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Many experimentally-accessible, finite-sized interacting quantum systems are most appropriately
described by the canonical ensemble of statistical mechanics. Conventional numerical simulation
methods either approximate them as being coupled to a particle bath, or use projective algorithms
which may suffer from non-optimal scaling with system size or large algorithmic prefactors. In
this paper, we introduce a highly stable, recursive Auxiliary Field Quantum Monte Carlo approach
that can directly simulate systems in the canonical ensemble. We apply the method to the fermion
Hubbard model in one and two spatial dimensions in a regime known to exhibit a significant “sign”
problem and find improved performance over existing approaches including rapid convergence to
ground state expectation values. The effects of excitations above the ground state are quantified
using an estimator-agnostic approach including studying the temperature dependence of the purity
and overlap fidelity of the canonical and grand canonical density matrices. As an important ap-
plication, we show that thermometry approaches often exploited in ultra-cold atoms that employ
an analysis of the velocity distribution in the grand canonical ensemble may be subject to errors
leading to an under-estimation of extracted temperatures with respect to the Fermi temperature.

I. INTRODUCTION

In many settings in condensed matter physics, the
grand canonical ensemble, in which the number of parti-
cles in a system is allowed to fluctuate subject to a fixed
chemical potential, is the ensemble of choice for mod-
eling systems at finite temperature. This is a natural
framework due to the approach to the thermodynamic
limit for electrons in solids, or the existence of a particle
(or quasi-particle) reservoir in transport geometries, het-
erostructures, and superconductors. However, there are a
growing number of important scenarios in which the num-
ber of particles is fixed and small, including trapped atom
systems comprised of a finite number of atoms confined in
box-style traps [1–3], nuclear systems with a fixed num-
ber of nucleons [4–8], and molecules containing a fixed
number of electrons [9, 10]. All such systems are more ac-
curately described by the canonical ensemble in which the
number of particles cannot fluctuate. Moreover, many
ground state algorithms in condensed matter are formu-
lated in the canonical ensemble [11–14] and finite temper-
ature algorithms [10, 15–18] that can converge to these
algorithms’ ground state results without spurious par-
ticle number fluctuations can shed a brighter light on
the mechanisms behind low-temperature quantum phase
transitions and crossovers. Other examples where sys-
tems need to be treated within the canonical ensemble
include determining the operationally-accessible entan-
glement in indistinguishable many-body systems in the
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presence of a U(1) superselection rule limiting physically-
allowable operations [19–21] and the determination of
thermonuclear rates for astrophysics [22].

Efficiently describing interacting systems in the canon-
ical ensemble has nevertheless been a longstanding chal-
lenge, particularly for second-quantized algorithms. Un-
like in the grand canonical ensemble, in which partition
functions and other quantities can be evaluated with-
out placing any constraints on the number of particles
[23], evaluating quantities in the canonical ensemble re-
quires an explicit consideration of particle-number con-
straints. At a physical level, these constraints give rise
to interesting, nontrivial correlations among the occupa-
tions of different states – higher order expectation val-
ues of occupation numbers do not factorize, even in the
non-interacting limit [24]. However, at a numerical level,
these constraints can make the analytical and computa-
tional evaluation of canonical ensemble quantities sub-
stantially more cumbersome [25].

One approach for modeling interacting systems in the
canonical ensemble that circumvents the imposition of di-
rect constraints is the use of projection techniques [8, 26].
In these algorithms, canonical ensemble quantities are
projected out from the grand canonical partition func-
tion at a suitably tuned chemical potential [27]. This
approach has been fruitfully employed to study a wide
variety of problems in nuclear physics [5, 8], and more re-
cently, condensates [28, 29]. Nonetheless, because this al-
gorithm relies upon projecting out of the grand canonical
ensemble, it is accompanied by the same computational
overhead as typical finite temperature grand canonical
simulations and can develop numerical instabilities for
large particle numbers or when reasonable chemical po-
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tentials cannot be identified, for example near first order
phase transitions [30]. Recently, techniques for rapidly
determining a chemical potential where it can be read-
ily identified have been proposed, but these techniques
still do not inherently operate in the canonical ensemble
[27, 31, 32]. Approaches that directly take physical con-
straints into account therefore have the potential to lead
to methods that are not only more stable, but also more
computationally efficient.

Recently, a new Auxiliary Partition Function (APF)
formalism has been proposed that enables the recursive
computation ofN -particle partition functions and related
quantities for non-interacting systems from smaller par-
ticle number quantities, thus explicitly taking particle-
number constraints into account [24]. In essence, the
APF formalism views the canonical ensemble partition
function as a sum over the probabilities of varying num-
bers of particles occupying different subsets of states. Un-
like previous such recursions for non-interacting systems
[25], the APF formalism is able to arrive at expressions
for canonical ensemble partition functions using only pos-
itive sub-quantities, and hence it is significantly more nu-
merically stable. While this technique has been success-
fully applied to such non-interacting systems as harmonic
oscillators and rings of bosons [24], the APF algorithm
and alternative recursions have yet to be generalized to
interacting systems.

In this manuscript, we present a new, highly stable
recursive algorithm for the simulation of interacting sys-
tems in the canonical ensemble. This algorithm marries
the finite temperature Auxiliary Field Quantum Monte
Carlo (AFQMC) algorithm [33, 34], which has long been
used to model finite temperature interacting systems,
with the new Auxiliary Partition Function (APF) formal-
ism [24], which has previously only been applied to non-
interacting systems. The key realization that enables this
marriage is that the Hubbard-Stratonovich (HS) Trans-
formation [35–37], which reconstructs the properties of
interacting systems by integrating over an appropriately-
weighted ensemble of non-interacting systems [38], can be
exploited to construct interacting partition functions and
related observables in the canonical ensemble by integrat-
ing over non-interacting APF partition functions. Our al-
gorithm can therefore stably describe interacting systems
in the canonical ensemble by sampling non-interacting
partition functions and other finite temperature quan-
tities generated using the APF formalism and then in-
tegrating over those samples. This markedly improves
upon our previous work which was built upon the sig-
nificantly less stable Borrmann recursion algorithm for
non-interacting gases [25, 39]. To highlight the stability
of our new algorithm, we show that: (1) our new in-
teracting algorithm is stable down to substantially lower
temperatures than previous algorithms and (2) it has a
lower computational scaling than previous projection al-
gorithms.

With this highly stable algorithm, we proceed to ana-
lyze differences in the convergence of the energy, sign, and

information theoretic measures such as the purity and fi-
delity [40, 41] to the ground state between the grand
canonical and canonical ensembles. To do so, we fo-
cus on the Hubbard model of interacting fermions in one
and two dimensions as an instructive example because it
manifests the strong correlation often resulting in a sign
problem that is hardest to model via modern simulation
techniques. We find that because higher-energy states
are more readily accessed in the grand canonical ensem-
ble, grand canonical energies tend to be higher and pu-
rities lower at any given temperature, meaning that the
grand canonical ensemble converges more slowly to the
ground state. We substantiate these findings with ana-
lytical expressions describing how these quantities should
converge to the ground state in both the interacting and
non-interacting limits. We furthermore demonstrate that
these differences have substantial practical implications
for the thermometry of cold atom systems: if the tem-
perature of cold atom systems containing a fixed number
of particles is estimated based on the grand canonical en-
semble, this leads to temperature predictions that can be
as much as 53.2% lower than in the more realistic canoni-
cal ensemble picture according to the analysis we present
below.

We begin in Section II by presenting our new algorithm
and its underlying formalism, showing how recursive re-
lations for the partition function and one- and two-body
quantities can be determined using the APF method and
subsequently integrated into the AFQMC algorithm. We
also demonstrate the formal relationship between our re-
cursive algorithm and the previously used Projection al-
gorithm. In Section III, we present our results regarding
the increased stability of our algorithm, before illustrat-
ing the differences in system energies, purities, and fideli-
ties as measured in the two ensembles using the Hubbard
model as a salient example. We exemplify the practical
consequences of these differences for thermometry in Sec-
tion IIID. We lastly conclude in Section IV by discussing
further applications of our algorithm and its straightfor-
ward extension to studying nuclear matter and bosons,
for which it has the potential to show even greater effi-
ciency gains.

