ing into account that numerical simulations show that
the mechanism that determines the onset of instabilities
breaks parity invariance. This type of instability sets in
much sooner (as a function of M) compared to the case
of the usual self-similar blowup instability of the NLSE
in the absence of a confining potential.

IV. FLAT-TOP SOLITONS IN TWO SPATIAL
DIMENSIONS

In this section we turn our attention to 2D flat-top
soliton solutions. The latter appear in two distribution
types: square and radial shapes.

A. The 2D square flat-top soliton

Motivated by the 1D flat-top soliton solution of
Eq. (10), one can generalize this in 2D to be a square
flat-top soliton solution which is the product of 1D flat-
top soliton solutions in the x and y directions. That is,
the wave function for the 2D square flat-top soliton solu-
tion is given by:

u(x, y) = A(q) [ tanh(q − x) + tanh(q + x) ]

× [ tanh(q − y) + tanh(q + y) ] , (26)

where the amplitude in terms of M is

A(q) =

√
M

4 [ 2q coth(2q)− 1 ]
. (27)

As in the 1D case, we can now find a potential in 2D that
makes Eq. (26) an exact solution. Indeed, the confining
potential in question is:

V (x, y) = V0(x, y) + ω − g u2(x, y) , (28)

V0(x, y) = −2 csch(2q)

×
[

cosh(q + x) sech(q − x) tanh(q − x)

+ cosh(q − x) sech(q + x) tanh(q + x)

+ cosh(q + y) sech(q − y) tanh(q − y)

+ cosh(q − y) sech(q + y) tanh(q + y)
]
,

where we select ω = −8 so that V (x, y)→ 0 at |x|, |y| →
∞. We display V (x, y) in Fig. 6. We again see that for
the linear Schrödinger equation, the potential needed to
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FIG. 6: V0(x, y) for the square flat-top soliton with q = 5.

confine a flat-top soliton solution is similar to a finite
square well in two dimensions. It is further rounded out
at the edges and has its true minimum near the boundary
of the well. The density ρ(x, y) for M = 1 and q = 5 is
shown in Fig. 7.

For the repulsive self-interaction, g = 1 the interac-
tion term deepens the well, whereas for the attractive
case again, it causes the minimum of the potential at the

FIG. 7: The density ρ(x, y) for the square, flat-top soliton
with q = 5 and M = 1.

edges to deepen and a barrier to rise away from the edge.
However until M gets quite large the self-interaction term
is small compared to V0(x, y).

We now proceed similar to the 1D case. The energy
per particle is the sum of three terms: e(q) = e1(q) +
e2(q) + e3(q). We find:

e1(q) =

∫∫
dxdy [∇u(x, y)]

2
/M (29a)

=
2 csch2(2q)(5 + cosh(4q)− 12q coth(2q))

3(2q coth(2q)− 1)
,

e2(q,M) =
g

2

∫∫
dxdy u4(x, y)/M (29b)

=
gM csch6(2q) (−12q(9 cosh(2q) + cosh(6q)) + 27 sinh(2q) + 11 sinh(6q))2

1152 (2q coth(2q)− 1)4
,

e3(q) =

∫∫
dxdy V0(x, y)u2(x, y)/M = ω − 2 e2(q,M)− e1(q) , (29c)

where in the last term, we have used again the equa-
tions of motion and performed integration by parts. The
resulting energy per particle is then given by:

e(q) = ω − e2(q,M) , (30)

and is plotted in Fig. 8 as a function of q, and for g = ±1.

B. Derrick’s theorem for the 2D square flat-top
soliton

For Derrick’s theorem in the 2D square case, we con-
sider the energy for the self-similar solution with xi →
βxi while keeping the mass M fixed. We get the same
general picture for the h(β,M) for g = ±1 as for the 1D
case. For the repulsive interactions, β = 1 is a minimum,

FIG. 8: Plot of h(q) for the 2D square case with ω = −8,
M = 20, and g = ±1. The red curve is for the attractive case
(g = −1).

whereas for the attractive case, an inflection point devel-
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(a) h(β,M) for g = 1

(b) h(β,M) for g = −1

FIG. 9: Plot of h(β,M) for the 2D square case with g = ±1,
ω0 = −8, and M = 1, 10, 20, 50.

ops at β > 1 as we increase M . This is seen in Fig. 9.

Since Derrick’s theorem does not give a reliable value
for Mc we will not discuss this further.

