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To which degree the average entanglement entropy of midspectrum eigenstates of quantum-chaotic
interacting Hamiltonians agrees with that of random pure states is a question that has attracted
considerable attention in the recent years. While there is substantial evidence that the leading
(volume-law) terms are identical, which and how subleading terms differ between them is less clear.
Here we carry out state of the art full exact diagonalization calculations of clean spin-1/2 XYZ and
XXZ chains with integrability breaking terms to address this question in the absence and presence
of U(1) symmetry, respectively. We first introduce the notion of maximally chaotic regime, for
the chain sizes amenable to full exact diagonalization calculations, as the regime in Hamiltonian
parameters in which the level spacing ratio, the distribution of eigenstate coefficients, and the
entanglement entropy are closest to the random matrix theory predictions. In this regime, we carry
out a finite-size scaling analysis of the subleading terms of the average entanglement entropy of
midspectrum eigenstates when different fractions ν of the spectrum are included in the average.
We find indications that, for ν → 0, the magnitude of the negative O(1) correction is only slightly
greater than the one predicted for random pure states. For finite ν, following a phenomenological
approach, we derive a simple expression that describes the numerically observed ν dependence of
the O(1) deviation from the prediction for random pure states.

I. INTRODUCTION

Entanglement is one of the most fundamental and in-
triguing features of quantum mechanics [1, 2]. In the last
two decades, we have learned that in physical Hamilto-
nians there are qualitative differences between entangle-
ment in ground states, which typically exhibit an “area-
law” entanglement entropy [3], and in highly-excited
energy eigenstates, which typically exhibit a “volume-
law” entanglement entropy [4]. Entanglement has also
been conjectured to serve as a diagnostic for quantum
chaos and integrability [5]. Using full exact diagonal-
ization calculations, the average bipartite entanglement
entropies of highly-excited eigenstates of spin-1/2 XXZ
chains were shown to behave qualitatively differently at
and away from integrability [5]. Specifically, while the
average in both regimes exhibits a leading volume-law
term, the coefficient of the volume in that term was
found to be maximal for midspectrum eigenstates in the
quantum-chaotic regime (consistent with findings in ear-
lier works [6, 7]; see also Refs. [8–10]), and lower than
maximal and subsystem-fraction dependent at integrabil-
ity (as found for quadratic models and integrable models
mappable onto quadratic ones [11–18]).

Following on the previously mentioned studies, our fo-
cus in this work is the entanglement entropy of highly
excited eigenstates of clean spin-1/2 quantum-chaotic in-
teracting Hamiltonians. We consider chains with L sites
(we change L to carry out scaling analyses) with peri-
odic and open boundary conditions. For pure quantum
states |ψ⟩, which we will take to be Hamiltonian eigen-

states, we study the (bipartite) entanglement entropy of
a subsystem A (with LA contiguous sites) after tracing
out the complement B (with LB = L − LA contiguous
sites), resulting in

ρ̂A = TrB |ψ⟩⟨ψ|. (1)

The von Neumann entanglement entropy (in short, the
entanglement entropy) of subsystem A is

SA = −Tr(ρ̂A ln ρ̂A). (2)

The entanglement entropy of random pure states with
the same Hilbert space in a lattice with L sites (whose
spacial configuration is irrelevant) is a natural counter-
part to compare to the entanglement entropy of eigen-
states of quantum-chaotic interacting Hamiltonians [4].
By now, there is strong evidence that the leading term
in the average entanglement entropy is the same for mid-
spectrum eigenstates and for random pure states [4]. An
important question is then to which degree the average
entanglement entropy of those midspectrum eigenstates
agrees, beyond the leading volume-law term, from the
average over random pure states.

For spin-1/2 chains with U(1) symmetry (particle-
number conservation in the spinless fermions language)
this question was explored by two of us (L.V. and M.R.)
in Ref. [6]. Away from the zero magnetization sector
(“half-filling” for fermions) the main finding was that,
when one traces out 1/2 of the lattice sites, the aver-
age entanglement entropy of random pure states exhibits
a first subleading term that scales with the square root
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of the number of sites in the lattice. The numerical cal-
culations then indicated that, remarkably, the average
entanglement entropy of the midspectrum eigenstates of
the quantum-chaotic spin-1/2 chain exhibit the same sub-
leading term. At zero magnetization, when one traces out
1/2 of the lattice sites, the first subleading term in the
average entanglement entropy of random pure states is
O(1) [4]. The numerical calculations in Ref. [6] indicated
that the same is true about the average entanglement en-
tropy of the midspectrum eigenstates, with a value of the
constant that is close to that for random pure states.

The leading terms of the average entanglement entropy
of random pure states with fixed total magnetization Sz,
magnetization per site sz = Sz/L, or, equivalently, at
spinless fermions filling n = sz + 1/2, were fully derived
in Ref. [4] using methods introduced in Ref. [19]:

⟨SA⟩n =− [n lnn+ (1− n) ln(1− n)]LA

−
√
n(1− n)

2π

∣∣∣∣ln(1− n

n

)∣∣∣∣ δf, 12√L
+
f + ln(1− f)

2
− 1

2
δf, 12 δn,

1
2
+ o(1), (3)

where LA ≤ L
2 , and o(1) is used for terms that vanish in

the thermodynamic limit. In Eq. (3), f = LA/L stands
for the “subsystem fraction”. To obtain the results for
LA >

L
2 (f > 1

2 ), one just needs to replace LA → L−LA
in Eq. (3).

It is important to remark that because of the U(1)
symmetry, in Eq. (3) there is an O(1) “mean-field” cor-
rection to the average entanglement entropy of random
pure states at all values of the magnetization and sub-
system fractions, which was derived in Ref. [6],

S
(1)
MF =

f + ln(1− f)

2
. (4)

The fact that this is the only O(1) correction to the lead-
ing volume-law term away from f = 1/2 was proved later
in Ref. [4]. At f = 1/2, and only at zero magnetization,
the additional −1/2 correction is the same as that found
by Page in the absence of U(1) symmetry [20]. In the lat-
ter case, the average entanglement entropy over random
states reads

⟨SA⟩ = LA ln 2− 1

2
δf, 12 + o(1). (5)

Recent works have attempted to identify the reasons
behind, and quantify the differences, between the average
entanglement entropy over random pure states and over
Hamiltonian eigenstates in the absence of U(1) symme-
try [21–24]. In Ref. [21], Huang conjectured (and pro-
vided some numerical evidence) that the average entan-
glement entropy over all eigenstates of local quantum-
chaotic interacting Hamiltonians has the form

S̄A = LA ln 2 +
ln(1− f)

2
− 2

π
δf,1/2. (6)

This formula was derived under an assumption of chaotic-
ity and locality of the Hamiltonian. The result in Eq. (6)
coincides with the one obtained in Ref. [4] for the aver-
age entanglement entropy of random pure states in the
presence of U(1) symmetry when all (properly weighted)
magnetization sectors are included in the average.

Following on Ref. [21], and on numerical results re-
ported in Ref. [22], Huang conjectured (and provided
some numerical evidence) that the average entangle-
ment entropy over midspectrum eigenstates of (local)
quantum-chaotic interacting Hamiltonians at f = 1/2
has the form [23]

S̄(ν)
A =

L− 1

2
ln 2 +

2
[
e−(erf−1 ν)2 − 1

]
νπ

+

[
e−(erf−1 ν)2 + 2ν − 2

]
erf−1 ν

2ν
√
π

, (7)

where ν is the fraction of the Hilbert space over which one
carries out the average. For ν = 1, one recovers Eq. (6),
while for ν = 0+ one obtains

S̄(0+)
A =

L

2
ln 2− ln 2

2
− 1

4
, (8)

which coincides with the result in Eq. (3) at f = 1/2
and n = 1/2, i.e., Eq. (8) is identical to the result for the
average over random pure states with fixed magnetization
sz = 0 at f = 1/2. Building on these findings, in Ref. [25]
it was argued that at ν = 0+ energy conservation in
quantum-chaotic local Hamiltonians [26] plays a similar
role to that of U(1) symmetry in random pure states.

In this work, we study the subleading corrections to
the average entanglement entropy of midspectrum eigen-
states in quantum-chaotic interacting spin-1/2 chains
without U(1) symmetry [21–25] and with U(1) symme-
try [6]. We carry out state of the art numerical calcu-
lations of clean spin-1/2 XYZ and XXZ models with in-
tegrability breaking terms in chains with periodic and
open boundary conditions. Using various quantum chaos
indicators, we first scan a wide range of parameters for
those models and introduce the concept of the maximally
chaotic regime. Namely, a regime in Hamiltonian pa-
rameters in which, for the chain sizes that are accessible
to full exact diagonalization calculations, the quantum-
chaos indicators considered are closest to the random
matrix theory predictions. It is in this regime that we
find that the midspectrum energy eigenstates exhibit the
greatest entanglement entropy. We then carry out finite-
size scaling analyzes of the average eigenstate entangle-
ment entropy in the maximally chaotic regime.

