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Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless
disks with either positive or negative global shear moduli. We carry out computational studies to
understand the contributions of the negative shear moduli to the mechanical response of jammed
disk packings. We first decompose the ensemble-averaged, global shear modulus as ⟨G⟩ = (1 −
F−)⟨G+⟩+F−⟨G−⟩, where F− is the fraction of jammed packings with negative shear moduli and
⟨G+⟩ and ⟨G−⟩ are the average values from packings with positive and negative moduli, respectively.
We show that ⟨G+⟩ and ⟨|G−|⟩ obey different power-law scaling relations above and below pN2 ∼ 1.
For pN2 > 1, both ⟨G+⟩N and ⟨|G−|⟩N ∼ (pN2)β , where β ∼ 0.5 for repulsive linear spring

interactions. Despite this, ⟨G⟩N ∼ (pN2)β
′
with β′ ≳ 0.5 due to the contributions from packings

with negative shear moduli. We show further that the probability distribution of global shear moduli
P(G) collapses at fixed pN2 and different values of p and N . We calculate analytically that P(G) is
a Gamma distribution in the pN2 ≪ 1 limit. As pN2 increases, the skewness of P(G) decreases and
P(G) becomes a skew-normal distribution with negative skewness in the pN2 ≫ 1 limit. We also
partition jammed disk packings into subsystems using Delanunay triangulation of the disk centers to
calculate local shear moduli. We show that the local shear moduli defined from groups of adjacent
triangles can be negative even when G > 0. The spatial correlation function of local shear moduli
C(r⃗) displays weak correlations for pn2

sub < 10−2, where nsub is the number of particles within each
subsystem. However, C(r⃗) begins to develop long-ranged spatial correlations with four-fold angular
symmetry for pn2

sub ≳ 10−2.

I. INTRODUCTION

Particulate materials, such as packings of bubbles [1],
droplets [2], colloids [3], and grains [4], jam into a
solid-like state when they are compressed above jam-
ming onset, while the internal structure remains disor-
dered. A distinguishing feature of jammed solids is that
they possess a nonzero shear modulus G, in addition
to a nonzero bulk modulus B [5]. Numerous computa-
tional and theoretical studies have employed the friction-
less, soft-particle model [6–9], which assumes pairwise,
purely repulsive interactions between spherical particles,
to study the onset of jamming in particulate materials.
Prior results have shown that at high pressures the shear
modulus for jammed packings of spherical particles scales
as a power law, G ∼ pβ , where the scaling exponent β
depends on the form of the purely repulsive interaction
potential, but not on the spatial dimension [5, 10, 11].
In most prior studies of jammed packings of friction-

less, soft particles, packings are generated by isotropically
compressing a collection of particles when the shape of
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the bounding box is fixed. In this “compression-only”
protocol, the shear modulus of a given packing can be
negative and the boundaries of the system provide the
necessary shear stress to prevent particles from flow-
ing [10, 12, 13]. In contrast, a shear-stabilized packing
protocol was proposed to generate jammed systems that
are stable to shear in all directions by allowing all de-
grees of freedom of the boundary to change during energy
minimization [12]. The two different protocols generate
packings with different mechanical properties, resulting
in the question of whether jammed packings with nega-
tive shear moduli should be excluded from the ensemble
when using the ensemble average to represent the shear
modulus in the large-system limit [10, 12–15].

In previous studies of jammed packings generated
by the compression-only protocol, we showed that the
pressure-dependent shear modulus has two contribu-
tions [16]: 1) continuous variations in the shear modulus
with pressure from geometrical families, and 2) discon-
tinuous jumps in the shear modulus from changes in the
interparticle contact network. Geometrical families cor-
respond to jammed packings at different pressures that
are related to each other with the same interparticle con-
tact network. For purely repulsive linear spring interac-
tions [17], the shear modulus of a near isostatic geomet-
rical family can be approximated as G/G0 ∼ 1 − p/p0,



2

whereG0 is the shear modulus at p = 0 and p0 is the pres-
sure at which G = 0. Thus, G becomes negative when p
increases above p0 if the disk packing does not undergo
a particle rearrangement during the isotropic compres-
sion. Changes in the interparticle contact networks dur-
ing compression give rise to discontinuous changes in G
and slope dG/dp, which alter the pressure at which G be-
comes negative. Hence, jammed packings with negative
G can be considered as natural members of the ensem-
ble, which raises the question of how negative shear mod-
uli affect the power-law scaling of the ensemble-averaged
shear modulus ⟨G⟩.
It is well-known that amorphous solids exhibit spa-

tial heterogeneity at the particle scale [18–22] in response
to boundary-driven deformations. Understanding these
spatial heterogeneities is essential for linking bulk me-
chanical properties to particle-scale interactions and mo-
tion [23–27]. In particular, it has been shown that an
affine deformation applied to an amorphous solid will give
rise to strongly nonaffine particle-scale motion to restore
force balance in the system [28–31], which makes it more
difficult to define local stress and strain for subdomains
of amorphous solids. The strongly inhomogeneous stress
and strain are believed to play a central role in control-
ling the anomalous acoustic excitations and bulk mechan-
ical properties of amorphous solids [29, 32–38]. However,
despite its importance, it is not clear which definitions
of local stress and strain best characterize their local
structural and mechanical properties and which should
be used to connect the local to the global mechanical
response [18, 19, 21, 39, 40].

In this work, we carry out computational studies to
generate jammed binary disk packings (interacting via re-
pulsive linear spring forces) using isotropic compression,
while controlling the shape of the confining box. We fo-
cus on the mechanical response of jammed disk packings
to applied simple shear and characterize the distribution
of the global shear moduli (including both positive and
negative values) as a function of the pressure p and sys-
tem size N . We also develop a novel method to calculate
the local shear moduli g of jammed disk packings as a
function of the size of the subsystem nsub, and compare
these results to those using other methods.