C. Radially-symmetric flat-top solitons in 2D

Another possibility for a 2D flat-top soliton is a
radially-symmetric flat-top soliton solution of the form:

ψ(r, θ, t) = u(r) e−iωt, u(r) ∈ R , (31)

where

u(r) = A(M, q) [ tanh(q − r) + tanh(q + r) ] . (32)

In this case, its density is given by ρ(r) = u2(r), and the
particle number M is given by

M = 2π

∫ ∞
0

r dr ρ(r) = 4π A2 {−Li2[−e2q] coth(2q)− ( q2 + (π2/12) ) coth(2q)− log
(
e2q + 1

)
+ q } , (33)

where Lin[x] is the PolyLog function of degree n [24]. Solving for A2(M, q), we find:

A2(M, q) =
M

4π
{
−Li2[−e2q] coth(2q)− ( q2 + (π2/12) ) coth(2q)− log(e2q + 1) + q

} . (34)

Substitution of Eq. (32) into (7) gives:

V (r) = V0(r)− g ρ(r) , (35)

V0(r) = ω − sech2(q − r) [ 1 + 2 r tanh(q − r) ]− sech2(q + r) [ 1− 2 r tanh(q + r) ]

r [ tanh(q − r) + tanh(q + r) ]
,

with ω = −4. In Fig. 10 we show the potential V (x, y)
for q = 5. We see it is a round waste-basket like po-
tential which has a slightly deeper minimum near the
boundary at r = 5. Again for the repulsive case g = 1
the full potential gets deeper as we increase M , where for
the attractive case g = −1 the potential develops deeper
minima near r = q as well as a barrier in the middle.

The plot of ρ(r) for q = 5,M = 20 is shown in the left
panel of Fig. 11. The middle and right panels of the fig-
ure depict the potential V (r) as a function of r for the
case when g = ±1 with q = 5. The energy per particle
of the round flat-top soliton is the sum of three terms:
e(q) = e1(q) + e2(q) + e3(q). We find:
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FIG. 10: V0(x, y) for q = 5.

e1(q) = 2π

∫ ∞
0

r dr [∇u(r)]
2
/M (36a)

= − 16πe6q

3 (e4q − 1)
3

A2(M, q)

M

{
−12 Li2

(
−e2q

)
cosh(2q)−

(
12q2 + π2

)
cosh(2q)

+
(
q − log

(
e2q + 1

))
(9 sinh(2q) + sinh(6q)) + 8 sinh3(q) cosh(q)

}
,

e2(q) = g π

∫ ∞
0

r dr u4(r)/M (36b)

= −4πA4(M, q) g e6q

3M (e4q − 1)
3

{
9
(
12q2 + π2

)
cosh(2q) + 12 Li2

(
−e2q

)
(9 cosh(2q) + cosh(6q))

+
(
12q2 + π2

)
cosh(6q)− 2

(
q − log

(
e2q + 1

))
(27 sinh(2q) + 11 sinh(6q))

− 16 sinh3(q)(2 cosh(q) + 3 cosh(3q))
}
,

e3(q) = 2π

∫ ∞
0

r dr V (r)u2(r)/M (36c)

= 2π

∫ ∞
0

r dr
{
ω0 u

2(r)− g u4(r) + u(r) [∇2u(r) ]
}
/M

= ω − 2 e2(q)− e1(q) ,

where in the last term we have used the equations of mo-
tion and integrated by parts with A2(M, q) being given
by (34). The resulting energy per particle is then:

e(q) = e1(q)+e2(q)+ω−2 e2(q)−e1(q) = ω−e2(q), (37)

and is plotted in Fig. 12.

1. Derrick’s theorem for the 2D radial flat-top soliton

For Derrick’s theorem in 2D for the round case, we
perform the transformation r → βr keeping the mass M
fixed. That is, we calculate the energy as a function of β
and at a given M when the wave function has the form:

u(r, β,M) = A(β,M) [ tanh(q − βr) + tanh(q + βr) ] , (38)

A2(β,M) =
M β2

4π
{
−Li2[−e2q] coth(2q)−

[
q2 + π2

12

]
coth(2q)− log(e2q + 1) + q

} .

The potential is fixed to be the potential of the problem with β = 1. The results for the energy of the stretched



10

M=10

M=20

M=30

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

r

ρ
(r
)

(a) ρ(r)

M=1

M=30

M=60

0 2 4 6 8 10
-6

-5

-4

-3

-2

-1

0

r

V
(r
)

(b) g = +1

M=1

M=30

M=60

0 2 4 6 8 10
-6

-5

-4

-3

-2

-1

0

r

V
(r
)

(c) g = −1

FIG. 11: The radial density ρ(r) and potentials V (r) for
g = ±1 for the 2D radial case with M = 20 and q = 5.

flat-top soliton as a function of β for different M are
shown in Fig. 13. Again we see the same qualitative be-
havior of h(β). For the repulsive case β = 1 is a minimum
for all M whereas there is a critical value of M which
is signaled by there being an inflection point developing
near β = 1 as we increase the mass M .