II. FORMALISM

A. The Finite Temperature Auxiliary Field
Quantum Monte Carlo (AFQMC) Algorithm

The central quantity in finite temperature theories is
the partition function, from which all other properties
can be derived. Historically, the focus of finite temper-
ature methods has been to obtain or otherwise sample
from the grand partition function, Zµ, associated with
the grand canonical ensemble, in which the internal en-
ergy and particle number are allowed to fluctuate around
average values that can be tuned by the temperature T
and chemical potential µ, respectively [23].
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The grand partition function can be expressed as the
trace

Zµ = Tr
(
e−β(Ĥ−µN̂)

)
(1)

where β = 1/(kBT ), kB denotes the Boltzmann con-
stant, Ĥ denotes the many-body Hamiltonian, and N̂
is an operator corresponding to the total number of par-
ticles which is the sum over the occupations over the set
of (possibly degenerate) states. In order to facilitate its
subsequent sampling, the grand partition function can
be discretized into L imaginary time slices, each of which
can then be approximately factored into short imaginary
time one- and two-body propagators via a Suzuki-Trotter
factorization [42, 43]

Zµ = Tr

(
L∏
l=1

e−∆τ(Ĥ−µN̂)

)

≈ Tr

(
L∏
l=1

[e−∆τK̂/2e−∆τV̂ e−∆τK̂/2]

)
, (2)

where ∆τ = β/L represents an imaginary time slice, K̂
is the collection of all one-body operators, and V̂ is the
collection of all two-body operators. The exact grand
partition function is recovered in the limit ∆τ → 0. This
factorization enables us to ignore the non-commutation of
the one-body and two-body operators up to a systematic
and controllable error of O(∆τ3).

While one-body propagators, e−∆τK̂ , may be neatly
expressed as matrices in a given basis [44], two-body
propagators, e−∆τV̂ , may not be as easily determined.
In auxiliary field-based methods, including Determinant
Quantum Monte Carlo (DQMC) [33, 45] and Auxiliary
Field Quantum Monte Carlo (AFQMC) [11, 46], two-
body propagators of the form e−∆τV̂ are linearized by
re-expressing them as integrals over one-body propaga-
tors [35] using the Hubbard-Stratonovich Transformation
[35–37, 47]. Assuming as we will below that the two-body
propagator can be written as

V̂ =
∑
γ

λγ v̂
2
γ , (3)

where the v̂γ denote linear combinations of one-body op-
erators and the λγ denote their contributions to the sum,
then

e−∆τV̂ =

∫
DσGσV̂σ (4)

according to the HS Transformation, where σ represents
an auxiliary field, Gσ represents the Gaussian probability
of sampling that field, and V̂σ denotes the collection of
one-body operators as a function of that field. Crucial to
this paper, Eq. (4) signifies that propagators for interact-
ing systems can be rewritten as integrals over propagators
for non-interacting systems. Based on this transform, all

of the one-body operators from different time slices, i,
are then combined, i.e., Ûσ =

∏
i e
−∆τK̂/2V̂σie

−∆τK̂/2,
and the full grand canonical partition function may be
expressed as

Zµ = Tr
(∫

DσGσe
βµN̂ Ûσ

)
=

∫
DσGσTr

(
eβµN̂ Ûσ

)
=

∫
DσGσdet(I + eβµUσ), (5)

where taking the trace over all fermion occupations re-
sults in a determinant [44].

The partition function can then be sampled to eval-
uate such observables as energies, average occupations,
and correlation functions [33, 34]. In particular, Wick’s
Theorem is valid in the grand canonical ensemble, which
enables a powerful simplification of expectation values
of products of operators (e.g., correlation functions) into
factorized sums and differences of shorter products of ex-
pectation values of those operators [48, 49].

B. Recursive Relations for the Canonical Partition
Function

While computing properties in the grand canonical en-
semble is appropriate for many systems and can be ana-
lytically/computationally convenient, in many situations
in which the particle number remains fixed, a canonical
treatment is more suitable. Computing the canonical en-
semble partition function proceeds along the same lines
as computing the grand canonical one with the critical
exception that the trace must be taken with the con-
straint of fixed particle number N . More specifically, the
N -particle, canonical ensemble partition function may be
expressed as

ZN = TrN (e−βĤ), (6)

which can be factored and transformed in a similar man-
ner to the grand partition function to obtain

ZN =

∫
DσGσTrN (Ûσ), (7)

where we have added the subscript N to the trace to
differentiate it from that in Eq. (1). Because Ûσ is a one-
body operator, its matrix form, Uσ, can be diagonalized
in the single-particle space:

Uσ = PΛP−1, (8)

where we omit the σ-depedence on the right side for clar-
ity. We then introduce the effective single-particle spec-
trum Λ = diag({λγ}) = diag({exp(−βε̃γ)}), based upon
the following relations

Ûσ =
∑
γ

exp
(
−βâ†γ ε̃γ âγ

)
=
∑
γ

λn̂γγ , (9)
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and the basis transformation

â†γ =
∑
i

〈i|γ〉â†i , âγ =
∑
i

〈γ|i〉âi , n̂γ = â†γ âγ . (10)

Since Ûσ is an independent-particle propagator that only
depends on the auxiliary field vector, σ, the effective
single-particle spectrum, {ε̃γ}, is independent of the par-
ticle number. For an N -particle, Ns-site system, taking
the trace while constraining the particle number yields
[39]

TrN (Ûσ) = TrN (
∑
γ

exp
(
−βâ†γ ε̃γ âγ

)
)

=
∑
ΓN

〈ΓN |
∑
γ

exp
(
−βâ†γ ε̃γ âγ

)
|ΓN 〉

=
∑
ΓN

∑
γ

λnγγ . (11)

Here, ΓN is used to represent the set of N -particle states,
and thus,

∑
ΓN
≡
∑
n1+···+nNs=N and nγ denotes the

number of particles in the γth eigenstate. For fermions,
nγ = 0, 1. The key implication of Eq. (11) is that, for
a specified field σ, the single-particle spectrum can be
decoupled from the particle number. Hence, the many-
particle energy given such fields is simply the sum of all
of the single-particle energies.

This key fact enables us to move beyond previous
projection-based approaches and calculate Eq. (11) in a
recursive fashion, where we utilize the recursive approach
to calculating canonical ensemble partition functions first
developed for ideal gases. Specifically, the partition func-
tion can be obtained using the well-known Borrmann re-
cursion [25, 50]

ZN =
1

N

N∑
k=1

(ζ)k−1zkZN−k, (12)

where zk =
∑Ns
j=1 λ

k
j and ζ takes the values of −1 and

1 for fermions and bosons, respectively. However, in the
context of non-interacting gases, the fermionic version of
Eq. (12) is known to suffer from numerical instabilities
[51, 52], which weree also encountered in a previous ver-
sion of our canonical AFQMC algorithm [39], leading to
the emergence of an additional unphysical sign problem.

We can gain some intuitive understanding of the rea-
sons behind such numerical instability for the case of
fermions at low temperatures. In addition to the alter-
nating signs in Eq. (12), the contribution of high energy
levels to the factors zk, can be filtered out by limited
numerical precision. This is expected to have a minimal
effect on low-temperature Bose gases, as their thermo-
dynamic properties rely heavily on the occupation of low
energy levels. In contrast, the thermodynamic properties
of low-temperature Fermi gases are governed by much
higher energy levels in the vicinity of the Fermi level.

Here, we build upon our previous work [39] to propose
a more numerically stable and accurate method for com-
puting the canonical trace via a recursive formula based

upon the recently developed Auxiliary Partition Function
formalism [24]. Given a set {λi = e−βε̃i} of Boltzmann
factors that correspond to the single particle energy spec-
trum {ε̃i}, we can build the desired N particle partition
function recursively by including one of the levels in each
recursive step, i.e.,

ZN = λjZ
{λi}\λj
N−1 + Z

{λi}\λj
N , (13)

where the notation {λi}\λj implies that we exclude the
specific level j from the set {λi} (see Ref. [24] for ex-
tensive details). This recursion does not suffer from the
problems of Eq. (12) because it is inherently positive.
Yet, the unbounded nature of the Boltzman factors λi can
make achieving the desired numerical precision difficult,
especially at low temperatures. This can be addressed
with a simple trick. We modify Eq. (13) by inserting an
arbitrary multiplicative factor Aj (to be determined be-
low) with the inclusion of each λj and apply the modified
equation on the modified set {Bλi}, where B is an addi-
tional constant (also to be determined). This results in
a modified recursion relation

Z̄N = Aj

(
BλjZ̄

{λj}\λj
N−1 + Z̄

{λj}\λj
N

)
, (14)

and we can recover ZN from the resulting Z̄N via

Z̄N = BNZN
∏
j

Aj . (15)

This suggests that we can enhance the performance of
the APF recursive approach for calculating ZN through
a clever choice of the constants {Aj} and B. In order
to do so, we rearrange the fugacity expansion for the
grand canonical partition function, Zµ, in terms of the
canonical partition functions, ZN = TrN e

−βĤ ,

Zµ =
∑
N

eβµNZN . (16)

Dividing by the grand canonical partition function and
removing the summation over N results in an expression
for the particle number probability distribution given by

Pµ(N) =
eβµNZN
Zµ

. (17)

For non-interacting fermions, Zµ =
∏
j

(
1− p(µ)

j

)−1

[23], where

p
(µ)
j =

eβµλj
1 + eβµλj

(18)

is the probability of occupying the jth energy level. This
yields

Pµ(N) = eβµNZN
∏
j

(
1− p(µ)

j

)
. (19)
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If we compare Eq. (19) with Eq. (15), we can identify
Pµ(N) with Z̄N by choosing Aj = 1 − p

(µ)
j and B =

eβµ, which, when substituted into Eq. (14), results in a
recursion relation for the number probability distribution

Pµ(N) = p
(µ)
j P {λi}\λjµ (N − 1) + (1− p(µ)

j )P {λi}\λjµ (N).