The paper is organized as follows. In Sec. II, we in-
troduce the models under consideration and discuss de-
tails about our numerical calculations. The maximally
chaotic regime is identified in Sec. III. The results for the
finite-size scaling analyzes of the average entanglement
entropy of midspectrum energy eigenstates are presented
in Sec. IV. We summarize our results in Sec. V.
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II. MODELS

We study the clean spin-1/2 XYZ chain (ĤXYZ) with
nearest (Ĥ1) and next-nearest (Ĥ2) neighbors interac-
tions in a magnetic field (ĤF ):

ĤXYZ = Ĥ1 + Ĥ2 + ĤF , (9)

Ĥ1 = J1
∑
ℓ

[(1− η)ŝxℓ ŝ
x
ℓ+1 + (1 + η)ŝyℓ ŝ

y
ℓ+1 +∆1ŝ

z
ℓ ŝ
z
ℓ+1],

Ĥ2 = J2
∑
ℓ

[(1− η)ŝxℓ ŝ
x
ℓ+2 + (1 + η)ŝyℓ ŝ

y
ℓ+2 +∆2ŝ

z
ℓ ŝ
z
ℓ+2],

ĤF =
∑
ℓ

(hz ŝzℓ + hxŝxℓ ),

where ŝτℓ , with τ = x, y, z, are the spin-1/2 operators
at site ℓ. We fix the five parameters J1 = 1 (unit of
energy), η = 0.5, ∆1 = 0.3, ∆2 = 0.3, hx = 0.3, whereas
the remaining two parameters J2, hz are determined by
the analysis discussed in Sec. III.

In our full exact diagonalization calculations, we con-
sider chains with periodic boundary conditions, i.e.,
ŝτL+1 = ŝτ1 and ŝτL+2 = ŝτ2 (τ = x, y, z), and with open
boundary conditions. With periodic boundary condi-
tions, the Hamiltonian in Eq. (9) exhibits translation
symmetry. We resolve it resulting in a block-diagonal
structure of the Hamiltonian in which each block is la-
beled by the total quasimomentum k, and has a total
number of states ∼ 2L/L. The blocks with k = 0 and
π are further split using to the reflection symmetry also
present in the Hamiltonian, resulting in sub-blocks with
∼ 2L/(2L) states. For open boundary conditions, only
reflection symmetry is present, resulting in a splitting of
the Hamiltonian in two blocks with ∼ 2L/2 states. For
periodic boundary conditions, the largest chains that we
study have L = 22 for k = 0 and π, and L = 20 for all the
other total quasimomentum sectors. For open boundary
conditions, the largest chains that we study have L = 18.

The second model we study is the clean spin-1/2 XXZ
chain (ĤXXZ) with nearest (Ĥ ′

1) and next-nearest (Ĥ ′
2)

neighbors interactions:

ĤXXZ = Ĥ ′
1 + Ĥ ′

2, (10)

Ĥ ′
1 = J1

∑
ℓ

[ŝxℓ ŝ
x
ℓ+1 + ŝyℓ ŝ

y
ℓ+1 +∆1ŝ

z
ℓ ŝ
z
ℓ+1],

Ĥ ′
2 = J2

∑
ℓ

[ŝxℓ ŝ
x
ℓ+2 + ŝyℓ ŝ

y
ℓ+2 +∆2ŝ

z
ℓ ŝ
z
ℓ+2],

which is obtained from Eq. (9) by setting η = hx = hz =
0. We fix J1 = 1 and ∆2 = 0.3, whereas the remaining
parameters J2, ∆1 are determined by the analysis dis-
cussed in Sec. III.

The spin-1/2 XXZ chain has an additional U(1) sym-
metry, so that the total magnetization (Ŝz =

∑
ℓ ŝ
z
ℓ ) is

a conserved quantity. At zero magnetization, it further
has a (Z2) spin-flip symmetry. We resolve both sym-
metries in our calculations, which are carried out in the

zero total magnetization sector. For chains with peri-
odic boundary conditions, this further reduces the num-
ber of states in the blocks that need to be diagonalized
to ∼

(
L
L/2

)
/(4L) at k = 0 and π, and ∼

(
L
L/2

)
/(2L) for all

other total quasimomentum sectors. For the chains with
open boundary conditions, we need to fully diagonalize
blocks with ∼

(
L
L/2

)
/4 states. For periodic boundary

conditions, we study chains with up to L = 26 for k = 0
and π, and up to L = 24 for all other k sectors. For open
boundary conditions, we study chains with up to L = 20.

Unless stated otherwise, the exact diagonalization re-
sults reported correspond to averages over all symmetry
blocks for any given chain size L, and the number of
eigenstates reported in the context of the averages is the
one taken from each symmetry block.

III. MAXIMALLY CHAOTIC REGIME

Several quantities, associated to the eigenenergies or
to the energy eigenstates, have been traditionally used
to quantify “quantum chaos” in many-body interacting
Hamiltonians [27]. They are computed in model Hamil-
tonians and compared to the predictions from random
matrix theory (RMT). Their agreement, or the improve-
ment of their agreement with increasing system size, are
considered a hallmark of many-body quantum chaos.

Since various limits of one dimensional chains (such as
the ones considered here) are integrable, when carrying
out scaling analyses to make predictions about generic
quantum-chaotic interacting models it is desirable to be
as “far away” as possible from integrable points. In this
spirit, in this section we identify the maximally chaotic
regime for the chain sizes that we can study using full
exact diagonalization calculations of the Hamiltonians in
Sec. II. The maximally chaotic regime is the regime in the
model parameters in which we find the closest agreement
between the exact diagonalization results and the RMT
predictions.

A. Level spacing ratio

The statistical properties of the eigenenergies {Eα} of
quantum many-body Hamiltonians are one of the most
commonly used indicators of quantum chaos [27]. One of
the simplest and most studied associated quantity is the
distribution of the ratios of consecutive level spacings,
defined as [28]:

rα =
min{δα, δα+1}
max{δα, δα+1}

, (11)

where δα = Eα − Eα−1 is the energy difference between
consecutive levels. The RMT prediction for the aver-
age of rα in the Gaussian orthogonal ensemble (GOE) is
r̄GOE = 0.5307 [29], and this is the result one expects to
obtain in quantum-chaotic interacting Hamiltonians.
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FIG. 1. Statistics of the level spacing ratio, see Eq. (11).
(a),(b) Average level spacing ratio r̄ for 50% of midspectrum
eigenstates in the XYZ (L = 18) and XXZ (L = 20) models,
respectively. The solid (dashed) horizontal line denotes the
GOE (Poisson distribution) prediction r̄GOE = 0.5307 (r̄P =
0.3867). (c),(d) Corresponding distributions P (r) for four sets
of Hamiltonian parameters. The solid [dashed] line denotes
the GOE [Poisson distribution] prediction PGOE(r) =

27
4
(r +

r2)/(1 + r + r2)5/2 [PP(r) = 2/(1 + r)2].

In Fig. 1(a) [1(b)], we show the average level spacing
ratio r̄ for the XYZ [XXZ] model as a function of J2 for
different values of hz [∆1] in a chain with L = 18 [L =
20]. For both the XYZ and XXZ models, the deviations
from the GOE predictions are greatest for small values
of J2. For the XYZ chain, we also find that large values
of hz extend the regime in J2 in which greater deviations
are seen from the RMT prediction, while in the XXZ
model the extent of that region is quite insensitive to
the value of ∆1 for the range of parameters shown. In
Figs. 1(c) and 1(d), we show exemplary distributions of r
for four sets of Hamiltonian parameters for the XYZ and
XXZ models, respectively, and how they compare to the
predictions for the GOE and the Poisson distribution.

Our results in Fig. 1 show that there is a broad regime
(of the two Hamiltonian parameters that we have not
fixed in both models) in which there is a nearly perfect
agreement with the GOE predictions (up to the statisti-
cal fluctuations necessarily present in our finite samples
of eigenenergies). The parameters of both models that
are fixed in Fig. 1 were selected to ensure such an agree-
ment with the GOE predictions for a wide range of the
parameters left to fix. We spare the readers a discussion
of that tedious broader exploration.

B. Eigenstate coefficients

Next, we study the distribution of eigenstate coeffi-
cients, which we find to be a more sensitive diagnostic of
quantum chaos than r. Specifically, given a Hamiltonian
eigenstate ψα =

∑
m c

α
m |m⟩, expanded in the computa-

tional basis {|m⟩}, we study the distribution of cαm over
the midspectrum eigenstates.

Due to the presence of translation symmetry, the coef-
ficients are complex in all total quasimomentum sectors
except for k = 0 and π. Hence, we proceed in two steps.
In the first step, we consider eigenstates from a single
symmetry block. If the eigenstate coefficients are com-
plex, we rescale both the real and the imaginary parts
separately by their corresponding standard deviations
σ [i.e., Re(cαm) → Re(cαm)/σ and Im(cαm) → Im(cαm)/σ,
where σ ∝ 1/

√
2D with D the number of states in the

corresponding sector], while in case of real coefficients
we directly rescale the coefficients (i.e., cαm → cαm/σ,
where σ ∝ 1/

√
D with D the number of states in the

corresponding sector). In the second step, we collect
the rescaled real and imaginary parts of all the coeffi-
cients, and study the statistics of their absolute values,
denoted as z in this paper. The probability density func-
tion (PDF) of z, P (z), is contrasted to a Gaussian PDF
of the form

P̄ (z) =
2√
2π
e−

z2

2 , (12)

where a prefactor of 2 appears in the numerator because
we study the distribution of absolute values, see Ap-
pendix B. We split and analyze the distributions of the
coefficients this way to avoid having to deal with differ-
ent distributions for the real and complex sectors. The
distribution of the absolute values of coefficients cαm in
the complex sectors follows a chi-squared distribution,
see Appendix B for details.