V. NUMERICAL ANALYSIS AND RESULTS
FOR THE 1D AND 2D GPES

In this section, we discuss the existence, stability and
selective cases on the dynamics of flat-top soliton solu-
tions in 1D and 2D. In doing so, we consider first the
steady-state problem, i.e., the GPE of Eq. (4). The
physical domains in 1D and 2D, i.e., R and R2 are trun-

FIG. 12: Plot of e(q) for the 2D radial case with ω = −4,
q = 5, and M = 20. The repulsive case (g = +1) is given by
the blue curve, the attractive case (g = −1) is given by the
red curve.
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FIG. 13: The energy of the stretched round 2D flat-top
soliton h(β) as a function of β.

cated respectively into finite ones: Ω1D = [−L,L] and
Ω2D = [−L,L]2. We then introduce a finite number of
equidistant grid points in both cases with lattice spacing
∆x = 0.04 (with L = 40) for the 1D GPE, and ∆x = 0.06
(with L = 15) for the 2D one. The Laplacian that ap-
pears in Eq. (4) (and equivalently in Eq. (2)) is replaced
by fourth-order accurate, finite differences, where we im-
pose zero Dirichlet boundary conditions (BCs) at the
edges of the computational domain, i.e., u

∣∣
∂Ω1D,2D

= 0.

With this approach, we want to identify the numerically
exact, flat-top soliton solutions on the above computa-
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tional grid in order to perform a spectral stability anal-
ysis followed by direct dynamical simulations. It should
be noted that one may use directly the exact solution
we presented in this work for performing a spectral sta-
bility analysis but the calculation will suffer from local
truncation errors. The latter are avoided by finding the
numerically exact flat-top soliton solutions.

We identify numerically exact solutions (with strict tol-
erances of 10−12 on the convergence and residual errors)
by using Newton’s method where the associated Jaco-
bian matrix of the pertinent nonlinear equations is ex-
plicitly supplied therein. We note in passing, that the
potential V (r) we consider for our numerical simulations
is given by Eq. (7), and the u(r) that appears therein
is replaced by the 1D and 2D (either square or radial)
flat-top soliton solutions of Eq. (10) as well as Eqs. (26)
and (32), respectively. The amplitude A of the solution is
expressed in terms of the mass M , rendering the poten-
tial to be a function of M (the values of g, ω, and q are
fixed). Then for fixed M , we use the exact waveforms of
Eqs. (10), (26) and Eq. (32) as initial guesses to the New-
ton solver. Upon convergence, we perform a sequential
continuation over M , and trace branches of flat-top soli-
ton solutions whose spectral stability analysis is carried
out next.

To do so, we consider the perturbation ansätz:

ψ(r, t) = ψ0(r, t) + εψ1(r, t) + · · · (39)

= e−iω0 t
{
u0(r) + ε

[
a(r) eλt + b∗(r) eλ

∗t
]}

+ · · ·

where ε � 1 and where u0(r) satisfies the time-
independent Gross-Pitaevskii equation (4) with ω → ω0.
Upon plugging Eq. (39) into Eq. (2), to O(ε) we arrive
at the eigenvalue problem:

A(r)V(r) = iλV(r) (40)

V(r) = [ a(r) b(r) ]T ∈ C2, λ ∈ C . (41)

where A(r) is the 2× 2 matrix

A(r) =

(
A11(r) A12(r)
−A∗12(r) −A11(r)

)
, (42)

and the matrix blocks are given by

A11(r) = −∇2 + 2g u2
0(r) + V (r)− ω0, (43a)

A12(r) = g u2
0(r) . (43b)

Then, the eigenvalue problem of Eq. (40) is solved
by using the contour-integral based FEAST eigenvalue
solver [25] (see also [26, 27] for its applicability to rel-
evant yet higher dimensional problems too). A steady-
state flat-top soliton solution u0(r) is deemed stable if
all the eigenvalues λ = λr + iλi have zero real part, i.e.,
λr = 0. On the other hand, if there exists an eigenvalue
with non-zero real part (λr 6= 0), this signals an instabil-
ity, and thus the solution is deemed linearly unstable.
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FIG. 14: Spectral stability analysis of 1D flat-top soliton
solutions for (a) g = −1 (attractive) and (b) g = 1 (repulsive),
respectively. The left and right columns depict respectively
the imaginary and real parts of the eigenvalues of the stability
problem of Eq. (40). The parameter values here are ω = −4
and q = 5. Note that the parameter M herein coincides
with the mass (or l2-norm) of the flat-top soliton solution via
Eq. (11).