(20)
In contrast with Eq. (13), all terms in the above equation
are bounded between 0 and 1, which further ensures their
numerical stability and automatically avoids numerical
arithmetic overflow issues caused by extremely large λi
values. Also, setting N = 0 in Eq. (17), we see that
1/Zµ = Pµ(0), which enables us to re-express Eq. (17) as

ZN =
ZN
Z0

=
eβµNPµ(N)

Pµ(0)
, (21)

where Z0 = 1.
We note that in Eq. (21), the chemical potential µ

is an algorithmic parameter that can take on any value
without changing the value of the canonical trace. It
need not be the many-body chemical potential, which is
otherwise difficult to determine for an arbitrary system.
To increase the numerical stability of Eqs. (20) and (21),
it is best to select a µ around the Fermi level, where
Pµ peaks at N . A good choice is eβµ = |λNλN+1|1/2,
assuming that {λi} is sorted as |λ1| < |λ2| < · · · < |λNs |.

It is worth mentioning that the particle number distri-
bution Pµ(N) can be viewed as a Poisson-binomial dis-
tribution [53], which can be expressed as

Pµ(N) :=
∑
SN

∏
i∈SN

p
(µ)
i

∏
j∈S̄N

(1− p(µ)
j ), (22)

where it is constructed from the probability p(µ)
i of suc-

cessfully occupying N energy levels at a given chemical
potential and temperature out of a total number of in-
dependent (non-interacting) and nonidentical Bernoulli
trials [24], where the corresponding set of independent
success probabilities is represented by

{
p

(µ)
i

}
. Here, SN

is a set of N occupied energy levels selected from Ns en-
ergy levels in the single-particle space; S̄N denotes the
complement coming from unoccupied levels.

While we have focused our presentation of our for-
malism here on fermions, it can readily be extended to
bosons, as further detailed in the Supplementary Mate-
rials [54].

C. Relationship between Auxiliary Partition
Function Approach and Previous Projection

Approaches

In this section, we illustrate how the more conventional
particle number projection formalism [59, 60] can be de-
rived from Eqs. (18), (19), and (20) through a Fourier
transform, and hence that it is analytically equivalent to

the recursive approach. The fact that these approaches
are analytically equivalent will be of value when we com-
pare the accuracy, stability, and speed of these methods
in Section IIIA.

We begin by considering the generating function of the
partition function under the recursive relation, Eq. (13),
for any non-zero a

∞∑
N=0

aNZN = λj

∞∑
N=1

aNZ
{λj}\λj
N−1 +

∞∑
N=0

aNZ
{λj}\λj
N

= (1 + aλj)

∞∑
N=0

aNZ
{λj}\λj
N . (23)

By iteratively subtracting the Boltzmann factors λj from
the set of all levels {λi}, we arrive at

∞∑
N=0

aNZN =
∏
j

(1 + aλj) . (24)

Setting a = eβµeiφm , with φm = 2πm/Ns, then yields
∞∑
N=0

eβµNeiφmNZN =
∏
j

(1 + eβµeiφmλj) . (25)

Using the discrete Fourier transform of the delta function
at N , δN =

∑Ns
m=1 e

iφmN/Ns, we can solve for eβµNZN
and recover the particle number projection result for the
canonical trace that was first proposed in Ref. [59]

ZN =
e−βµN

Ns

Ns∑
m=1

e−iφmN
∏
j

(1 + eβµeiφmλj)

=
1

Ns

Ns∑
m=1

e−βµNe−iφmN Z̃µ(m). (26)

As we shall demonstrate below, the recursion formal-
ism and the projection formalism have equivalent ac-
curacy with recursion having slightly improved scaling
[O(N3

s +NsN) vs. O(N3
s +N2

s ) after considering the N3
s

cost of the eigendecomposition] for computing the parti-
tion function.

D. Recursive Computation of Density Matrices
and Correlation Functions

The expectation value of the one-body density opera-
tor can be evaluated using the same eigendecomposition
of the field-dependent propagator matrix, Uσ = PΛP−1,
with Λ = diag({λi}), which leads to

〈ĉ†i ĉj〉N =
∑
α

Piα〈n̂α〉NP−1
αj , (27)

where 〈n̂α〉N is computed recursively in O(N) operations
[50, 61] as

〈n̂α〉N =
λαPµ(N − 1)

eβµPµ(N)
(1− 〈n̂α〉N−1) (28)
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with the initial condition 〈n̂α〉0 = 0. When λα is large,
〈n̂α〉N is close to 1 and the right side of Eq. (28) may
develop numerical round-off errors. To avoid this, we
reverse the recursion and compute the “hole” distribution
function for large values of λα

1− 〈n̂α〉N =
eβµPµ(N + 1)

λαPµ(N)
〈n̂α〉N+1 (29)

with the initial condition 〈n̂α〉Ns = 1 at unit filling.
The expectation value of the two-body density opera-

tor can be computed in a similar fashion:

〈ĉ†i ĉj ĉ
†
k ĉl〉N =

∑
α,β

[PiαPkβ〈n̂αn̂β〉NP−1
βl P

−1
αj

+ PiαPkβ〈n̂α − n̂αn̂β〉NP−1
βj P

−1
αl ] (30)

and the two-level correlations can be expressed as

〈n̂αn̂β〉N =


〈n̂α〉N α = β,

λβ〈n̂α〉N−λα〈n̂β〉N
λβ−λα α 6= β,

(31)

which can be viewed as the lowest order canonical ensem-
ble generalization [51, 62] of Wick’s theorem [49], recently
extended to the case of degenerate spectra [24]. These
expressions are used throughout the rest of the paper
to compute energies, particle densities, and correlation
functions.

E. Model System: Fermion Hubbard Model

While our formalism generalizes to any two-body
Hamiltonian, for the sake of subsequent discussion, we
will focus on the fermion Hubbard model due to the
strong correlation it exhibits and its relevance for the de-
scription of many useful chemical and material systems.
This model’s Hamiltonian may be expressed as

Ĥ = −t
∑
ij,σ

(
ĉ†i,σ ĉj,σ + H.c.

)
+ U

∑
i

n̂i,↑n̂i,↓ (32)

where ĉ†i,σ(ĉj,σ) are anti-commuting fermionic cre-
ation(anihilation) operators such that ĉi ĉ

†
j + ĉ†i ĉj = δij

and n̂i,σ = ĉ†i,σ ĉi,σ is the local spin-resolved density for
hopping parameter t and interaction strength U . In our
subsequent illustrations, we pose different challenges to
our formalism by varying the strength of the electron cor-
relation, U/t, the filling (average number of electrons per
site), 〈n〉 = (

∑
i n̂i↑ + n̂i↓)/Ns, and number of sites, Ns,

in our model. We measure energies in units of the hop-
ping parameter t in our simulations and set t = 1 in the
remainder of this work.

III. RESULTS AND DISCUSSION

A. Accuracy, Stability, and Speed of Our Recursive
Approach

In order to assess the utility of our approach, we be-
gin by characterizing its accuracy, stability, and relative
speed. Because our APF-based algorithm no longer in-
volves taking the difference between products of prob-
abilities or partition functions, we expect it to be sub-
stantially more stable at low temperatures, enabling us to
model larger systems closer to their ground states. While
we have previously demonstrated this increased stability
for non-interacting spin models [24], here we demonstrate
that this algorithm is equally stable for interacting sys-
tems.

To illustrate the stability of our algorithm for a non-
interacting system directly relevant to our final inter-
acting simulations, we compute the canonical partition
functions and occupations of a version of the Hubbard
model whose solutions can be derived analytically. As
described in Section IIA, in order to fully account for
the two-body interactions in the AFQMC formalism, one
employs the Hubbard-Stratonovich Transformation to in-
tegrate over many possible random instantiations of non-
interacting systems parameterized by different auxiliary
fields. While the partition function of a general, interact-
ing system is not analytically solvable, we can compute
the partition function for a system parameterized by a
single set of fields as a function of N and compare its
results to those from the projection algorithm.