The main panels of Fig. 2 show the PDFs P (z) for the
XYZ [Fig. 2(a)] and XXZ [Fig. 2(b)] models. We take
J2 = 1.0, for which the average level spacing ratio r̄ in
Fig. 1 matches the GOE prediction for the model param-
eters under investigation. The results in Fig. 2 show that
the distribution of eigenstate coefficients is a more sensi-
tive probe of many-body quantum chaos than r. Specif-
ically, all the PDFs in Fig. 2 show deviations from the
Gaussian distribution P̄ (z), which are most visible in the
tails of the distributions. Several works [22, 30–33] have
studied distributions of eigenstate coefficients and also
observed deviations from the Gaussian distribution.

We find that, for J2 = 1.0, the PDFs P (z) are closest
to the Gaussian function P̄ (z) at small hz < 1 in the
XYZ model and at small ∆1 < 1 in the XXZ model. In
order to quantify the deviations from the Gaussian PDF,
as done in Ref. [5], we compute the ratio

Γψ =

〈
z2
〉

⟨z⟩2
, (13)
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FIG. 2. Distribution of eigenstate coefficients z (see text)
obtained using 100 midspectrum eigenstates from each total
quasimomentum sector. In our calculations we take J2 = 1.0,
for: (a) the XYZ model (L = 18) and (b) the XXZ model
(L = 20). The dashed lines show P̄ (z) from Eq. (12). (Insets)
Γψ from Eq. (13) for distributions such as the ones shown in
the main panels, for three values of J2 (J2 = 1.0, 2.0, and
4.0). The results for Γψ in the insets are plotted as functions
of: (a) hz, and (b) ∆1.

which yields Γψ = π/2 for the Gaussian PDF from
Eq. (12). Numerical results for Γψ are shown in the insets
of Fig. 2 for J2 = 1.0, 2.0, and 4.0 as functions of: (a)
hz for the XYZ model, and (b) ∆1 for the XXZ model.
From those plots we conclude that, for the closest agree-
ment with the RMT prediction, one needs small values
of hz for the XYZ model and small values of ∆1 for the
XXZ model; and that, in the latter regimes, J2 ∼ 2.0
gives the values that are closest to π/2.

In Appendix A, we show as density plots the normal-
ized differences |Γψ−π/2|/(π/2) as functions of J2, hz for
the XYZ model and as functions of J2, ∆1 for the XXZ
model. We compare them with results for the normal-
ized differences |r̄ − r̄GOE|/r̄GOE computed in the same
parameter regimes. Those plots provide a more complete
picture of the regimes in which the results for the model
Hamiltonians are closest to the RMT predictions, and
about the sensitivity of the results obtained for r̄ vs that
of the results obtained for Γψ.

As a side remark, we note that for the system sizes
considered in Fig. 2, Γψ is slightly greater than π/2
even in the maximally chaotic regime of both models.
In Appendix C, we carry out finite-size scaling analy-
ses of the normalized difference |Γψ − π/2|/(π/2) for the
XYZ model in chains with both periodic and open bound-
ary conditions. We show that the normalized differences
decrease with increasing system size, but they decrease
more slowly than for eigenstates of random matrices and
than for pure random states with coefficients that are
drawn from a normal distribution.

C. Average eigenstate entanglement entropy

To close this section on the maximally chaotic regime,
we explore the behavior of the eigenstate entanglement
entropy SA of Hamiltonian eigenstates, see Eq. (2). We
focus on bipartitions in two halves, i.e., we set the subsys-
tem fraction to f = 1/2, and study the same parameter
regimes of the Hamiltonians as in Secs. IIIA and III B.

Figures 3(a) and 3(b) show the average entanglement
entropy S̄A in both models for the same Hamiltonian pa-
rameters as those in the study of the average level spacing
r̄ in Figs. 1(a) and 1(b). We average SA over 100 mid-
spectrum eigenstates from each symmetry block and di-
vide the results by the two leading terms in Page’s predic-
tion, see ⟨SA⟩ in Eq. (5). A comparison between Fig. 3(a)
[3(b)] and Fig. 1(a) [1(b)] reveals a similar trend between
the deviation of S̄A from Page’s leading order prediction
and the deviation of r̄ from the RMT prediction. We do
note that the deviations in the average entanglement en-
tropy are more pronounced at small J2 in both models.
This is more prominent for the XXZ model in Fig. 3(b),
for which we find that S̄A at moderate ∆1 increases with
J2 even in the regime J2 > 1. This observation motivate
us in the next section to set J2 = 2.0 to carry out the
scaling analyses.
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FIG. 3. Scaled average eigenstate entanglement entropy
S̄A/⟨SA⟩, obtained after tracing out 1/2 of the chain, for the
same models and parameters as in Fig. 1. (a),(b) Results for
the XYZ (L = 18) and XXZ (L = 20) models, respectively.
The averages are calculated taking 100 midspectrum eigen-
states from each symmetry block, and the Page value ⟨SA⟩ is
taken to be the two leading terms in Eq. (5). (c),(d) Distri-
butions P (SαA/⟨SA⟩), of the eigenstate entanglement entropies
SαA used when computing the averages, for four sets of Hamil-
tonian parameters.
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In Appendix A, we show density plots of the normal-
ized differences between S̄A and Page’s leading order pre-
diction for ⟨SA⟩, |S̄A−⟨SA⟩|/⟨SA⟩, as functions of J2, hz
for the XYZ model and as functions of J2, ∆1 for the
XXZ model. Like the results for r̄ and Γψ, those plots
provide a more complete picture of where the agreement
between the averages over Hamiltonian eigenstates and
the theoretical expectations are closest.

In Figs. 3(c) and 3(d), we show exemplary distributions
P (SαA/⟨SA⟩), of the eigenstate entanglement entropies SαA
used when computing the averages, for four sets of Hamil-
tonian parameters for the XYZ and XXZ models, respec-
tively. One can see that the closer the average S̄A is to
Page’s result the narrower is the distribution (or, what
is the same, higher averages come from narrower distri-
butions). Narrow distributions of eigenstate expectation
values of few-body observables are a hallmark of eigen-
state thermalization and, hence, of quantum chaos [27].
It is remarkable that the same applies to the entangle-
ment entropy of 1/2 of the system, which is a multi-
body observable. The most chaotic regime in Fig. 3(c)
[Fig. 3(d)] is found to be the regime of J2 ∼ 2 and small
hz (∆1) in the XYZ (XXZ) model.

Summarizing our analysis in this section, we showed
that all three quantities under investigation, the level
spacing ratio r̄, the statistics of the eigenstate coeffi-
cients cαm, and the eigenstate entanglement entropy SA,
yield consistent information about the degree of quantum
chaos in different regimes of model parameters, with the
latter two depending more strongly on the values of the
model parameters.

IV. SCALING OF THE AVERAGE
ENTANGLEMENT ENTROPY

We now turn our attention to the main subject of our
work, i.e., the behavior of the average entanglement en-
tropy of midspectrum eigenstates. We are interested in
exploring their scaling with the system size and with the
fraction of midspectrum eigenstates taken to carry out
the average. Motivated by the results from Sec. III and
Appendix A, we select model parameters for which the
system is found to be maximally chaotic. Specifically,
we set J2 = 2.0 and hz = 0.2 for the XYZ model, and
J2 = 2.0 and ∆1 = 0.2 for the XXZ model.