1. Numerical Results for the 1D GPE

We begin our discussion on the numerical results by
considering first the 1D flat-top soliton solution and its
spectra as a function of M . It should be noted that the
parameter M that appears in the potential coincides with
the actual mass (or l2-norm) of the flat-top soliton solu-
tion via Eq. (11). The respective results on the stability
are summarized in Fig. 14 which showcases the depen-
dence of λi and λr on the (bifurcation parameter or) mass
M for the attractive case with g = −1 (see, Fig. 14(a))
and repulsive one with g = 1 (see, Fig. 14(b)). It can be
discerned from panel (a), that the flat-top soliton solution
is spectrally stable from its inception (i.e., M � 1) to
Mc ≈ 0.65 whereupon the solution becomes (spectrally)
unstable, and the growth rate of the instability increases
with M . On the other hand, and for the repulsive case of
g = 1, the flat-top soliton solutions are spectrally stable
throughout the parameter interval in M that we con-
sider therein. It is worth pointing out in Fig. 14(a) that
the emergence of the instability is due to the fact that a
pair of imaginary eigenvalues cross the origin, and give
birth to the unstable mode at Mc ≈ 0.653. Moreover,
this “zero crossing” of the pertinent eigenvalues signals
the emergence of a pitchfork (or symmetry-breaking) bi-
furcation [28] around that point in the parameter space.
Although such bifurcations are important in their own
right (in fact, and in the present setup, there exist more
such bifurcations at M ≈ 2.528, 5.475, and M ≈ 9.18),
we do not pursue them all. Such bifurcating branches
can be obtained by using Newton’s method where the
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FIG. 15: Top panels: Spectral stability analysis and existence results of bifurcating branches emanating from the flat-top
soliton solution in 1D with g = −1 (and q = 5 as well as ω = −4). The left and middle panels depict λi and λr as functions
of M (the same spectral picture is obtained for the other branch that has the same norm). Note that the bifurcating branch
is spectrally stable due to the absence of real eigenvalues (see the middle panel). The right panel depicts spatial profiles of the
density of the bifurcating branches for M = 30. Note that the density of the flat-top soliton solution for M = 30 is plotted
too in the panel with dashed-dotted black lines for comparison. Bottom panels: Spatio-temporal evolution of densities ρ(x)
for the bifurcating branches is shown in the left and middle panels with M = 30, as well as the flat-top soliton solution (for
the same M) in the right panel. For the stable steady-states, we perturbed the initial condition with a random perturbation

(of 10−3 ×max(|u(0)|) amplitude) whereas for the unstable flat-top soliton solution of the right panel, we perturbed the initial
condition by considering the eigenvector corresponding to the most unstable eigendirection.

solver is fed by the steady-state flat-top soliton solu-
tion at the value of M (where such a zero crossing hap-
pens) perturbed by the eigenvector corresponding to that
unstable eigendirection.

Illustratively, we briefly discuss the emergence of two
“daughter” branches of solutions at Mc ≈ 0.653, i.e.,
at the point where the “parent” flat-top soliton solution
branch undergoes a symmetry-breaking bifurcation. In-
deed, in the top row of Fig. 15, we present our results
on this bifurcation. In particular, the top left and mid-
dle panels showcase the λi and λr both as functions of
M of the bifurcating branch (the other one has exactly
the same spectrum), and the (top) right panel presents
the spatial distribution of the densities, i.e., ρ(x) of two
profiles at M = 30. In addition, the density of the flat-
top soliton solution (emanating from the parent branch)
for the same value of the bifurcation parameter M is in-
cluded too in the figure, and shown with dashed-dotted
black lines for comparison. It can be discerned from the
middle panel of the figure that the daughter branches
are spectrally stable all along, i.e., over the parameter
window in M that we considered therein). At the bifur-
cation point Mc ≈ 0.653, the daughter branch “inherits”
the stability of the parent branch whereas the latter be-
comes (spectrally) unstable past that point, i.e., pitch-

fork bifurcation. From the top right panel of the figure,
we further note that the bifurcating solutions resemble
solitary yet shifted pulses.