In Fig. 1, we plot the logarithm of the canonical par-
tition function vs. the number of electrons computed us-
ing the Borrmann, APF, and Projection algorithms for a
100-site Hubbard chain with a randomly-generated, but
known set of Hubbard-Stratonovich fields at β = 10. As
is evident from the scale on the plot, this is a stringent
test of the stability of these algorithms because of the
exceedingly large and small values of ZN that can be
assumed in this model. Due to binomial combinatorics,
the partition function can be expected to peak at half-
filling. This is correctly captured by the APF and Pro-
jection algorithms, but not by the Borrmann recursion.
While all algorithms are able to accurately compute the
partition function at low fillings, the Borrmann recursion
quickly loses its stability (and therefore accuracy) relative
to the other algorithms at larger fillings. As previously
observed [39], this is because the Borrmann recursion re-
lies on sums overs terms with alternating signs that can
cancel each other out. The instability of the Borrmann
algorithm can similarly be observed in recursions for the
average occupations for all of the different energy levels,
k, as presented in the inset of Fig. 1. Here, the Borrmann
recursion is not only unable to reproduce the expected
non-interacting Fermi-Dirac-like distribution, but even
predicts unphysical negative occupations. In contrast,
both the APF and Projection algorithms agree regardless
of filling, providing clear evidence that the APF formal-
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FIG. 1. Stability with which different canonical ensemble al-
gorithms can compute the partition function of a 100-site
Hubbard chain with a randomly-generated set of Hubbard-
Stratonovitch fields for β = 10 for different total particle
numbers N . The inset depicts the occupation numbers of
all of the energy levels at half-filling (N = 50).

ism is highly stable for non-interacting systems. Given
that the interacting partition function may be obtained
by integrating over such non-interacting partition func-
tions, the same stability observed in these simulations
of non-interacting instantiations of the Hubbard model
should naturally extend to simulations of the fully inter-
acting model, as presented below.

Having demonstrated that both the APF and Projec-
tion algorithms are highly stable, we next compare their
computational scaling. Both algorithms make heavy use
of full matrix diagonalizations at an O(N3

s ) cost. How-
ever, due to its use of a Fourier sum, the Projection algo-
rithm sums over Ns Fourier components with each com-
ponent computing a Fourier-frequency-dependent parti-
tion function of a single-particle space of size Ns. In
contrast, the APF algorithm only requires N iterations,
where each iteration involves computing the occupation
probability of Ns single-particle levels. Ultimately, this
results in the recursive algorithm having an O(N3

s+NsN)
scaling for computing partition functions and occupation
numbers (one-body densities), whereas the Projection al-
gorithm has an O(N3

s +N2
s ) scaling. Thus, there is a clear

benefit to using the APF method for filling fractions be-
low unity. The two algorithms also possess different pref-
actors: the Projection algorithm requires an additional
rescaling step to avoid numerical overflow when the val-
ues of the Fourier components exceed the available float-
ing point maximum at a given precision, while the APF
algorithm is automatically stabilized as the calculations
are mapped to probabilities that take values in the range
[0, 1]. This points to the recursive algorithm being more
efficient, particularly at low fillings and for large system
sizes.

The increased efficiency of the recursive algorithm is
reflected in the upper panel of Fig. 2, which shows the

FIG. 2. Comparison of the runtimes (shorter is better) of
our Auxiliary Partition Function (APF) algorithm against
the more conventional Projection algorithm for QMC sam-
ples drawn from Hubbard models with varying numbers of
lattice sites, Ns, with U = 2 at two different fillings 〈n〉 = 1
and 〈n〉 = 0.2, and β = 12. Runtimes are plotted for com-
puting a single QMC step (upper panel), which reflects both
leading and subleading contributions to the scaling, and the
full partition function (lower panel), which reflects only sub-
leading contributions to the scaling. The inset in the upper
panel shows the speedup (larger is better) per QMC step of
the APF algorithm relative to the Projection algorithm. Run-
times for 〈n〉 = 1 are denoted by the squares, while those for
〈n〉 = 0.2 are denoted by the triangles.

wall time required for each QMC step of a random sam-
ple drawn from a HS-transformed Hubbard model with
U = 2 and β = 12 for varying numbers of sites. As
computing a full QMC step involves both leading and
subleading contributions to the overall scaling of the al-
gorithms, the plots in the upper panel are reflective of
the differences between the total execution times of both
algorithms. In particular, the inset depicts the total
speedup of the APF algorithm relative to the Projection
algorithm. The O(N3

s ) diagonalization step is identical
for both methods, so in the lower panel, we additionally
plot the wall time to compute the canonical partition
function, ZN (σ), which only reflects subleading contribu-
tions to the scaling, for both methods. Regardless of the
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size of the system and the filling, we find that our APF
algorithm is always faster than the Projection algorithm,
in line with our scaling derivations. While one would ex-
pect the similar O(N3

s ) contributions to the scaling to
dominate the wall times of both algorithms, we nonethe-
less see from the inset that the APF algorithm remains
10-15% faster than the Projection algorithm over a wide
range of system sizes. This speedup leads to a significant
practical gain in the efficiency of the APF algorithm rel-
ative to the Projection algorithm, especially for larger
system sizes and fillings. We also observe that the time
to run the Projection algorithm remained roughly the
same for different filling fractions, while the wall time of
the APF algorithm significantly decreased at lower fill-
ings. Performing linear regression on the log-log data in
Fig. 2 quantifies the overall N2

s scaling of the subleading
contributions to the wall time (as given by the slopes of
the regression lines) and reduced prefactor (as given by
the regression intercepts) of the computationally more
efficient APF method.

Although both algorithms could potentially be fur-
thered optimized, we believe that the scalings described
here are those representative of typical implementations
of these algorithms. As further discussed in the Supple-
mentary Materials [54], computational complexities can
also be worked out for the evaluation of the level occu-
pations and their correlation functions. We find that the
cost to compute occupations and related observables fol-
lows roughly the same scaling as for calculations of the
partition function.

B. Ground State Convergence Properties

1. Convergence of the Energy to the Ground State

Having demonstrated the markedly improved stability
of our new method, we can now not only assess how it
performs on fully interacting systems, but contrast the
different physics that emerges in the canonical vs. the
grand canonical ensemble down to relatively low temper-
atures. To appreciate these disparities, we begin by com-
paring how the energies of the Hubbard model converge
to their ground state energies at fixed N and µ. The
two ensembles are most effectively compared by choos-
ing a grand canonical µ such that the average number of
particles is given by 〈N̂〉µ = N .

In the past, the convergence of the energy to its ground
state value with decreasing temperature has commonly
been used to assess the relative contribution of thermal
quasiparticle excitations above the ground state to the
overall state of the quantum system. These excitations
are also a key contributor to the free energy, the key
property describing finite temperature thermodynamics.

In Fig. 3, we plot the energy per electron vs. the inverse
temperature for the 6 × 6 Hubbard model at half-filling
with U = 4 (and t = 1). Both the canonical and grand
canonical ensembles yield predictably large energies at

FIG. 3. Convergence of the energy per electron in the canoni-
cal (CE) and grand canonical (GCE) ensembles as a function
of the inverse temperature for a 6×6 Hubbard model at half-
filling with U = 4. Both the main panel and inset demonstrate
the enhanced convergence in the canonical ensemble.

high temperatures due to the higher thermal energy en-
abling the electrons to access higher energy states, and
then converge to roughly the same energy at lower tem-
peratures (large β). For all values of β, the canonical
ensemble energy is lower, with the largest difference oc-
curring at intermediate temperatures. This is because a
larger number of higher energy states are accessible to
the electrons in the grand canonical ensemble than in
the canonical ensemble due to number fluctuations. This
difference between ensembles grows with increased fill-
ing and decreased lattice size, which is in line with the
intuition that differences between the ensembles should
decrease as the thermodynamic limit is approached. In-
terestingly, despite the differences in their state spaces,
both ensembles appear to converge to the same ground
state energy on the scale of Fig. 3 at low temperatures.
As we shall show next, the energy turns out to be too
blunt of a metric to detect subtle and potentially impor-
tant differences between ensembles.

2. Convergence of the Purity and Fidelity to the Ground
State

Given the similar convergence of the energy to the
ground state in both ensembles discussed in the previ-
ous section, one may ask if there are more fundamental
metrics sensitive to differences between the two ensem-
bles. Indeed, the two ensembles are comprised of differ-
ent states that are accessible at different temperatures
which should lead to differences in their convergence to
the ground state.

For any finite-sized system, there exists a crossover
temperature below which the system is effectively in its
ground state. This can serve as a more direct indicator
for comparing the convergence rate between ensembles
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than by directly comparing the β-dependence of the total
energy. To quantitatively determine the crossover tem-
perature, we are inspired by information theory and turn
to the measurement of the purity

P = Tr ρ̂2, (33)

where ρ̂ is the thermal density matrix. The purity quan-
tifies how mixed a given finite temperature state is: in
general, any finite temperature state is mixed and cannot
be represented as a single vector in Hilbert space, result-
ing in a purity of less than 1, P < 1. Thus, quantitative
deviations of the purity from the identity can provide in-
sights into the convergence to the ground state in a more
general fashion than investigating any individual physi-
cal quantity whose T = 0 value may not be known in
general.