It is well known that the eigenstate entanglement en-
tropy of local Hamiltonians is a concave function of the
eigenenergies, with a maximum in the middle of the en-
ergy spectrum, namely, about Ē = Tr(Ĥ)/D, with D be-
ing the dimension of the entire Hilbert space [7, 8, 22, 26,
34, 35]. This property is illustrated in the insets in Fig. 4
for our two models, using periodic (top panels) and open
(bottom panels) boundary conditions. In those insets,
we plot SαA vs ∆Eα = Eα − Ē for all symmetry blocks,
where Ē is the average energy in the symmetry block to
which Eα belongs (Ē → Ē with increasing system size,
as shown in Fig. 13). Consequently, in finite systems, the
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(∆Eα/σ)2

(b)

P
B

C
XXZ model

L = 20

L = 22

L = 24

0 10 20 30
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α A
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−10 0 10∆Eα

2

4

6

S
α A
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FIG. 4. Eigenstate entanglement entropies SαA at f = 1/2, in
all symmetry blocks, as functions of ∆Eα (see text). The
main panels show the deviation from the average S̄

(Λ)
A vs

(∆Eα/σ)
2 [σ2 is defined in Eq. (16)] for different system sizes,

while the insets show SαA vs ∆Eα for the largest system size
computed in each case. We calculate S̄

(Λ)
A using Λ = 100

midspectrum eigenstates from each quasimomentum sector.
(a),(b) Results for chains with periodic boundary conditions
(PBCs), for the XYZ and XXZ models, respectively. (c),(d)
Results for chains with open boundary conditions (OBCs), for
the XYZ and the XXZ models, respectively. The solid lines in
the insets show fits of the eigenstate entanglement entropies
to Eqs. (14) and (15), in which the only fitting parameter is
c. The values of S̄

(Λ)
A and c2 for the curves shown are: (a)

S̄
(Λ)
A = 6.35 and c2 = 3.26, (b) S̄

(Λ)
A = 7.66 and c2 = 2.98, (c)

S̄
(Λ)
A = 5.65 and c2 = 2.89, and (d) S̄(Λ)

A = 6.27 and c2 = 2.71.
(For the fits, we use the entanglement entropies of the central
50% of the energy eigenstates.) The solid lines in the main
panels show (∆Eα)

2/(c2 σ2), where c comes from the fits in
the insets, and σ is computed for each system size.

average eigenstate entanglement entropy depends on the
number of states used to carry out the average. In large
systems, as we show in what follows, this translates into
a dependence of the subleading O(1) term on the fraction
of eigenstates used to carry out the averages.

About the maximum value of SαA, which can be com-
puted as an average S̄(Λ)

A over a fixed number Λ of mid-
spectrum eigenstates, the insets in Fig. 4 (containing all
symmetry blocks) make apparent that one can write the
eigenstate entanglement entropy SαA as

SαA = S̄
(Λ)
A − C2(∆Eα)

2, (14)

where C, in general, depends on the Hamiltonian param-
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eters and the system size. We find that

C ≃ 1

c σ
, (15)

where σ2 is the variance of the energy of the entire energy
spectrum

σ2 =
1

D
∑
α

(Eα − Ē)2, (16)

and c is independent of the system size. This is demon-
strated by the data collapse seen in the main panels in
Fig. 4, in which we plot S̄(Λ)

A − SαA vs (∆Eα/σ)
2 for the

entire energy spectrum in chains with different sizes. Re-
markably, the fits of the numerical results in insets in
Fig. 4 to Eqs. (14) and (15) show that those equations
provide an excellent description of SαA over most of the
energy spectrum. This is further confirmed by the data
collapse in the main panels, which occurs about the fits.

In this work we carry out two types of averages for the
eigenstate entanglement entropy. The first one was al-
ready mentioned before, namely, we average over a fixed
number Λ of midspectrum eigenstates. This fixed num-
ber, as one increases the system size, corresponds to
an exponentially vanishing fraction relative to the total
number of eigenstates. The energy eigenstates in that
average have eigenenergies Eα → Ē exponentially fast
with increasing system size. In the second type of av-
erage, we use a finite fraction ν of midspectrum eigen-
states, ν ∈ (0, 1], and we denote the average as S̄(ν)

A . It
is important to emphasize that, when computing the av-
erages, we define the “midspectrum eigenstates” for each
symmetry block separately, i.e., they are the eigenstates
whose eigenenergies are closest to the mean energy Ē in
each symmetry block.

Using Eqs. (14) and (15), we can estimate the depen-
dence of the average eigenstate entanglement entropy on
the fraction ν of midspectrum eigenstates used to com-
pute the averages. Let us begin by noticing that, for
models with few-body interactions (our interest here),
the density of states is Gaussian about the mean energy
Ē. Introducing a new variable E = E − Ē, we can write

ρ(E) = D 1√
2πσ

e−
E2

2σ2 , so that
∫ ∞

−∞
ρ(E)dE = D,

(17)
and has a variance σ2 ∝ L [36, 37].

Using Eq. (17), we can write

ν =
1

D

∫ Eν

−Eν

ρ(E)dE = erf

( Eν√
2σ

)
, (18)

which shows that Eν ∝ σ ∝
√
L for ν ∈ (0, 1). The

average entanglement entropy over this energy window is
then given by

S̄(ν)
A =

1

νD

∫ Eν

−Eν

ρ(E)SA(E) dE . (19)

Inserting Eqs. (14), (15), and (17) into the equation
above, one obtains

S̄(ν)
A =

1

νD

∫ Eν

−Eν

D√
2πσ

e−
E2

2σ2

[
S̄
(Λ)
A − E2

c2σ2

]
dE =

= S̄
(Λ)
A − 1

c2

[
1−

√
2

π

Eν
ν σ

e−
E2
ν

2σ2

]
. (20)

From Eq. (18), we know that Eν/σ =
√
2 erf−1(ν).

Hence, we find that the concave functional form of SαA
vs ∆Eα with a maximum in the middle of the spectrum
results in an O(1) correction of the average over a finite
fraction ν of the energy eigenstates when compared to
the maximal result

S̄(ν)
A = S̄

(Λ)
A − 1

c2

[
1− 2√

π

erf−1(ν)

ν
e−[erf

−1(ν)]
2
]
. (21)

In Secs. IVA and IV B, we report numerical results
for the average entanglement entropy of a fraction ν
of midspectrum eigenstates in nonintegrable XYZ and
XXZ chains, respectively. We show that, after comput-
ing S̄(Λ)

A and fitting c2, Eq. (21) describes the results for
S̄(ν)
A in our numerical calculations. When meaningful, in

Secs. IVA and IV B, we will also report results for the
maximal and minimal eigenstate entanglement entropies
within the set of states over which the average is carried
out. In contrast to the average eigenstate entanglement
entropies, the maximal and minimal eigenstate entangle-
ment entropies are not averaged over symmetry blocks.
We select the maximal and minimal over the entire set
containing all sectors, and refer to them as the “outlier”
eigenstate entanglement entropies. They bound the re-
sults for the entanglement entropies in the set considered.

All the results in the main text correspond to the sub-
system fraction f = 1/2. Results for other system frac-
tions are shown in Appendix E.

A. XYZ model

In order to carry out a finite-size scaling analysis for
the XYZ model, in this section we compute the average
entanglement entropy of energy eigenstates in chains with
different sizes L. We then subtract the numerical results
obtained from the prediction by Page [20] for the average
over random pure states in a full Hilbert space H = HA⊗
HB , with corresponding dimensions DA = 2LA and DB =
2L−LA , which has the form [4]:

⟨SA⟩ =
{

Ψ(DADB + 1)−Ψ(DB + 1)− DA−1
2DB

, DA ≤ DB
Ψ(DADB + 1)−Ψ(DA + 1)− DB−1

2DA
, DA > DB ,

(22)
where Ψ(z) = (ln Γ(z))′ = Γ′(z)/Γ(z) is the digamma
function. At subsystem fraction f = LA/L, the two lead-
ing terms for Eq. (22) are given in Eq. (5).

In Fig. 5, we show the finite-size scaling of the differ-
ences ⟨SA⟩ − S̄

(ν)
A (filled symbols) for the average over:
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FIG. 5. Finite-size scaling analysis for the XYZ model. The
deviations of the average eigenstate entanglement entropy
S̄

(ν)
A (filled symbols), and the outlier eigenstate entanglement

entropies (open symbols), from the exact result for the aver-
age over random pure states ⟨SA⟩ [Eq. (22)] are plotted vs
the inverse subsystem size LA = L/2. Results are shown
for chains with both periodic and open boundary conditions.
The insets show the average eigenstate entanglement entropy
in systems with periodic boundary conditions including all
quasimomentum sectors, S̄(ν)

A (same as in the main panels),
and only including the k = 0 and π sectors, S̃(ν)

A (“real” sec-
tors for which we can diagonalize the largest chains). The
averages are carried out over: (a) Λ = 100 (ν = 0+), (b)
ν = 1/4, (c) ν = 1/2, and (d) the entire spectrum (ν = 1).
The horizontal dashed lines show the predictions of Eq. (7).

0 0.2 0.4 0.6 0.8 1

ν

0
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0.3

0.4

〈S
A
〉−

S̄
(ν

)
A
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Eq.(7)

Eq.(21)

FIG. 6. Average eigenstate entanglement entropy vs ν for the
XYZ model. The differences between the average eigenstate
entanglement entropy S̄

(ν)
A and the average over random pure

states (thick lines) are plotted as functions of the fraction
ν of midspectrum Hamiltonian eigenstates included in the
average. We show results for a chain with L = 20 with PBCs
and for a chain with L = 18 with OBCs. The thin solid lines
overlapping with the numerical results are the predictions of
Eq. (21), with the values of S̄(Λ)

A and c2 taken from the curves
shown in the insets in Figs. 4(a) and 4(c). The thin dashed
line is the function S̄(ν)

A from Eq. (7).

(a) Λ = 100 (ν = 0+), (b) ν = 1/4, (c) ν = 1/2, and (d)
all eigenstates (ν = 1). The open symbols in Fig. 5 show
the differences for the outlier eigenstate entanglement en-
tropies. In the main panels we show results for periodic
and open boundary conditions, while in the insets we
show results for periodic boundary conditions for aver-
ages over all quasimomentum sectors (as shown in the
main panels) and only over k = 0 and π (for which the
largest system sizes can be diagonalized). We also show,
as horizontal dashed lines, the prediction of Eq. (7) for
the specific value of ν under consideration.