In the bottom panels of Fig. 15 we corroborate our
stability analysis results by performing time evolution of
perturbed steady-states. In particular, the bottom left
and middle panels of Fig. 15 depict the spatio-temporal
evolution of the density ρ(x) for the stable bifurcat-
ing solutions of the top right panels of Fig. 15. We
added a random perturbation with a strong amplitude
of 10−3 × max(|u(0)|) to the localized pulse. It can
be discerned from these two panels that the bifurcating
branches are indeed stable solutions. On the other hand,
the flat-top soliton solution, i.e., the parent branch, is
spectrally unstable, whose dynamics is shown in the bot-
tom right panel of the figure. We initialized the dynamics
therein by perturbing the steady-state solution with the
eigenvector corresponding to the most unstable eigendi-
rection (essentially, utilizing Eq. (39) for t = 0 with ε be-
ing 10−3×max(|u(0)|)). This way, we feed the instability
of the pertinent solution. It can be discerned from that
panel that the solution oscillates in the presence of the
potential while simultaneously interpolating between the
two stable (bifurcating) solutions of the top right panel
of the figure.
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FIG. 16: Spatio-temporal evolution of the density ρ(x) for a
perturbed flat-top soliton solution for (a) M = 0.65, (b) M =
2, and (c) M = 4, with g = −1, q = 5, and ω = −4. For the
stable steady-state of panel (a), a random perturbation with

amplitude 10−3×max(|u(0)|) was added to the localized pulse
whereas for the unstable states of panels (b)-(d), the initial
condition was perturbed by the most unstable eigendirection
(and with the same amplitude for the pertinent cases).

We now move to Fig. 16 which corroborates further our
stability analysis results for the flat-top soliton solutions
themselves by presenting the spatio-temporal evolution
of the density ρ(x) for a perturbed flat-top soliton solu-
tion with (a) M = 0.65, (b) M = 2, and (c) M = 4,
respectively. Based on Fig. 14(a), the flat-top soliton
solution for M = 0.65 is deemed spectrally stable, and
its perturbed dynamics (upon adding a random pertur-
bation to the localized region of the flat-top soliton) is
shown in Fig. 16(a). It can be clearly discerned from the
figure that the flat-top soliton solution is dynamically sta-
ble. On the other hand, and for panels (b)-(c), the flat-
top soliton solutions are unstable for M = 2 and M = 4
(see, Fig. 14(a)). We investigate this finding dynamically
in these panels by furnishing an initial condition corre-
sponding to the stationary flat-top soliton solution plus
a perturbation added on top of the localized region of
the pulse (as we did before in the bottom right panel of
Fig. 15). In Fig. 16(b), we observe that after a short
time interval, the flat-top soliton solution starts oscillat-
ing in the confining potential featuring a beating pattern
whose temporal period decreases as time passes by, thus
effectively approaching the stationary yet stable solitary
pulse shown in the top right panel of Fig. 15 (see the one
depicted with solid blue line). This is not surprising due
to the fact that the branch associated with this pulse
is spectrally stable, thus creating a basin of attraction
in the dynamics. This is also evident in Fig. 16(c). In-
deed, after a transient period of time, featuring a solitary
pulse mounted on top of a flat-top soliton solution, these
oscillations have a progressively smaller period, and the
dynamics start approaching the stationary state of the
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FIG. 17: Spectral stability analysis of 2D square flat-top
soliton solutions for (a) g = −1 (attractive) and (b) g = 1
(repulsive). The format of the figure is the same as of Fig. 14.
The parameter values here are ω = −8 and q = 5.

top right panel of Fig. 15.
We finalize our discussion on the 1D GPE by briefly

reporting the stability of flat-top soliton solutions with
g = 1, i.e., the repulsive case. We performed dynami-
cal simulations of perturbed flat-top soliton solutions in
that case, and we corroborated the stability results of
Fig. 14(b) (the results on the dynamics are not shown).
Having finalized a detailed exposure on the existence,
stability (and bifurcations), as well as dynamics for the
1D GPE, we move now to the 2D GPE case next.

2. Numerical Results for the 2D GPE

Similar to the 1D case, we present in Figs. 17 and 18
our spectral stability analysis results for the 2D square
and radial flat-top soliton solutions, respectively, that
emanate from the solution of the eigenvalue problem of
Eq. (40). We consider both the attractive case with
g = −1 (see panels (a) in the figures) and the repulsive
case with g = 1 (see panels (b) in the figures), where we
set q = 5 for both cases, and ω = −8 and ω = −4 for the
square and radial flat-top soliton cases, respectively. It
can be discerned from Fig. 17(a) that the square flat-top
soliton solution with g = −1 is spectrally stable from its
inception until Mc ≈ 6.5. At that value of M , we notice
a zero crossing of a pair of eigenvalues that give birth to
an unstable mode whose growth rate increases with M
(see, the top right panel of the figure). Similar to the
1D case, this signals the fact that the parent square flat-
top soliton branch undergoes a pitchfork bifurcation at
that point although we do not pursue them here. In ad-
dition, a secondary unstable mode emerges at M ≈ 14.2
from the same mechanism, i.e., a zero crossing of a pair of
eigenvalues (see, also the top left panel in the figure). On
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FIG. 18: Same as Fig. 17 but for the 2D radial flat-top
soliton solutions with (a) g = −1 (attractive) and (b) g = 1
(repulsive). The format of the figure is the same as of Fig. 14.
The parameter values here are ω = −4 and q = 5.