The purity can be computed in QMC through a replica
trick [63, 64] by rewriting it in terms of a ratio of partition
functions

Tr ρ̂2 =
Z(2β)

Z2(β)
=

∫
σ1,σ2

Tr
(
Ûσ1Ûσ2

)
∫
σ1,σ2

Tr
(
Ûσ1

)
Tr
(
Ûσ2

)
=

∫
σ1,σ2

Z(σ1 ∪ σ2)∫
σ1,σ2

Z(σ1)Z(σ2)
. (34)

Here, Z(σ1) and Z(σ2) are the usual partition functions
(in either the canonical or grand canonical ensembles) as
a function of their Hubbard-Stratonovich fields σ1 and
σ2. Z(σ1∪σ2) can be viewed as the partition function for
a connected ensemble propagating from 0 to 2β. The en-
semble switching technique [65, 66] can then be adopted
to efficiently sample this ratio of partition functions.

Although there is no known closed form for the purity,
one can still expand ρ2 in terms of a system’s energy
levels, and in the ground state (large-β) limit, only the
leading term remains (see the Supplementary Materials
[54] for a full derivation)

P ∝ 1− 2e−β∆E . (35)

In the canonical ensemble, ∆E exactly corresponds to
the energy gap between the ground state and first excited
state, while in the grand canonical ensemble, ∆E repre-
sents an effective energy gap that contains contributions
from states with N−1 and N+1 particles as sub-leading
terms. As a result, a temperature below which the sys-
tem falls into its ground state region can be revealed by
the onset of linear behavior when plotting ln(1− P) vs.
β. In Fig. 4, we show the purity vs. temperature for Hub-
bard models simulated in the canonical and grand canon-
ical ensembles for two interaction strengths U , and fit
ln(1− P) linearly against the inverse temperature in the
low-temperature region in the inset. As before, simula-
tions performed in the canonical ensemble converge more
rapidly to the ground state than those performed in the
grand canonical ensemble, as indicated by the uniformly

FIG. 4. The purity, P, of a 6×6 Hubbard model at half-filling
with U = 2 and U = 4 as a function of temperature for the
canonical (CE) and grand canonical (GCE) ensemble. Differ-
ent symbols correspond to different interaction strengths and
the lines are a guide to the eye. The inset shows ln(1− P)
as a function of the inverse temperature β, with the crossover
to linear behavior (fitted lines) indicating convergence to the
ground state (see Eq. (35)).

larger canonical purities for any given U . The canoni-
cal and grand canonical ensemble purities also show the
greatest agreement for U = 4 for β > 6, when ln(1− P)
begins to significantly deviate below zero, which echoes
the convergence for β > 6 seen earlier in the energy.

However, in contrast to the relative convergence of the
energy, the purity reveals additional trends rooted in the
underlying physics of the finite temperature crossovers.
In particular, ln(1− P) can be seen to crossover from ex-
hibiting roughly constant behavior at high temperatures
to exhibiting linear decay with decreasing temperature
(increasing β), as predicted by Eq. (35). This is a clear
indicator that the system has crossed into a regime that
is resolving the ground states. By fitting the linear de-
cay of ln(1− P), we can also extract the energy gap ∆E
from the slope of the regression lines. While it can be
statistically challenging to fit curves to such small purity
values in the presence of Monte Carlo uncertainties, our
fitting procedure yields gaps of −0.0816 and −0.1051 for
the canonical ensemble at U = 2 and U = 4, respec-
tively, and −0.0182 and −0.0275 for the grand canonical
ensemble at U = 2 and U = 4, respectively. Interestingly,
the more negative canonical ensemble slopes suggest that
the canonical ensemble gaps are larger than the effective
grand canonical gaps, which is supported by the fact that
more midgap states may be present in a grand canonical
treatment. Moreover, based upon the effective gaps ex-
tracted, the systems with U = 4 possess larger gaps than
those with U = 2, which is expected given the direct
correlation between larger U and larger ∆E. A more de-
tailed discussion of the information that can be obtained
from the purity is presented in the Supplementary Mate-
rials [54].

Although the purity has provided a more detailed
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glimpse into the physics of the crossovers that occur in
the different ensembles, it is not a measure that directly
compares the two ensembles. One metric that can draw
such a direct comparison is the fidelity, F(ρ, ρ′), that
measures the similarity between two density matrices ρ
and ρ′.

In this case, the thermal density matrices in the two
ensembles, ρN and ρµ, describe states that are not pure,
and the mixed-state fidelity can be defined as the Hilbert-
Schmidt inner product of ρN and ρµ normalized by the
two purities [41, 67]

F(ρN , ρµ) =
Tr(ρNρµ)√

Tr(ρ2
N )Tr(ρ2

µ)
. (36)

It is straightforward to show that under this definition,
the fidelity is normalized and reaches its maximum value
of 1 if and only if ρN = ρµ, and that it is also sym-
metric under the exchange of ρN and ρµ, F(ρN , ρµ) =
F(ρµ, ρN ). Note that the trace in the numerator is taken
over the whole Fock space, so the matrix form of ρN is
expanded from the N -particle Hilbert space to the Fock
space with varying particle numbers, but is only non-zero
in the N -particle block. Moreover, when the number op-
erator, N̂ , commutes with the Hamiltonian, as is the case
for the Hubbard model, ρµ is block-diagonal in the par-
ticle number regardless of the interaction strength. This
fact allows us to simplify the numerator of Eq. (36) to
Tr(ρNρµ) = Pµ(N, β)Tr(ρ2

N ). After some algebra, we
arrive at

F(ρN , ρµ) =
√
Pµ(N, 2β) =

√
e2βµNZN (2β)

Zµ(2β)
, (37)

which allows F(ρN , ρµ) to be directly measured within
our AFQMC simulations, as the ratio between partition
functions, ZN (2β) and Zµ(2β), can be measured through
the same ensemble switching technique as was employed
in the purity calculations.

In the ground state limit (β → ∞), the fidelity has
a similar limiting behavior as the purity, which can be
derived by expanding the particle-number distribution
Pµ(N, 2β). A full derivation can be found in the Supple-
mentary Materials [54] and yields

F ∝ 1− g

2
e−2β∆Ẽ , (38)

where ∆Ẽ is again an effective energy gap that includes
the effects of the gap for the system of N particles as its
leading term and the gaps for the systems of N + 1 and
N − 1 particles as its sub-leading terms. g represents an
effective degeneracy that accounts for the potentially un-
resolved spacing of the energy spectrum. This equation
implies that plotting ln(1−F) against β is expected to
possess linear scaling in the large-β limit.

In Fig. 5, we show the fidelity vs. temperature as well
as ln(1−F) vs. β in the inset. From this plot, we see

FIG. 5. Fidelity as a function of temperature for a 6×6 Hub-
bard model at half-filling with U = 2 and U = 4. The inset
fits ln(1−F) to the inverse temperature from β = 8 to β = 14
and extends to β values where ln(1−F) deviates from a lin-
ear fit. The error bars in the inset figure are smaller than the
symbols.

that the fidelity is larger for U = 4 than U = 2, mean-
ing that, at low temperatures, the ensembles are more
similar for larger U values. This is likely because larger
U values result in a larger gap, which limits how many
additional grand canonical states the system can access
beyond those occupied in the canonical ensemble. From
the inset, we additionally observe how ln(1−F) becomes
linear in β at low temperatures, as predicted by Eq. (38).
A larger effective gap is again observed for the more
strongly interacting case with U = 4, which possesses
a more negative slope than for U = 2. The considerable
deviation of the fidelity from unity, even at a very low
temperature (T < 0.1), can be understood from Eq. (37),
which definitively captures how particle number fluctua-
tions can continue to contribute to the grand canonical
density matrix, even in the limit of large systems when
approaching the ground state.

Although the gaps obtained may not yet be as accurate
as those obtained from excited state calculations, these
examples illustrate that the purity and fidelity are much
more informative metrics of convergence than the energy
alone, and provide additional information that can be
exploited to estimate gaps from finite temperature simu-
lations.

C. Sign Problem in the Canonical Ensemble

After observing how the canonical ensemble converges
more rapidly to the ground state, one may ask if this pro-
vides a practical way of more readily accessing β → ∞
quantities than in the grand canonical ensemble. After
all, it is reasonable to assume that if the energy and wave
function converge more rapidly in the canonical ensem-
ble, perhaps one can more readily gain access to low-
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FIG. 6. Average sign vs. filling fraction in the canonical (CE)
and grand canonical (GCE) ensembles of a 6×6 Hubbard
model with U = 4 and β = 10.

temperature physics before a severe sign problem sets in
at certain fillings.