In Fig. 5(a) and its inset, for Λ = 100 midspectrum
eigenstates, one can see that with increasing system size
the difference between the average over random pure
states and the average over Hamiltonian eigenstates ap-
pears to saturate at a small O(1) number that is smaller
than, but likely of the order of, 0.1. This O(1) number
seems to be slightly smaller than the one predicted by
Eq. (7), which, as mentioned in the introduction, is iden-
tical to the result for the average over random pure states
with fixed magnetization sz = 0 at f = 1/2 [n = 1/2 and
f = 1/2 in Eq. (3)].

In Figs. 5(b)–5(d), one can see that with increasing sys-
tem size ⟨SA⟩− S̄(ν)

A approaches a nonzero O(1) constant
whose value increases with ν. In Fig. 6, we plot the differ-
ence ⟨SA⟩−S̄(ν)

A vs ν for a chain with PBCs (L = 20) and
for a chain with OBCs (L = 18). In both cases we find
the difference to be in excellent agreement with the pre-
diction of Eq. (21), with the values of S̄(Λ)

A and c2 taken
from the curves shown in the insets in Figs. 4(a) and 4(c).
Since the results for very large systems with PBCs and
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OBCs are expected to agree up to corrections that van-
ish in the thermodynamic limit, the fact that the PBC
and OBC results are slightly different make clear that
they still suffer from finite-size effects and are expected
to decrease (likely only slightly) if larger system sizes are
considered.

Like in Fig. 5(a), in Figs. 5(b)–5(d) as well as in Fig. 6,
we consistently find our numerical results to be below
the predictions from Eq. (7). The results for the out-
liers in Figs. 5(a)–5(c) further show the range of values
over which the average is carried out. Figure 5(a) shows
that, strikingly, the least entangled Hamiltonian eigen-
states among the Λ = 100 midspectrum eigenstates, the
ones with the largest ⟨SA⟩−SαA, are already at the value
for the average predicted by Eq. (7). This strengthens
our expectation that S̄(ν)

A will be greater than the pre-
diction from Eq. (7) for ν = 0+ [for an O(1) number of
eigenstates] in the thermodynamic limit. Furthermore,
the results in Fig. 6 show that S̄(ν)

A from Eq. (7) does not
capture the functional dependence of ⟨SA⟩ − S̄

(ν)
A vs ν

observed in the numerical results. Given our Eq. (21),
we expect that S̄(ν)

A will in general depend on the model
Hamiltonian under consideration through both the non-
universal O(1) term in S̄(Λ)

A and the constant c.
In Appendix C, we report scalings similar to the one

in Fig. 5(a) obtained for other Hamiltonian parameters
across and beyond the maximally chaotic regime. They
show that the results in Fig. 5(a) are robust against
changes in the Hamiltonian parameters and, hence, that
our findings and conclusions are not a consequence of a
fine tuning for the specific model under consideration.

B. XXZ model

In order to carry out the finite-size scaling analysis for
the XXZ model, we subtract our numerical results from
the exact result obtained when averaging over random
states in finite-dimensional Hilbert spaces at fixed zero
magnetization, or, in the spinless fermions language, at
fixed half filling. Using the latter (more convenient) lan-
guage, the Hilbert space H(N) of a system with N spin-
less fermions in L sites is a direct sum of tensor prod-
ucts of Hilbert spaces in subsystems A (with LA sites
and NA fermions) and B (with LB = L − LA sites and
NB = N −NA fermions),

H(N) =

min(N,LA)⊕
NA=0

(
H(NA)
A ⊗H(N−NA)

B

)
, (23)

where the latter equation assumes N ≤ L/2, and we
define n = N/L. The dimension of the total Hilbert space
H(N) is DN =

(
L
N

)
, and of the Hilbert spaces H(Ni)

i , with
i = A,B, are

Di(Ni) = dimH(Ni)
i =

(
Li
Ni

)
. (24)
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FIG. 7. Finite-size scaling analysis for the XXZ model. The
deviations of the average eigenstate entanglement entropy
S̄

(ν)
A (filled symbols), and the outlier eigenstate entanglement

entropies (open symbols), from the exact result for random
pure states ⟨SA⟩n [Eq. (25)] are plotted vs the inverse subsys-
tem size LA = L/2. Results are shown for chains with both
periodic and open boundary conditions. The insets show the
average eigenstate entanglement entropy in systems with pe-
riodic boundary conditions including all quasimomentum sec-
tors, S̄

(ν)
A (same as in the main panels), and only including

the k = 0 and π sectors, S̃(ν)
A (“real” sectors for which we can

diagonalize the largest lattices). The averages are carried out
over: (a) Λ = 100 (ν = 0+), (b) ν = 1/4, (c) ν = 1/2, and
(d) the entire spectrum (ν = 1).
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FIG. 8. Average eigenstate entanglement entropy vs ν for the
XXZ model. The differences between the average eigenstate
entanglement entropy S̄

(ν)
A and the average over random pure

states (thick lines) are plotted as functions of the fraction
ν of midspectrum Hamiltonian eigenstates included in the
average. We show results for a chain with L = 24 with PBCs
and for a chain with L = 20 with OBCs. The thin solid lines
overlapping with the numerical results are the predictions of
Eq. (21), with the values of S̄(Λ)

A and c2 taken from the curves
shown in the insets in Figs. 4(b) and 4(d).

The average entanglement entropy of random pure states
in a systems with L sites and N spinless fermions, after
tracing out L− LB sites, takes the form [4, 19]

⟨SA⟩n =

min(N,LA)∑
NA=0

DA(NA)DB(NB)
DN

× (25)

[⟨SA⟩+Ψ(DN + 1)−Ψ(DA(NA)DB(NB) + 1)] ,

in which ⟨SA⟩ is given by Eq. (22). At subsystem fraction
f = LA/L, the leading terms for Eq. (25) are given in
Eq. (3). Our focus in this section is f = 1/2 at half filling
n = 1/2 (corresponding to zero magnetization).

The finite-size scalings of the differences ⟨SA⟩n − S̄
(ν)
A

are shown in Fig. 7, for the same number Λ = 100 of
midspectrum eigenstates [Fig. 7(a)] and fractions of mid-
spectrum eigenstates [Figs. 7(b)–7(d)] as those in the re-
spective panels in Fig. 5. The similarity between the
finite-size scaling results in Fig. 7 and in Fig. 5 is striking.
They suggest that for the models considered the devia-
tions of S̄(ν)

A , for any given value of ν, from the result for
the average over random states is nearly independent of
whether the Hamiltonian exhibits or not U(1) symmetry
(particle-number conservation). We emphasize that this
is the case despite the fact that the O(1) subleading term
in ⟨SA⟩ (from which the XYZ results are subtracted) and
in ⟨SA⟩n (from which the XXZ results are subtracted) are
different, see Eqs. (3) and (5).

In Fig. 8, we plot ⟨SA⟩n − S̄
(ν)
A vs ν for a chain with

PBCs (L = 24) and for a chain with OBCs (L = 20).
The plots are qualitatively and quantitatively similar to
the ones seen for the XYZ model in Fig. 6. Also like
in Fig. 6, we find that ⟨SA⟩n − S̄

(ν)
A vs ν is in excellent

agreement with the prediction of Eq. (21), with the values
of S̄(Λ)

A and c2 taken from the curves shown in the insets
in Figs. 4(b) and 4(d). We note that, both in Figs. 6
and 8, the average over up to ∼ 20% of the midspectrum
eigenstates barely changes the result from that at ν = 0+.
Those fractions can be used in numerical calculations to
reduce fluctuations in the average over the entanglement
entropy of Hamiltonian eigenstates associated to finite-
size effects, while still producing results that are close to
those at ν = 0+.

In Appendix C, we report scalings similar to the one
in Fig. 7(a) obtained for other Hamiltonian parameters
across and beyond the maximally chaotic regime. They
show that the results in Fig. 7(a) are robust against
changes in the Hamiltonian parameters and, hence, that
our findings and conclusions are not a consequence of a
fine tuning for the specific model under consideration.

V. SUMMARY AND DISCUSSION

We carried out a state of the art computational study
of the O(1) subleading corrections to the leading volume-
law term of the average entanglement entropy of mid-
spectrum eigenstates in nonintegrable spin-1/2 XYZ and
XXZ chains. We focused on the subsystem fraction
f = 1/2, and for the XXZ chain [which has U(1) symme-
try] we focused on the zero magnetization sector.

For a fixed number Λ of midspectrum Hamiltonian
eigenstates in the average (Λ = 100, i.e., the fraction of
Hamiltonian eigenstates ν = 0+), we found indications
that the average eigenstate entanglement entropy differs
by a small O(1) number from the prediction for the aver-
age over random states in the thermodynamic limit. The
magnitude of the difference was ≲ 0.1 both for the XYZ
[does not have U(1) symmetry] and the XXZ [has U(1)
symmetry] chains. While the magnitude of the difference
was found to be similar in the absence or presence of the
U(1) symmetry, it is important to emphasize that the
average over random states exhibits an O(1) term that
does depend on whether the average is carried out over
states in which the magnetization is fixed or not [4].