the other hand, and for the repulsive case, i.e., g = 1, the
square flat-top soliton solutions are deemed stable over
the parameter interval in M we considered herein. This is
clearly evident in Fig. 17(b) (see, in particular, the right
panel showcasing λr as a function of M). A similar result
is obtained for the radial flat-top soliton, and is shown
in Fig. 18 where in panels (a) and (b) we present our
spectral stability analysis results for g = −1 and g = 1,
respectively. The 2D radial flat-top soliton solution with
g = −1 is stable from its inception and becomes unstable
at Mc ≈ 6.8, i.e., slightly above the square case. This
instability emerges again from a zero crossing of a pair
of eigenvalues (see the left panel therein). The secondary
unstable mode appears at a larger value of M (in con-
trast to the square case), and in particular at M ≈ 19.3.
For the repulsive case of g = 1, the 2D radial flat-top
soliton is spectrally stable over the interval in M that we
consider in the figure.

Having discussed the spectral stability analysis results
for 2D flat-top solitons, we now present selective case
examples of the dynamics for square and radial flat-top
soliton solutions in Figs. 19 and 20. We mention in pass-
ing that we perturbed stationary flat-top soliton solu-
tions by adding a random perturbation with amplitude
10−4×max(|u(0)|) for stable solutions, and by adding the
eigenvector corresponding to the most unstable eigendi-
rection for unstable solutions. In Fig. 19, we check the
stable square (top panels) and radial (bottom panels)
flat-top soliton solutions for g = −1 and g = 1 in the
left and right columns, respectively of the figure. In par-
ticular, for the case with g = −1, the square and radial
flat-top soliton solutions at M = 5 are deemed stable
(see, Figs. 17(a) and 18(a)), and we depict the density
ρ(x, y) at t = 500 in the left column of Fig. 19. In the
right column of the figure, we again showcase the density
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FIG. 19: Spatial distribution of the density ρ(x, y) at t = 500
corresponding to perturbed square (top panels) and radial
(bottom panels) flat-top soliton solutions for g = −1 (left
column) and g = 1 (right column). The densities shown in
the left and right columns correspond to M = 5 and M =
20, respectively, i.e., at values of M where the solutions are
linearly stable (see, Figs. 17 and 18). For the square flat-top
solitons, ω = −8 whereas ω = −4 for the radial ones (with
q = 5 in both cases).

of perturbed square and radial flat-top soliton solutions
with g = 1 and M = 20. Recall that in the repulsive
case, the pertinent waveforms have been found to be sta-
ble (see, Figs. 17(b) and 18(b)), and this is corroborated
in the panels of the right column of Fig. 19 where again
the density ρ(x, y) at t = 500 is shown therein.

We conclude this section on numerical results for the
2D GPE by considering Fig. 20 which presents snapshots
of densities for the square (top panels) and radial (bot-
tom panels) flat-top soliton solutions at different instants
of time (see, the labels at each panel). These results cor-
respond to g = −1 and M = 12 for both cases, i.e.,
square and radial flat-top soliton solutions. At t = 0 (see
the leftmost panels in Fig. 20), we perturb the steady-
states therein along the most unstable eigendirection,
and around t = 285 and t = 230 we notice the onset of
the instability for the square and radial flat-top soliton
solutions, respectively. As time progresses, the instabil-
ity manifests itself (see the panels in the third column
in the figure), driving the dynamics towards an almost
stationary solution that is shown in the rightmost panels.
This transition on the dynamics is strongly reminiscent of
the one we observed in the 1D case, where the dynamics
lead to the stationary bright solitary profiles of Fig. 15.
Herein, we observe shifted 2D bright solitary pulses which
should be connected with the pitchfork bifurcations we
briefly mentioned previously. In other words, the “daugh-
ter” branches emanating from the square and radial flat-
top soliton solutions at M ≈ 6.5 and 6.8, respectively,
are expected to be stable (i.e., they inherit the stability
of the respective “parent” branches), and they form an
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FIG. 20: Snapshots of densities ρ(x, y) of linearly unstable square (top panels) and radial (bottom panels) flat-top soliton
solutions with M = 12, and g = −1. The rest of the parameter values are the same as in Fig. 19.

attractor upon which an unstable solution (such as
the ones shown in Fig. 20) is driven to.