To address the interplay between convergence to the
ground state and the emergence of a physical fermion sign
problem, we compute the average sign at different fillings
for a variety of temperatures and interaction strengths.
The behavior of the sign as a function of filling presented
in Fig. 6 is representative of what we more widely ob-
serve: in general, the average sign in the canonical en-
semble is less than that in the grand canonical ensemble
at any given filling. Just as in the grand canonical ensem-
ble, the sign at certain fillings is at or near 1, reflecting
special symmetries and indicating that the system can
be modeled with no approximations at polynomial cost.
However, away from these special fillings, the average
sign decreases, meaning that either exponentially more
samples must be taken to converge average observables
or sign mitigation strategies must be employed. Unfor-
tunately, where the sign problem is present, the canon-
ical sign problem appears to be more severe. This is
likely a consequence of the fact that the canonical en-
semble more quickly converges to the ground state: the
same states that lower the canonical energy relative to
the grand canonical energy are those that give rise to a
more significant sign problem. This presents a practi-
cal tradeoff. While the canonical ensemble more rapidly
converges to the ground state with decreasing tempera-
ture, it does so with an increased sign problem, signifying
that simulations in the canonical ensemble do not allow
for a way to mitigate costs associated with simulating
many-body systems of fermions. The ground state of the
fermion Hubbard model at most fillings possesses a sig-
nificant sign problem; the more rapidly this ground state
is approached, the more rapidly a sign problem emerges,
regardless of ensemble.

D. Impact on Thermometry: Differences Between
Canonical and Grand Canonical Ensemble

Observables

While the energy and sign are two of the most com-
monly measured observables in stochastic many-body
simulations, densities and correlation functions enable
the most direct comparisons with experiments. One may
therefore ask what significant differences may exist be-
tween canonical and grand canonical densities. This is
not an idle question: many recent cold atom experiments
estimate the temperature of their trapped gases assum-
ing that the constituent particles interact according to
the grand canonical ensemble [1, 68]. Although this is
valid at large particle numbers, many such experiments
are performed in a mesoscopic regime in which only a
finite number of particles are present. Making this as-
sumption when the thermodynamic limit has not been
reached, can lead to inaccurate estimates of the system
temperature, resulting in incorrect phase diagrams and
potentially unfounded efforts to further reduce tempera-
tures.

To make clear the effect of choosing the incorrect en-
semble on the determination of temperature in a finite
closed quantum system, it is illustrative to consider the
simplest extreme example of one particle (N = 1) dis-
tributed amongst Ns = 2 energy levels {0,∆}. In the
canonical ensemble,

〈n1〉1 =
1

1 + e−β∆
; 〈n2〉1 = e−β∆ 〈n1〉1 , (39)

while in the grand canonical ensemble, these average oc-
cupations depend on the chemical potential µ,

〈n1〉µ =
1

1 + e−βµ
; 〈n2〉µ =

e−β(∆−µ)

1 + e−β(∆−µ)
. (40)

In Eq. (40), µ is chosen such that 〈n1〉µ+〈n2〉µ = 1, which
yields µ = ∆/2. Using this value in Eq. (40) and equat-
ing occupation numbers between ensembles (the quan-
tity most directly accessible in thermometry experiments
through the velocity distribution) would require using an
inverse temperature in the grand canonical ensemble that
is twice that of the physical canonical temperature, i.e.
βµ = 2β ≡ 2βN . This would result in a 100% error in
the extracted temperature (when the incorrect ensemble
is chosen), with grand canonical simulations always pre-
dicting a lower temperature than the physical one.

While this is obviously an extreme (toy) example, ther-
mometry errors can persist to larger systems that include
interactions that affect other measurable quantities. For
example, second-order fluctuations in the particle num-
ber provide an even clearer way to explore the impact of
choosing the incorrect ensemble. This can be quantified
by the site occupancy correlation function

〈n̂in̂j〉 = 〈(n̂i,↑ + n̂i,↓)(n̂j,↑ + n̂j,↓)〉, (41)

where i, j areD-dimensional site indices. This correlation
function is more naturally studied in momentum space
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FIG. 7. Charge structure factor at k = (π, π), C(π,π), as a
function of inverse temperature β in the canonical (CE) and
grand canonical (GCE) ensembles for a 6× 6 Hubbard model
at U = 2, 〈n〉 = 2×23

36
≈ 1.28. The inset shows the heatmap of

the difference in the charge structural factors, δC(π,π)(βN , βµ),
as a function of the inverse temperature in the canonical and
grand canonical ensembles.

via the static charge structure factor at wavevector k,
given by the Fourier transform of Eq. (41):

Ck =
1

Ns

∑
i,j

eık·(i−j)〈n̂in̂j〉, (42)

which is, in principle, measurable in cold atom exper-
iments through, e.g., Bragg spectroscopy [69–72]. To
quantify the difference between ensemble predictions for
such a quantity, we compute Ck at k = (π, π) to expose
antiferromagnetic correlations for a 2D Hubbard model
at U = 2 and filling 〈n〉 = 2×23

36 as a function of inverse
temperature β as shown in Fig. 7. The odd number of
electrons was chosen due to the existence of the large gap
and the increased spacing of low-lying energy levels. The
grand canonical ensemble simulations off of half-filling
are implemented by tuning the chemical potential dy-
namically [27] during the Monte Carlo step to ensure∣∣∣〈n〉µ − 1.28

∣∣∣ < 1e−3. The deviation at each tempera-
ture is clear, with the canonical structure factor having a
consistently larger value due to suppressed fluctuations.
The inset shows a heat-map of the difference δCk for each
temperature β ≡ βN , with the y-axis representing the ef-
fective inverse temperature βµ needed to minimize the
difference between ensembles (the horizontal shift in the
main panel needed to align the two curves). Deviations
of the minimum from the line βµ = βN captures potential
errors in thermometry when using the incorrect ensemble.
The maximum deviation in the heatmap over the temper-
ature range we study appears to be (βN , βµ) ≈ (4.4, 9.4),
which leads to a 53.2% thermometry error. Such large
errors underscore the dramatic errors that can arise from
an incorrect choice of ensemble and that can be addressed
using the new techniques presented in this work.

IV. CONCLUSIONS

In summary, we have presented and illustrated appli-
cations of a new, significantly more stable recursive algo-
rithm for determining the physics of interacting systems
in the canonical ensemble. This algorithm integrates the
Auxiliary Partition Function formalism, a highly stable
means of computing the properties of non-interacting
systems in the canonical ensemble, into the Auxiliary
Field Quantum Monte Carlo framework by exploiting the
Hubbard-Stratonovich Transformation. We demonstrate
the stability of this algorithm and then showcase its po-
tential applications by studying differences in the way
that the canonical and grand canonical ensembles con-
verge to the ground state. This convergence is quanti-
fied using information theory metrics by comparing the
purity of finite temperature states generated within the
grand canonical and canonical frameworks. We find that
the canonical AFQMC results in a suppression of the
mixed state and improved fidelity with the ground state
as T → 0 in a practical simulation.

As an experimentally relevant application, we show
that a grand canonical treatment of the thermometry of
cold atom and other systems with fixed particle numbers
can lead to underestimates of the temperatures of those
systems, clouding investigations of their thermodynam-
ics. This is becoming more pressing as studies of trapped
homogeneous ultra-cold fermions push into a regime of
smaller T/TF where they are more poorly described by
the grand canonical ensemble [2]. Moreover, this work
has direct implications for the study of nuclear matter,
which possesses fixed nucleon numbers and has tradition-
ally been modeled using the Projection algorithm [5–8].

The fact that we find our algorithm to be more
computationally-efficient than oft-used Projection algo-
rithms opens the door to a wealth of potential new ap-
plications. To date, most Projection algorithms have
been limited to system sizes of tens, to at the very most,
low hundreds of particles, with application to smaller nu-
clei and “toy” condensed matter systems. In its present
form, without many algorithmic advances or computa-
tional fine-tuning, our algorithm can readily model sys-
tems with many hundreds of particles. This opens the
door to more accurate numerical descriptions of cold
atom quantum simulators or mesoscale devices where
discrete particle number fluctuations can influence the
transport of heat and matter [73].

Although we illustrated the performance of our algo-
rithm on systems of fermions because of their greater rel-
evance and potential to develop a sign problem, our algo-
rithm, with appropriate modifications, is equally applica-
ble to systems of bosons or particles with other quantum
statistics. The fact that the algorithm does not require
explicit knowledge of many-body chemical potentials and
is stable for large systems implies that it can see wide ap-
plication in the study of quantum condensates, which can
be challenging to simulate in the grand canonical ensem-
ble [28, 46].
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We also anticipate that our algorithm will enable more
direct comparisons with other finite temperature algo-
rithms, including the Path Integral Monte Carlo [17, 74,
75], Density Matrix Quantum Monte Carlo [10, 16], and
emerging Finite Temperature Coupled Cluster theories
[76, 77], all of which are formulated in the canonical
ensemble. Beyond the algorithmic, our work will fur-
thermore enable seamless canonical ensemble simulations
from high temperatures to the ground state where most
simulations are inherently performed in the canonical en-
semble. This will provide critical insights into how finite
temperature physics gives rise to ground state physics in
correlated systems with decreasing temperature without
the noise induced by spurious particle number fluctua-
tions. Given the correlations that fixed-particle number
constraints impose on the occupancies of different states,
we moreover anticipate that fluctuations and therefore
the physics of systems in the canonical ensemble will be
fundamentally different. We look forward to the new such

canonical ensemble physics this algorithm will reveal.