We also found indications that the fixed-Λ average en-
tanglement entropy of eigenstates of the XYZ model dif-
fers from Huang’s prediction (the former is greater for
the models and parameters considered here) in the ther-
modynamic limit. Huang’s O(1) correction at ν = 0+

is identical to the O(1) “mean-field” correction derived
in Ref. [6] for the average over random pure states at
fixed particle number (fixed magnetization in the spin
language). In Appendix D, we show that a finite-size
scaling analysis of the difference between the average
entanglement entropy of eigenstates of the XYZ model
and the analytic prediction for the average over random
pure states at fixed zero magnetization also indicates that
those two averages exhibit an O(1) difference. This is
understandable as the energy conservation constraint in
quantum-chaotic local Hamiltonians [25, 26] in general
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does not produce the same structure in the Hilbert space
as that introduced by the U(1) symmetry. In the pres-
ence of latter, random states can be decomposed into
direct sums of tensor products, which is not possible (in
general) in the presence of the former. In the context
of SU(2) symmetry, in Ref. [38] it was argued that “in-
terferences” not accounted for in decompositions involv-
ing direct sums of tensor products can introduce O(1)
corrections. This motivates us to conjecture that the
O(1) correction in quantum-chaotic local Hamiltonians is
not universal. To explore the validity of this conjecture,
we plan to study the average entanglement entropy over
eigenstates of different kinds of random matrices (SYK
models being specific examples).

When considering fixed nonvanishing fractions of mid-
spectrum Hamiltonian eigenstates in the average, ν ∈
(0, 1], we found that the average eigenstate entanglement
entropy differs by a ν-dependent O(1) correction from
the prediction for the average over random states with
increasing system size. For this case, we provided a sim-
ple expression for the O(1) deviation expected from the
maximal result at ν = 0+ as a function of ν. This phe-
nomenological expression was obtained using the concave
functional form of the eigenstate entanglement entropy,
which exhibits a maximum in the middle of the spectrum
of local quantum-chaotic Hamiltonians, and the known
Gaussian form of the density of states in such models.
Our analytical expression provides an excellent descrip-
tion of the numerical results for the average entangle-
ment entropy, after numerically computing one parame-
ter (S̄(Λ)

A ) and fitting a second one (c) using the numeri-
cal results for the eigenstate entanglement entropy vs the
eigenenergies.

Our numerical results for a nonvanishing ν also indi-
cate that the average entanglement entropy in eigenstates
of the XYZ model differs from Huang’s prediction (the
average over eigenstates is greater) in the thermodynamic
limit. Huang’s O(1) correction in the ν = 1 limit is iden-
tical to the O(1) term derived in Ref. [4] for the average
over random pure states with fixed particle number (fixed
magnetization in the spin language) when averaging over
all particle-number sectors with a weight that is deter-
mined by the number of states in each sector. An inter-
esting question to be explored in the future is what the
O(1) corrections at ν = 0+ and nonvanishing ν can tell us
about the Hamiltonian. For the (integrable) XY model
in a transverse field, in Refs. [12, 14] is was shown that
there is an O(1) correction at the critical line (h = J) for
f > 0, and no O(1) correction otherwise, so that such a
correction can be used to identity the critical line.

Finally, we should mention that while the focus of this
work was the nature of the O(1) correction at f = 1/2,
we have also studied what happens when f ̸= 1/2. We
briefly discuss those results in Appendix E. Our main
finding away from f = 1/2 is that, for a fixed number
of midspectrum Hamiltonian eigenstates in the average
(Λ = 100), the average eigenstate entanglement entropy
also appears to differ by a small O(1) correction from

the prediction for the average over random states in the
thermodynamic limit. The difference obtained in our nu-
merical calculations is clearly smaller than the one for
f = 1/2, and appears to decrease with decreasing the
value of f . This parallels the behavior of the O(1) mean-
field term in Eq. (4). Determining the functional form of
the O(1) correction in model Hamiltonians as a function
of f is something that deserves a future investigation.
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Appendix A: Maximally chaotic regime

In Sec. III, we described how we locate the maximally
chaotic regime and reported results for exemplary sets
of parameters considered. Here we report results for the
full set of parameters that we explored in some detail for
the XYZ and the XXZ models.

The XYZ model studied in this work has a
large parameter space, with 6 independent parameters
(J2, η, ∆1, ∆2, h

z, and hx) after setting J1 = 1 to be
our energy scale [see Eq. (9)]. We select η = 0.5, to be
in-between the Ising point (η = 1) and the XXZ point
(η = 0). In our early broader exploration of the space
spanned by the other 5 parameters, we noticed that the
results do not depend strongly on the strength of the
transverse field hx unless it is made too large, which
results in a departure from quantum chaotic behavior.
Moreover, we found that when ∆1 and ∆2 are both ∼ 0.3,
there is a wide range of values of J2 and hz for which
the numerical results for the various quantum chaos in-
dicators considered here are close to the RMT predic-
tions. This motivated us to set hx = 0.3, ∆1 = 0.3, and
∆2 = 0.3.

For XYZ chains with L = 18 and PBCs, in Fig. 9
we show density plots of the normalized differences be-
tween the numerical results and the RMT predictions for
our quantum chaos indicators in the (J2, hz) plane. Fig-
ure 9(a) shows results for the average gap ratio [supple-
menting the results in Fig. 1(a)], Fig. 9(b) shows results
for our indicator of how close to Gaussian the distribution
of eigenstate coefficients is [supplementing the results in
the inset in Fig. 2(a)], and Fig. 9(c) shows results for the
average entanglement entropy [supplementing the results
in Fig. 3(a)]. In the latter case, the average entanglement
entropy S̄

(Λ)
A is calculated using Λ = 100 states in the

middle of the spectrum from each symmetry block.
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|Γψ − π/2|/(π/2), and (c) |S̄(Λ)

A − ⟨SA⟩|/⟨SA⟩ for the (J2, h
z)

parameter space explored in the XYZ model, in chains with
L = 18 and PBCs. The differences are computed with respect
to: (a) the GOE prediction r̄GOE, (b) the π/2 result for ran-
dom states, and (c) Page’s result ⟨SA⟩ in Eq. (22).

The results for all the quantum chaos indicators re-
ported in Fig. 9 consistently show that the largest devi-
ations from the RMT predictions occur in the regime of
small J2 and large hz. On the other hand, for identify-
ing the maximally chaotic regime, the results reported in
Fig. 9(b) and 9(c) are the most useful ones. We find the
lowest normalized differences there to occur for J2 ∼ 2.0
and hz < 0.5 (for the values of hz reported). This moti-
vated us to selected J2 = 2.0 and hz = 0.2 for the scaling
analysis of the average entanglement entropy discussed
in Sec. IV.

The XXZ model studied in this work has 3 independent
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FIG. 10. Normalized differences: (a) |r̄ − r̄GOE|/r̄GOE,
(b) |Γψ − π/2|/(π/2), and (c) |S̄(Λ)

A − ⟨SA⟩n|/⟨SA⟩n for the
(J2, ∆1) parameter space explored in the XXZ model, in
chains with L = 20 and PBCs. The differences are computed
with respect to: (a) the GOE prediction r̄GOE, (b) the π/2
result for random states, and (c) the result ⟨SA⟩n in Eq. (25).

parameters (J2, ∆1, and ∆2) after setting J1 = 1 to be
our energy scale [see Eq. (10)]. We set ∆2 = 0.3, as
for the XYZ model, because it results in a wide range
of values of J2 and ∆1 for which the numerical results
for the various quantum chaos indicators considered are
close to the RMT predictions. For XXZ chains with L =
20 and PBCs, in Fig. 10 we show density plots of the
normalized differences between the numerical results and
the RMT predictions for our quantum chaos indicators
in the (J2, ∆1) plane. Those results parallel the ones in
Fig. 9 for the XYZ chains, and supplement the results
reported in Fig. 1(b), in the inset in Fig. 2(b), and in
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Fig. 3(b). For small values of ∆1 and intermediate values
of J2 ∼ 2, there is less structure in Figs. 10(b) and 10(c)
than for small values of hz and intermediate values of
J2 ∼ 2 in Figs. 9(b) and 9(c). From the wider range
of parameters that give results in the XXZ chain that
are similarly close to the RMT predictions, we selected
J2 = 2.0 and ∆1 = 0.2 for the scaling analysis of the
average entanglement entropy discussed in Sec. IV.