VI. THREE DIMENSIONS

The methodology and stability analysis is similar in
three dimensions that we briefly discuss herein. For con-
stant density in a cube one takes the wave function to
be a product of 1D flat-top solitons. The simplest 3D
flat-top soliton is the product of three 1D flat-top soli-
tons in Cartesian coordinates. In this case we can take
ψ(x, y, z, t) = A(M)u(x, y, z)e−iωt where

u(x, y, z) = [ tanh(q − x) + tanh(q + x) ]

× [ tanh(q − y) + tanh(q + y) ]

× [ tanh(q − z) + tanh(q + z) ] , (44)

with

M =

∫ ∞
−∞

d3x |u(x, y, z)|2 = 64A2(M) [ 2q coth(2q)−1 ]3 .

(45)
This leads to a confining potential:

V (x, y, z) = −12 + V2(x, y, z) + V3(x, y, z), (46)

where

V2(x, y, z) = 2

[
(−2 cosh(2q) cosh(2x) + cosh(4x)− 3)

(cosh(2q) + cosh(2x))2

+
(−2 cosh(2q) cosh(2y) + cosh(4y)− 3)

(cosh(2q) + cosh(2y))2

+
(−2 cosh(2q) cosh(2z) + cosh(4z)− 3)

(cosh(2q) + cosh(2z))2

]
,

(47)

and

V3(x, y, z) =

gM sinh6(2q)(2q coth(2q)− 1)−3(cosh(2q) + cosh(2x))−2

(cosh(2q) + cosh(2y))2(cosh(2q) + cosh(2z))2
.

(48)

Similarly, in the radial case we obtain:

u(r) = A [ tanh(q − r) + tanh(q + r) ]

= A sinh(2q)sech(q − r)sech(q + r) , (49)

where r =
√
x2 + y2 + z2. In this case, the density is

given by ρ(r) = |u(r)|2 and the mass by

M = 4π

∫ ∞
0

r2 dr ρ(r) (50)

=
2

3
πA2

(
−12q2 + 2

(
4q2 + π2

)
q coth(2q)− π2

)
,

(51)

as well as the potential reads:

V (r) = sech2(q − r)
(
A2g sinh2(2q)sech2(q + r)− 1

)
+ tanh2(q − r) + tanh2(q + r) +

2 tanh(q − r)
r

− 2 tanh(q − r) tanh(q + r)− 2 tanh(q + r)

r

−sech2(q + r) + ω , (52)

with ω = −4 leading to V → 0 as r →∞. Again one can
perform a stability analysis using Derrick’s theorem, and
reach the conclusion that the attractive interaction case
becomes unstable as one increases the mass M whereas
the repulsive interaction case is always stable.
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VII. CONCLUSIONS

In this paper we have shown how to find confining
potentials such that the exact solution of the NLSE in
that potential has constant density in a specified do-
main. This inverse problem method is entirely general,
and one could have chosen Gaussian solutions [15], [16]
and multi soliton-like solutions. We then investigated
the stability properties of these solutions using a numer-
ical spectral stability analysis approach. We also tried to
understand the stability of these solutions using energy
landscape methods such as Derrick’s theorem. We found
that the “dark solitons” were always stable to small per-
turbations and the “bright solitons” exhibited different
critical masses for an instability to develop depending on
the type of perturbation applied.

We corroborated these findings by performing numer-
ical simulations as well as numerical stability analy-
sis computations. In particular, for self-repulsive in-
teractions, both results from Derrick’s theorem and
Bogoliubov-de Gennes (BdG) analysis predict stability.
However for the self-attractive case the BdG stability
analysis results showed that for g = −1 (bright solu-
tions), the flat-top soliton solutions undergo a symmetry-
breaking evolution, i.e., a pitchfork bifurcation where the
solution itself follows the most unstable eigenvalue direc-
tion, and eventually reaches a nearby stable solution over
the course of time integration of the GPEs. This insta-
bility sets in at a much lower mass than the usual self-
similar blowup instability found in the NLSE without an
external potential.

In that situation, the critical mass for this instability
to set in is well described by Derrick’s theorem. Derrick’s
theorem considers dilations or contractions only which
preserve the x → −x symmetry. Thus it cannot shed
light on potential modes that may exhibit an instability
at earlier values of the mass. Another interesting prop-
erty that we find on applying Derrick’s theorem is that
because the external potential is a function of M , it is
no longer true that the second derivative becomes zero
for β = 1 at the critical mass. In fact it always stays
positive. What happens is that near β = 1 an inflection
point develops as we increase M .