V. DATA AVAILABILITY

All codes, scripts, and data needed to reproduce the
results in this paper are available online [78, 79].

VI. ACKNOWLEDGEMENTS

The authors thank Richard Stratt, Christopher
Gilbreth, Scott Jensen, and Ben Cohen-Stead for fruitful
conversations. T.S., J.Y., and B.R. were funded by NSF
CTMC CAREER Award 2046744. T.S. is also grateful
for financial support from the Brown Open Graduate Ed-
ucation program. A.D. acknowledges support from the
NSF under Grant No. DMR-2041995. This research was
conducted using computational resources and services at
the Center for Computation and Visualization, Brown
University.

[1] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yef-
sah, J. Struck, and M. W. Zwierlein, Homogeneous
atomic fermi gases, Phys. Rev. Lett. 118, 123401 (2017).

[2] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and
H. Moritz, Two-dimensional homogeneous fermi gases,
Phys. Rev. Lett. 120, 060402 (2018).

[3] N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum
gases in optical boxes, Nature Physics 17, 1334 (2021),
2106.09716.

[4] Y. Alhassid, Auxiliary-field quantum monte carlo meth-
ods in nuclei, in Emergent Phenomena in Atomic Nuclei
from Large-Scale Modeling (2017) Chap. 9, pp. 267–298.

[5] G. H. Lang, C. W. Johnson, S. E. Koonin, and W. E.
Ormand, Monte carlo evaluation of path integrals for the
nuclear shell model, Phys. Rev. C 48, 1518 (1993).

[6] H. Nakada and Y. Alhassid, Total and parity-projected
level densities of iron-region nuclei in the auxiliary fields
monte carlo shell model, Phys. Rev. Lett. 79, 2939
(1997).

[7] Y. Alhassid, L. Fang, and H. Nakada, Heavy deformed
nuclei in the shell model monte carlo method, Phys. Rev.
Lett. 101, 082501 (2008).

[8] W. E. Ormand, D. J. Dean, C. W. Johnson, G. H. Lang,
and S. E. Koonin, Demonstration of the auxiliary-field
monte carlo approach for sd-shell nuclei, Phys. Rev. C
49, 1422 (1994).

[9] Y. Liu, M. Cho, and B. Rubenstein, Ab Initio finite tem-
perature auxiliary field quantum monte carlo, J. Chem.
Theory Comput. 14, 4722 (2018).

[10] H. R. Petras, S. K. Ramadugu, F. D. Malone, and J. J.
Shepherd, Using density matrix quantum monte carlo for
calculating exact-on-average energies for ab Initio hamil-
tonians in a finite basis set, J. Chem. Theory Comput.
16, 1029 (2020).

[11] S. Zhang and H. Krakauer, Quantum monte carlo method
using phase-free random walks with slater determinants,

Phys. Rev. Lett. 90, 136401 (2003).
[12] S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained

path monte carlo method for fermion ground states,
Phys. Rev. B 55, 7464 (1997).

[13] U. Schollwöck, The density-matrix renormalization
group, Rev. Mod. Phys. 77, 259 (2005).

[14] I. Y. Zhang and A. Grüneis, Coupled cluster theory in
materials science, Frontiers in Materials 6, 123 (2019),
arXiv:2004.06424 [cond-mat.mtrl-sci].

[15] Y. Liu, T. Shen, H. Zhang, and B. Rubenstein, Unveil-
ing the finite temperature physics of hydrogen chains via
auxiliary field quantum monte carlo, J. Chem. Theory
Comput. 16, 4298 (2020).

[16] F. D. Malone, N. S. Blunt, J. J. Shepherd, D. K. K.
Lee, J. S. Spencer, and W. M. C. Foulkes, Interaction
picture density matrix quantum monte carlo, J. Chem.
Phys. 143, 044116 (2015).

[17] F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee,
J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd, Ac-
curate exchange-correlation energies for the warm dense
electron gas, Phys. Rev. Lett. 117, 115701 (2016).

[18] E. W. Brown, B. K. Clark, J. L. DuBois, and D. M.
Ceperley, Path-integral monte carlo simulation of the
warm dense homogeneous electron gas, Phys. Rev. Lett.
110, 146405 (2013).

[19] H. M. Wiseman and J. A. Vaccaro, Entanglement of
indistinguishable particles shared between two parties,
Phys. Rev. Lett. 91, 097902 (2003).

[20] S. D. Bartlett and H. M. Wiseman, Entanglement con-
strained by superselection rules, Phys. Rev. Lett. 91,
097903 (2003).

[21] H. Barghathi, C. M. Herdman, and A. Del Maestro,
Rényi generalization of the accessible entanglement en-
tropy, Phys. Rev. Lett. 121, 150501 (2018).

[22] T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Nu-
clear level density and the determination of thermonu-

https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.120.060402
https://doi.org/10.1038/s41567-021-01403-z
https://arxiv.org/abs/2106.09716
https://doi.org/10.1142/9789813146051_0009
https://doi.org/10.1142/9789813146051_0009
https://doi.org/10.1103/PhysRevC.48.1518
https://doi.org/10.1103/PhysRevLett.79.2939
https://doi.org/10.1103/PhysRevLett.79.2939
https://doi.org/10.1103/PhysRevLett.101.082501
https://doi.org/10.1103/PhysRevLett.101.082501
https://doi.org/10.1103/PhysRevC.49.1422
https://doi.org/10.1103/PhysRevC.49.1422
https://doi.org/10.1021/acs.jctc.8b00569
https://doi.org/10.1021/acs.jctc.8b00569
https://doi.org/10.1021/acs.jctc.9b01080
https://doi.org/10.1021/acs.jctc.9b01080
https://doi.org/10.1103/PhysRevLett.90.136401
https://doi.org/10.1103/PhysRevB.55.7464
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.3389/fmats.2019.00123
https://arxiv.org/abs/2004.06424
https://doi.org/10.1021/acs.jctc.0c00288
https://doi.org/10.1021/acs.jctc.0c00288
https://doi.org/10.1063/1.4927434
https://doi.org/10.1063/1.4927434
https://doi.org/10.1103/PhysRevLett.117.115701
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevLett.91.097903
https://doi.org/10.1103/PhysRevLett.91.097903
https://doi.org/10.1103/PhysRevLett.121.150501


14

clear rates for astrophysics, Phys. Rev. C 56, 1613 (1997).
[23] D. McQuarrie, Statistical Mechanics (University Science

Books, 2000).
[24] H. Barghathi, J. Yu, and A. Del Maestro, Theory of non-

interacting fermions and bosons in the canonical ensem-
ble, Phys. Rev. Res. 2, 043206 (2020).

[25] P. Borrmann and G. Franke, Recursion formulas for
quantum statistical partition functions, J. Chem. Phys.
98, 2484 (1993).

[26] C. Gilbreth and Y. Alhassid, Stabilizing canonical-
ensemble calculations in the auxiliary-field monte carlo
method, Comput. Phys. Commun 188, 1 (2015).

[27] C. Miles, B. Cohen-Stead, O. Bradley, S. Johnston,
R. Scalettar, and K. Barros, Dynamical tuning of the
chemical potential to achieve a target particle number in
grand canonical Monte Carlo simulations, Phys. Rev. E
105, 045311 (2022).

[28] C. N. Gilbreth and Y. Alhassid, Pair condensation in a
finite trapped fermi gas, Phys. Rev. A 88, 063643 (2013).

[29] S. Jensen, C. N. Gilbreth, and Y. Alhassid, Pairing corre-
lations across the superfluid phase transition in the uni-
tary fermi gas, Phys. Rev. Lett. 124, 090604 (2020).

[30] C. M. Herdman, A. Rommal, and A. Del Maestro, Quan-
tum monte carlo measurement of the chemical potential
of 4He, Phys. Rev. B 89, 224502 (2014).

[31] Z. Wang, F. F. Assaad, and F. Parisen Toldin, Finite-size
effects in canonical and grand-canonical quantum monte
carlo simulations for fermions, Phys. Rev. E 96, 042131
(2017).

[32] R. D. Sedgewick, D. J. Scalapino, R. L. Sugar, and
L. Capriotti, Canonical and grand canonical ensemble ex-
pectation values from quantum monte carlo simulations,
Phys. Rev. B 68, 045120 (2003).

[33] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh,
J. E. Gubernatis, and R. T. Scalettar, Numerical study
of the two-dimensional hubbard model, Phys. Rev. B 40,
506 (1989).

[34] S. Zhang, Finite-temperature monte carlo calculations for
systems with fermions, Phys. Rev. Lett. 83, 2777 (1999).

[35] J. E. Hirsch, Discrete hubbard-stratonovich transforma-
tion for fermion lattice models, Phys. Rev. B 28, 4059
(1983).