Appendix B: Distribution of eigenstate coefficients

In Sec. III B, we reported results for the distributions
of the absolute values of the scaled real and imaginary
parts of the eigenstate coefficients in the computational
basis, which we denoted as z. Those distributions were
compared to the Gaussian distribution in Eq. (12). The
latter distribution was derived assuming that the scaled
real and imaginary parts x of the eigenstate coefficients
are Gaussian with variance one,

P̄X(x) =
1√
2π
e−x

2/2 . (B1)

To derive PZ(z), we note that z = g(x) = |x|. In
general, if g(x) is an invertible function, one can calculate
the probability distribution of z using the formula

P̄Z(z = g(x)) = P̄X(g−1(z))

∣∣∣∣dg−1(z)

dz

∣∣∣∣ , (B2)

and, for piece-wise invertible functions, given the set for
x = h(z)

hi(z) : ∃x1
i ,x

2
i
h−1
i (x) = g(x) for x ∈ (x1i , x

2
i ) ,

Eq. (B2) can be generalized as

P̄Z(z = g(x)) =
∑
i

P̄X(hi(z))

∣∣∣∣dhi(z)dz

∣∣∣∣ . (B3)

Hence, the distribution of z is given by

P̄Z(z) = P̄X(z)+P̄X(−z) = 1√
2π
e−z

2/2+
1√
2π
e−(−z)2/2,

(B4)
which yields the result in Eq. (12).

Instead of studying the distributions of the absolute
values z of the scaled real and imaginary parts of the
eigenstate coefficients in the computational basis, which
allowed us to treat all the quasimomentum sectors on
an equal footing, one can separately study the distribu-
tions of the absolute values z of the scaled real eigenstate
coefficients in the k = 0, π (“real”) quasimomentum sec-
tors, and separately of the absolute values z̃ of the scaled
complex eigenstate coefficients in all the other (k ̸= 0, π;
“complex”) quasimomentum sectors.

Let us derive the PDF of the absolute value z̃ of the
complex coefficients in the k ̸= 0, π sectors. We define
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FIG. 11. Distribution of the absolute values of eigenstate co-
efficients collected from 100 midspectrum eigenstates of each
symmetry block from the: (a),(b) k = 0, π (“real”) and (c),(d)
all other (k ̸= 0, π; “complex”) quasimomentum sectors. The
results were obtained taking J2 = 1.0, for: (a),(c) the XYZ
model (L = 18) and (b),(d) the XXZ model (L = 20). The
dashed lines show P (z) from Eq. (12) in (a),(b) and from
Eq. (B6) in (c),(d). The insets show the ratio Γψ as a func-
tion of hz in (a),(c) and of ∆1 in (b),(d). The horizontal
dashed lines are the predictions for random states [see discus-
sion in Sec. III B and Eq. (B9)].

z̃ = |x + iy|, where x is the real part of the coefficients
[Re(cαm)] and y is the imaginary part of the coefficients
[Im(cαm)]. As a first step, let us find the PDF of w = z̃2 =
x2 + y2. Under the assumption that both x and y are
normally distributed with zero mean and variance one,
the PDF of w is the chi-squared distribution of degree 2,

P̄W (w) =
1

2
e−

w
2 . (B5)

Then, using Eq. (B2), we obtain that

P̄Z̃(z̃) = z̃ e−
z̃2

2 . (B6)

Next, let us find the ratio Γψ defined in Eq. (13) for
the distribution in Eq. (B6). The first moment of z̃ is

⟨z̃⟩ =
∫ ∞

0

dz̃ z̃ PZ̃(z̃) =

∫ ∞

0

dz̃ z̃2 e−
z̃2

2 =

√
π

2
, (B7)

and the second moment is〈
z̃2
〉
=

∫ ∞

0

dz̃ z̃2 z̃ e−
z̃2

2 = 2 , (B8)

so that the ratio in Eq. (13) is

Γψ =

〈
z̃2
〉

⟨z̃⟩2
=

4

π
. (B9)
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FIG. 12. Scaling of |Γψ − π/2|/(π/2) for midspectrum eigen-
states of matrices that belong to the GOE and for random
pure states whose coefficients are sampled from a normal dis-
tribution. The normalized differences are plotted as functions
of 1/D, where D is the dimension of the Hilbert space. Tak-
ing D = 2L, the dimensions shown would correspond to chains
with L = 8, 10, 12, 14, and 15. We compute Γψ by: (i) di-
agonalizing 100 GOE matrices and taking 100 midspectrum
eigenstates from each of them, and (ii) by generating 104 re-
alizations of the random pure states. The black dotted line
indicates ∼ D−1 behavior.

In Figs. 11(a) and 11(c) [Figs. 11(b) and 11(d)], we
show results obtained for the distributions of the scaled
(by the corresponding standard deviation) absolute val-
ues of eigenstate coefficients for the XYZ model in chains
with L = 18 [the XXZ model in chains with L = 20] and
PBCs. The top panels [Figs. 11(a) and 11(b)] show re-
sults for the k = 0, π quasimomentum sectors compared
to the PDF (dashed line) in Eq. (12), while the bot-
tom panels [Figs. 11(c) and 11(d)] show results for the
k ̸= 0, π quasimomentum sectors compared to the PDF
(dashed line) in Eq. (B6). Results for Γψ are shown in the
insets, in which the horizontal lines mark the prediction
for the PDF of Eq. (12) in Figs. 11(a) and 11(b), and the
prediction of Eq. (B9) in Figs. 11(c) and 11(d). These
results can be seen as being complementary to the ones
in Fig. 2, where we reported results for the distribution of
the absolute values of the scaled real and imaginary parts
of the eigenstate coefficients from all symmetry blocks
(all values of k) bundled together.

The results in Fig. 11 suggest that the convergence to
the predictions for random states is faster in the k = 0, π
sectors, compare the agreement with the theoretical pre-
dictions seen in Figs. 11(a) and 11(b) vs in Figs. 11(c)
and 11(d), even though for any given value of L the “real”
sectors have 1/2 of the number of states in the other sec-
tors (due to the presence of reflection symmetry). In the
maximally chaotic regime, the PDFs in the XYZ model
are the ones that we find to be closest to the theoretical
predictions. Notice that, for the parameters shown, the
set selected for the scaling in Sec. IV is the one that gives
the closest results to the theoretical predictions.

We also note that for the results shown in the insets
in Figs. 2 and 11, even in the maximally chaotic regime
of both models, Γψ is slightly larger than the theoretical

prediction for random states. In Appendix C, we report
the scaling of the normalized difference |Γψ−π/2|/(π/2)
for the XYZ model in chains with both periodic and open
boundary conditions. They show that, as expected, the
normalized differences decrease with increasing system
size. In Fig. 12, we show how |Γψ − π/2|/(π/2) depends
on the inverse Hilbert space dimension 1/D for midspec-
trum eigenstates of matrices that belong to the GOE
and for random pure states whose coefficients are sam-
pled from a normal distribution. In those two cases, the
deviations from the predicted value of π/2 in the ther-
modynamic limit are much smaller than for Hamiltonian
eigenstates and decrease as 1/D.

Appendix C: Scaling of the entanglement entropy

As mentioned in the main text, when computing the
eigenstate entanglement entropy averages we define the
“midspectrum eigenstates” for each symmetry block sep-
arately, i.e., they are the eigenstates whose eigenenergies
are closest to the mean energy Ē in each symmetry block.
This, as opposed to using the mean energy Ē = Tr(Ĥ)/D
in the entire Hilbert space, is done as a way to re-
duce finite-size effects in the smallest chains considered.
In the thermodynamic limit, Ē for the XYZ model is
ĒXYZ

∞ = 0, while for the XXZ model, see Eq. (10), it is
ĒXXZ

∞ = − 1
4 (J1∆1 + J2∆2).
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Ē

(c)

OBC sectors

0 0.05 0.1
1/L

-0.2

-0.19

-0.18 O
B

C

(d)

FIG. 13. Scaling of the mean energy Ē in all symmetry
blocks vs 1/L for (a),(c) XYZ and (b),(d) XXZ chains with
(a),(b) periodic and (c),(d) open boundary conditions, for the
same Hamiltonian parameters used in Sec. IV. The empty red
squares show the average energy over the entire Hilbert space
Ē, and the horizontal dashed lines mark the theoretical pre-
diction for Ē in the thermodynamic limit: (a),(c) ĒXYZ

∞ = 0
and (b),(d) ĒXXZ

∞ = − 1
4
(J1∆1 + J2∆2) = −0.2. In (b),(d),

the dotted lines show fits of the numerical results for Ē in
finite XXZ chains to the function c1 + c2/L, which returned
(b) c1 = −0.199 and c2 = −0.227, and (d) c1 = −0.201 and
c2 = 0.171. In (a),(b), we use empty (filled) symbols to report
Ē in the k = 0, π (k ̸= 0, π) quasimomentum blocks.
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FIG. 14. Finite-size scaling analysis of the average entangle-
ment entropy of Λ = 100 midspectrum eigenstates in XYZ
chains with various sets of parameters. The deviations of
the average eigenstate entanglement entropy S̄

(Λ)
A (filled sym-

bols), and the outlier eigenstate entanglement entropies (open
symbols), from the exact result for random pure states ⟨SA⟩
[Eq. (22)] are plotted vs the inverse subsystem size LA = L/2.
The insets show |Γψ −π/2|/(π/2) for the same parameters as
in the main panels vs 1/LA. Results are shown for chains with
both periodic and open boundary conditions. The horizontal
dashed lines show the predictions of Eq. (7). The results in
(b) are the same as in Fig. 5(a).