To partially overcome the parity preserving defect of
only considering self-similar perturbations, we consid-
ered how the energy changes when we change the position
of one of the components of the flat-top soliton (i.e. the
kink). This deformation breaks the parity symmetry of
the problem. We found that indeed the energy minimum
as a function of this position parameter starts shifting
from the origin at a critical mass which is more in line
with the results of the BdG analysis.
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Appendix A: Units

In ordinary units, the time-dependent GPE is given by

i~
∂ψ(r, t)

∂t
=
{
− ~2

2m
∇2 + U0 |ψ(r, t)|2 + V (r)

}
ψ(r, t) ,

(A1)
where at low energy we have that the interaction coeffi-
cient is given by:

U0 =
4π~2a

m
, (A2)

with a (either a > 0 or a < 0) the scattering length being
on the order of atomic size. The wave function for the
GPE is normalized so that

N =

∫
d3x |ψ(r, t)|2 , (A3)

where N is the particle number. We now need to relate a
length scale b to a time (or frequency ω0) scale. We take
this to be such that:

~
2mω0 b2

= 1 , (A4)

so that if we set ~ = 1 and m = 1/2, we have simply
ω0 = 1/b2. This way, and upon setting:

ξ = r/b, τ = ω0 t, φ(ξ, τ) =

√
b3

N0
ψ(b r, ω0t) , (A5)

the GPE [cf. Eq. (A1)] becomes dimensionless, that is

i
∂φ(ξ, τ)

∂τ
=
{
−∇2

ξ+g |φ(ξ, τ)|2 +W (ξ)
}
φ(ξ, τ), (A6)

where

g =
N0 U0

~ω0 b3
= 8πN0

(a
b

)
, W (ξ) =

V (r/b)

~ω0
. (A7)

Using the inverse problem method we set

φ(ξ, τ) = u(ξ) e−iωτ , (A8)

and found that

W (ξ) = ω + [∇2
ξu(ξ) ]/u(ξ)− g |u(ξ)|2 . (A9)

The particle number is now given by

N/N0 =

∫
d3ξ u2(ξ) . (A10)
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It would be natural to take b = q, which is the range
of the external potential. Then in order for g ∼ 1, we
should take:

N0 ∼
1

8π

q

a
� 1 , (A11)

so that if we take N/N0 ∼ 1, we see that since N0 is a
large number, this is a reasonable scaling. This means
that we can take q/b = 1 in the scaled external poten-
tial. For 7Li, the positive s-wave scattering length is
∼ 34 a0 [29] whereas the negative scattering length is
on the order of −15 a0 [30], where a0 = 53 × 10−12 m
is the Bohr radius. The mass of 7Li is 7.016 u where

u = 1.660 × 10−27 kg is the atomic mass unit, the re-
ciprocal of Avogadro’s number. The critical temperature
for a BEC to form must be on the order of T ∼ 5µK.

Appendix B: Curvature of Derrick energy function
at minimum

In this appendix, we compute the second derivative of
the Derrick energy function h(β,M) in 1D for the at-
tractive case (g = −1) evaluated at β = 1. The first
two derivatives can be determined analytically at β = 1.
Indeed, upon using the fact that

∂|u|2

∂β

∣∣∣
β=1

=
M sinh2(2q)(cosh(2q)− 4x sinh(2x) + cosh(2x))

(2q coth(2q)− 1)(cosh(2q) + cosh(2x))3
, (B1)

and

∂2|ũ|2

∂β2

∣∣∣
β=1

= −4Mx sinh2(2q)(2 cosh(2q)(sinh(2x) + x cosh(2x)) + 4x+ sinh(4x)− 2x cosh(4x))

(2q coth(2q)− 1)(cosh(2q) + cosh(2x))4
, (B2)

we indeed find that ∂h
∂β |β=1 = 0. For the second derivative of h with respect to β, we get contributions from h1, j1

and j2 (see, Eqs. (21)) which tell us the answer depends on g as well as M . The second derivative is explictly given
by:

∂2h

∂β2
|β=1 = 2f1(q) + gMf2(q) + f3(q), (B3)

where

f1(q) =
csch3(2q)(9 sinh(2q) + sinh(6q)− 24q cosh(2q))

6(2q coth(2q)− 1)
,

f2(q) =

∫
dx |u0(x)|2 |uββ(x, β,M)|2|β=1/M

2 ,

f3(q) =

∫
dx
(cosh(4x)− 2 cosh(2q) cosh(2x)− 3

2 [ cosh2(q) + sinh2(x) ]2

) |uββ(x, β,M)|2|β=1

M
. (B4)

The functions f2(q) and f3(q) are explicitly known in
terms of PolyLog functions [24] but presenting them
would not be very informative. The surprise is that the
second derivative of h(β,M) evaluated at β = 1 is posi-
tive for all negative values of g. Thus one cannot deter-
mine the critical number of atoms for an instability to

arise from the second derivative alone. The instability
caused by a perturbation in the width degree of freedom
is a result of the minimum getting shallower and shal-
lower as we increase M . This is seen in our numerical
evaluation of h(β,M).
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