[36] R. L. Stratonovich, Sov. Phys. Dokl. 2, 416.
[37] J. Hubbard, Calculation of partition functions, Phys.

Rev. Lett. 3, 77 (1959).
[38] M. Motta and S. Zhang, Ab initio computations of molec-

ular systems by the auxiliary-field quantum Monte Carlo
method, WIREs Comp. Mol. Sci. 8, 1364 (2018).

[39] T. Shen, Y. Liu, Y. Yu, and B. M. Rubenstein, Finite
temperature auxiliary field quantum monte carlo in the
canonical ensemble, J. Chem. Phys. 153, 204108 (2020).

[40] L. Bonnes, H. Pichler, and A. M. Läuchli, Entropy per-
spective on the thermal crossover in a fermionic hubbard
chain, Phys. Rev. B 88, 155103 (2013).

[41] G. Parez, Symmetry-resolved rényi fidelities and quan-
tum phase transitions, Phys. Rev. B 106, 235101 (2022).

[42] H. F. Trotter, On the product of semi-groups of opera-
tors, Proc. Am. Math. Soc. 10, 545 (1959).

[43] M. Suzuki, Relationship between d-Dimensional Quan-
tal Spin Systems and (d+1)-Dimensional Ising Systems:
Equivalence, Critical Exponents and Systematic Approx-
imants of the Partition Function and Spin Correlations,
Prog. Theor. Phys. 56, 1454 (1976).

[44] J. E. Hirsch, Two-dimensional hubbard model: Numeri-
cal simulation study, Phys. Rev. B 31, 4403 (1985).

[45] Z. Bai, W. Chen, R. Scalettar, and I. Yamazaki, Numer-
ical methods for quantum monte carlo simulations of the
hubbard model, in Multi-Scale Phenomena in Complex
Fluids (World Scientific, 2009) pp. 1–110.

[46] B. M. Rubenstein, S. Zhang, and D. R. Reichman, Finite-
temperature auxiliary-field quantum Monte Carlo tech-
nique for Bose-Fermi mixtures, Phys. Rev. A 86, 053606
(2012).

[47] G. M. Buendia, Comparative study of the discrete and
the continuous hubbard-stratonovich transformation for
a one-dimensional spinless fermion model, Phys. Rev. B
33, 3519 (1986).

[48] A. Fetter and J. Walecka, Quantum Theory of Many-
Particle Systems, Dover Books on Physics (Dover Publi-
cations, 2012).

[49] G. C. Wick, The evaluation of the collision matrix, Phys.
Rev. 80, 268 (1950).

[50] P. Borrmann, J. Harting, O. Mülken, and E. R. Hilf,
Calculation of thermodynamic properties of finite bose-
einstein systems, Phys. Rev. A 60, 1519 (1999).

[51] K. Schönhammer, Deviations from Wick's theorem in the
canonical ensemble, Phys. Rev. A 96, 012102 (2017).

[52] H.-J. Schmidt and J. Schnack, Thermodynamic
fermion–boson symmetry in harmonic oscillator poten-
tials, Physica A 265, 584 (1999).

[53] Y. Hong, On computing the distribution function for the
poisson binomial distribution, Comput. Stat. Data. Anal.
59, 41 (2013).

[54] (2022), see Supplemental Material for additional algorith-
mic details,extensions to bosonic systems, derivations of
information theoretic quantities, and additional compar-
isons between ensembles, which includes Refs. [55–58].

[55] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White,
D. J. Scalapino, and R. L. Sugar, Sign problem in the nu-
merical simulation of many-electron systems, Phys. Rev.
B 41, 9301 (1990).

[56] L. Fang, Shell model Monte Carlo methods for nuclei at
finite temperature (Yale University, 2005).

[57] A. Uhlmann, The “transition probability” in the state
space of a ∗-algebra, Rep. Math. Phys. 9, 273 (1976).

[58] R. Jozsa, Fidelity for Mixed Quantum States, J. Mod.
Opt. 41, 2315 (1994).

[59] W. E. Ormand, D. J. Dean, C. W. Johnson, G. H. Lang,
and S. E. Koonin, Demonstration of the auxiliary-field
monte carlo approach for sd-shell nuclei, Phys. Rev. C
49, 1422 (1994).

[60] C. Gilbreth, S. Jensen, and Y. Alhassid, Reducing the
complexity of finite-temperature auxiliary-field quantum
monte carlo, Computer Physics Communications 264,
107952 (2021).

[61] H. Schmidt, A simple derivation of distribution func-
tions for bose and fermi statistics, Am. J. Phys. 57, 1150
(1989).

[62] O. Giraud, A. Grabsch, and C. Texier, Correlations of
occupation numbers in the canonical ensemble and appli-
cation to a bose-einstein condensate in a one-dimensional
harmonic trap, Phys. Rev. A 97, 053615 (2018).

[63] P. Calabrese and J. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech.: Theor. Exp. 2004,
06002 (2004).

[64] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller,
Measuring entanglement growth in quench dynamics of

https://doi.org/10.1103/PhysRevC.56.1613
https://books.google.com/books?id=itcpPnDnJM0C
https://doi.org/10.1103/physrevresearch.2.043206
https://doi.org/10.1063/1.464180
https://doi.org/10.1063/1.464180
https://doi.org/https://doi.org/10.1016/j.cpc.2014.09.002
https://doi.org/10.1103/physreve.105.045311
https://doi.org/10.1103/physreve.105.045311
https://doi.org/10.1103/PhysRevA.88.063643
https://doi.org/10.1103/PhysRevLett.124.090604
https://doi.org/10.1103/PhysRevB.89.224502
https://doi.org/10.1103/PhysRevE.96.042131
https://doi.org/10.1103/PhysRevE.96.042131
https://doi.org/10.1103/PhysRevB.68.045120
https://doi.org/10.1103/physrevb.40.506
https://doi.org/10.1103/physrevb.40.506
https://doi.org/10.1103/PhysRevLett.83.2777
https://doi.org/10.1103/physrevb.28.4059
https://doi.org/10.1103/physrevb.28.4059
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1002/wcms.1364
https://doi.org/10.1063/5.0026606
https://doi.org/10.1103/PhysRevB.88.155103
https://doi.org/10.1103/PhysRevB.106.235101
http://www.jstor.org/stable/2033649
https://doi.org/10.1143/ptp.56.1454
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1142/9789814273268_0001
https://doi.org/10.1142/9789814273268_0001
https://doi.org/10.1103/physreva.86.053606
https://doi.org/10.1103/physreva.86.053606
https://doi.org/10.1103/PhysRevB.33.3519
https://doi.org/10.1103/PhysRevB.33.3519
https://books.google.com/books?id=t5_DAgAAQBAJ
https://books.google.com/books?id=t5_DAgAAQBAJ
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/physreva.60.1519
https://doi.org/10.1103/physreva.96.012102
https://doi.org/https://doi.org/10.1016/S0378-4371(98)00654-2
https://doi.org/10.1016/j.csda.2012.10.006
https://doi.org/10.1016/j.csda.2012.10.006
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://www.proquest.com/docview/305386227
https://www.proquest.com/docview/305386227
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1103/PhysRevC.49.1422
https://doi.org/10.1103/PhysRevC.49.1422
https://doi.org/10.1016/j.cpc.2021.107952
https://doi.org/10.1016/j.cpc.2021.107952
https://doi.org/10.1119/1.16123
https://doi.org/10.1119/1.16123
https://doi.org/10.1103/PhysRevA.97.053615
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1742-5468/2004/06/p06002


15

bosons in an optical lattice, Phys. Rev. Lett. 109, 020505
(2012).

[65] P. Broecker and S. Trebst, Rényi entropies of interact-
ing fermions from determinantal quantum monte carlo
simulations, J. Stat. Mech.: Theor. Exp. 2014, P08015
(2014).

[66] F. F. Assaad, Stable quantum monte carlo simulations
for entanglement spectra of interacting fermions, Phys.
Rev. B 91, 125146 (2015).

[67] X. Wang, C.-S. Yu, and X. Yi, An alternative quantum
fidelity for mixed states of qudits, Phys. Lett. A 373, 58
(2008).

[68] R. Onofrio, Cooling and thermometry of atomic fermi
gases, Physics-Uspekhi 59, 1129 (2016).

[69] E. Altman, E. Demler, and M. D. Lukin, Probing many-
body states of ultracold atoms via noise correlations,
Phys. Rev. A 70, 013603 (2004).

[70] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark,
P. D. Drummond, P. Hannaford, and C. J. Vale, Uni-
versal Behavior of Pair Correlations in a Strongly Inter-
acting Fermi Gas, Phys. Rev. Lett. 105, 070402 (2010).

[71] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Ne-
spolo, L. Pollet, I. Bloch, and C. Gross, Spin-and density-
resolved microscopy of antiferromagnetic correlations in
Fermi-Hubbard chains, Science 353, 1257 (2016).
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