In Fig. 13, we show the scaling of the mean energy Ē
in all symmetry blocks vs 1/L. The plots make appar-
ent that, with increasing system size, Ē in all symmetry
blocks rapidly collapses onto Ē (plotted as empty red
squares), both for the XYZ [Fig. 13(a)] and the XXZ
[Fig. 13(b)] models in chains with periodic and open
boundary conditions. For the XXZ chains, one can fur-
ther see that Ē approaches ĒXXZ

∞ polynomially with in-
creasing system size, as expected for canonical ensemble
calculations [39]. Linear fits of the results for Ē in fi-
nite systems return a thermodynamic limit result that is
almost in perfect agreement with the theoretical predic-
tion. Finally, we note that in Figs. 13(a) and 13(b), the
results for Ē in the k ̸= 0, π quasimomentum blocks are
much closer to Ē than those for Ē in the k = 0, π blocks.

Next, we report results for the scaling of the average
entanglement entropy of Λ = 100 midspectrum eigen-
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FIG. 15. Finite-size scaling analysis of the average entangle-
ment entropy of Λ = 100 midspectrum eigenstates in XXZ
chains with various sets of parameters. The deviations of
the average eigenstate entanglement entropy S̄

(Λ)
A (filled sym-

bols), and the outlier eigenstate entanglement entropies (open
symbols), from the exact result for random pure states ⟨SA⟩n
[Eq. (25)] are plotted vs the inverse subsystem size LA = L/2.
Results are shown for chains with both periodic and open
boundary conditions. The results in (b) are the same as in
Fig. 7(a).

states in XYZ and XXZ chains with various sets of pa-
rameters. They show that the results reported in Sec. IV
are robust against changes in the Hamiltonian parame-
ters, so long as the parameters are not taken to be too
far from the maximally chaotic regime.

In Fig. 14, we plot ⟨SA⟩ − S̄
(Λ)
A for the XYZ model for

six pairs of values of (J2, hz). The results in Fig. 14(b)
are the same as in Fig. 5(a). The theoretical results for
the random pure states ⟨SA⟩ are the ones predicted by
Eq. (22). As in Fig. 5, we include the maximal and min-
imal outliers, which bound the eigenstate entanglement
entropies that enter the averages. In Fig. 14, J2 increases
from left to right, while hz increases from top to bot-
tom, and the horizontal dashed lines mark the result from
Eq. (7). The insets show the scaling of |Γψ − π/2|/(π/2)
for the same parameters as in the main panels vs 1/LA.

All the results in the main panels of Fig. 14 suggest
that, with increasing system size, S̄(Λ)

A approaches a value
that is slightly smaller than the prediction of Eq. (22).



16

The difference appears to be smaller than 0.1 in all panels
but in Fig. 14(a). The results for |Γψ−π/2|/(π/2) in the
insets depend more strongly on the parameters chosen,
with small hz resulting in the smallest normalized dif-
ferences, and are consistent with a polynomial decrease
with 1/LA = 2/L as L increases.

In Fig. 15, we plot ⟨SA⟩n− S̄(Λ)
A for the XXZ model for

six pairs of values of (J2, ∆1). The results in Fig. 15(b)
are the same as in Fig. 7(a). The theoretical results for
the random pure states ⟨SA⟩n are the ones predicted by
Eq. (25). As in Fig. 7, we include the maximal and min-
imal outliers, which bound the eigenstate entanglement
entropies that enter the averages. In Fig. 15, J2 increases
from left to right, while ∆1 increases from top to bottom.
All the results in Fig. 15 suggest that, with increasing sys-
tem size, S̄(Λ)

A approaches a value that is slightly smaller
than the predictions of Eq. (22). The difference appears
to be smaller than 0.1 in all panels.

Appendix D: XYZ eigenstates vs random states
at fixed zero magnetization

Since Huang’s O(1) correction at ν = 0+ [23] is
identical to that predicted for random pure states at
zero magnetization [4, 6], in Fig. 16 we provide an
additional finite-size scaling analysis of the average en-
tanglement entropy of Λ = 100 midspectrum eigenstates
in XYZ chains with periodic boundary conditions when
compared to the exact result for random pure states at
fixed zero magnetization ⟨SA⟩n [see Eq. (25)]. The dif-
ferences are clearly smaller than when comparing to the

0 0.05 0.1 0.15

1/LA

−0.02

0.00

0.02

0.04

〈S
A
〉 n
−
S̄

(ν
)

A

a) J2 = 1.0a) J2 = 1.0a) J2 = 1.0a) J2 = 1.0
hz = 0.2

hz = 0.6

0 0.05 0.1 0.15

1/LA

b) J2 = 2.0b) J2 = 2.0b) J2 = 2.0b) J2 = 2.0
hz = 0.8

hz = 1.5

0 0.1

1/LA

−0.02

0.00

0.02

0.04

0.06

0.08

〈S
A
〉 n
−
S̃

(ν
)

A

0 0.1

1/LA

−0.02

0.00

0.02

0.04

0.06

0.08

〈S
A
〉 n
−
S̃

(ν
)

A

FIG. 16. Additional finite-size scaling analysis of the average
entanglement entropy of Λ = 100 midspectrum eigenstates
in XYZ chains with periodic boundary conditions. The de-
viations of the average eigenstate entanglement entropy S̄

(Λ)
A

from the exact result for random pure states at fixed zero
magnetization ⟨SA⟩n [Eq. (25)] are plotted vs the inverse sub-
system size LA = L/2. The main panels show the numerical
results for the averages over all symmetry sectors, while the
insets show the average over “real” sectors (k = 0 and π sec-
tors, for which we can diagonalize the largest chains). We
report results for (a) J1 = 1.0 and (b) J2 = 2.0 for different
values of hz.

exact result for random pure states ⟨SA⟩ [see Eq. (22)],
but we find no indication that they will vanish in the
thermodynamic limit. For the parameters considered,
our numerical results suggest that S̄

(Λ)
A > ⟨SA⟩n for

L→ ∞.

Appendix E: Subsystem fractions f ̸= 1/2

All the previous results for the average eigenstate en-
tanglement entropy were computed for a subsystem frac-
tion f = LA/L = 1/2. Here we report results obtained
for smaller subsystem fractions. For the XYZ model, for
which there is no restriction on the value of the magne-
tization and hence for which we can study chains with
even and odd numbers of sites, we consider f = 1/3 and
f = 1/4. For the XXZ model, for which we restrict our
study to the zero total magnetization sector and hence
only study chains with an even number of sites, we only
consider f = 1/4.

Figure 17 shows results for the XYZ model in the max-
imally chaotic regime when J2 = 2.0 and hz = 0.2 (same
parameters as in Sec. IV A), for f = 1/4 [Fig. 17(a)] and
f = 1/3 [Fig. 17(b)]. We again find indications of an O(1)
difference in the thermodynamic limit, but with a value
that appears to depend on f . Notice that the deviation
from the results for random pure states ⟨SA⟩ is smaller
at f = 1/4 [Fig. 17(a)], than at f = 1/3 [Fig. 17(b)].
In both cases the differences are much smaller than at
f = 1/2. This suggests that, if the difference remains
nonzero in the thermodynamic limit, the O(1) contribu-
tion is likely to decrease with decreasing f .

Figure 18 shows results for the XXZ model in the max-
imally chaotic regime when J2 = 2.0 and ∆1 = 0.2 (same
parameters as in Sec. IV B). Only three system sizes are
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FIG. 17. Finite-size scaling analysis of the average entangle-
ment entropy of Λ = 100 midspectrum eigenstates in XYZ
chains with J2 = 2.0 and hz = 0.2. The deviations of
the average eigenstate entanglement entropy S̄

(Λ)
A (filled sym-

bols), and the outlier eigenstate entanglement entropies (open
symbols), from the exact result for random pure states ⟨SA⟩
[Eq. (22)] are plotted vs the inverse subsystem size LA = fL.
The subsystem fractions are: (a) f = 1/4, for which we only
show results for PBCs because of the limited sizes accessible
for OBCs, and (b) f = 1/3, for which we show results for
both PBCs and OBCs.
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FIG. 18. Finite-size scaling analysis of the average entangle-
ment entropy of Λ = 100 midspectrum eigenstates in XXZ
chains with J2 = 2.0 and ∆1 = 0.2 at f = 1/4. The de-
viations of the average eigenstate entanglement entropy S̄

(Λ)
A

(filled symbols), and the outlier eigenstate entanglement en-
tropies (open symbols), from the exact result for random pure
states ⟨SA⟩n [Eq. (25)] are plotted vs the inverse subsystem
size LA = L/4. We only show results for PBCs because of
the limited sizes accessible for OBCs.

accessible for PBCs at f = 1/4, but the results are qual-
itatively and quantitatively similar to those for the XYZ
model at f = 1/4 in Fig. 17(a). Together with the results
for the XYZ model at f = 1/3 in Fig. 17(b), our numer-
ical results suggest that the O(1) difference, if nonzero
in the thermodynamic limit, is much smaller for f < 1/3
than at f = 1/2.
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