We find several key results. First, we show that the
separate contributions ⟨G+⟩ and ⟨G−⟩ to the ensemble-
averaged shear modulus, ⟨G⟩ = (1−F−)⟨G+⟩+F−⟨G−⟩,
where F− is the fraction of jammed packings with G < 0,
obey different scaling relations with pressure p above
and below pN2 ∼ 1. For pN2 < 1, ⟨|G−|⟩N ∼ pN2

and (⟨G+⟩ − G+
0 )N ∼ (pN2)η+ , where G+

0 ∼ N−1 and
η+ ∼ 0.75. In contrast, for pN2 > 1, both ⟨G+⟩ and
⟨|G−|⟩ ∼ pβ , where β ∼ 0.5. We find that the power-law
scaling exponent β ≳ 0.5 for the ensemble-averaged shear
modulus ⟨G⟩ since the fraction of packings with nega-
tive shear moduli decreases strongly with increasing p
for pN2 > 1. Second, we show analytically that the form
for the probability distribution P(G) in the pN2 → 0
limit becomes a Gamma distribution with shape param-
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FIG. 1. Sketch of a simple shear deformation (Eq. 3) applied
to a square cell (with side length L and area A = L2) at an
angle θ to the x-axis. The sides of the undeformed square cell
(black solid lines) are aligned with the x- and y-axes. The
deformed cell (blue dashed lines) has area A and side lengths
L′ = ∥F (L, 0)T∥ and L′′ = ∥F (0, L)T∥.

eter k = 0.5. In contrast, when pN2 ≫ 1, P(G) be-
comes a left-skewed Gaussian distribution. Third, using
a Delaunay triangulation method for calculating the lo-
cal shear modulus g, we show that the shear modulus
for single triangles, whose vertices represent the centers
of three nearest neighbor disks, decreases linearly with
pressure g ∼ g0 − λp, where g0 and the coefficient λ
depend on the triangle’s orientation. This result is con-
sistent with the dependence of the global shear modulus
with pressure for jammed packings within geometrical
families. Further, there can be an abundance of negative
local shear moduli of subsystems composed of Delaunay
triangles even for jammed packings with G > 0. We find
only weak spatial correlations in g over a wide range of
pn2

sub < 10−2, where nsub is the subsystem size. In con-
trast, local shear moduli calculated by assuming that the
local strain tensor is affine possess long-ranged spatial
correlations with four-fold angular symmetry for all val-
ues of pn2

sub. These results emphasize the importance of
characterizing the effects of non-affine local strain on the
local shear modulus, elucidate the influence of negative
shear moduli on the ensemble-averaged mechanical prop-
erties of jammed disk packings, and provide promising
directions for linking their local and global mechanical
response.

The remainder of the article is organized as follows. In
Sec. II, we introduce the purely repulsive linear spring
potential for modeling the interactions between disks,
the protocol used to generate the jammed disk packings,
and the methods to calculate their local and global shear
moduli. We present our main results in Sec. III including
the calculations of ⟨G⟩, ⟨G+⟩, and ⟨|G−|⟩ as a function
of p and N and the probability distributions and spa-
tial correlations of the local shear moduli (for different
nsub) using the affine-strain and Delaunay triangulation
methods. The conclusions and promising future research
directions are provided in Sec. IV. We also include three
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FIG. 2. The ensemble-averaged amplitude of the shear modu-
lus ⟨Ga⟩ (normalized by ⟨Gd⟩ in Eq. 5b) plotted as a function
of pN2 for several system sizes N = 64, 256, and 1024. The
dashed line has a slope of −0.25. Similar results were found
in Ref. [10].

appendices. In Appendix A, we derive the stiffness ten-
sor for the five types of Delaunay triangles in binary disk
packings in the low-pressure limit. In Appendix B, we
provide additional data for P(G) at intermediate values
of pN2. In Appendix C, we derive the form of P(G) for
disk packings at jamming onset.

II. METHODS

A. Model system and packing generation protocol

We study the mechanical properties of jammed pack-
ings of N frictionless disks with the same mass m in two
dimensions. We consider a range of system sizes, includ-
ing N = 64, 128, 256, and 1024 to investigate the finite-
size effects. The disks interact via the pairwise, purely
repulsive linear spring potential,

U(rij) =
ϵ

2

(
1− rij

σij

)2

Θ

(
1− rij

σij

)
, (1)

where ϵ is the characteristic energy scale, rij is the sep-
aration between the centers of disks i and j, σij =
(σi + σj)/2 is the average of their diameters σi and σj ,
and Θ(·) is the Heaviside step function. The total po-
tential energy U =

∑
i>j U(rij) is obtained by summing

U(rij) over all distinct disk pairs that are in contact. We
focus on binary mixtures with N/2 large and N/2 small
particles and the diameter ratio of the large to small disk,
σl/σs = 1.4, which inhibits crystallization [41]. Below,
we will display the data using m, σs, and ϵ as the units
for mass, length, and energy, respectively.

To generate jammed packings, we first randomly
placed N disks in a square box with the side length L and
periodic boundary conditions in the x- and y-directions
at initial packing fraction ϕ0 = 0.83. We then perform

minimization of the enthalpy H = U + p′L2, where p′

is the target pressure [10, 42, 43], using the fast inertial
relaxation engine (FIRE) minimization method [44] with
a fixed square box shape. The enthalpy minimization
is terminated when the magnitude of the total force on

each disk i satisfies |f⃗i| < 10−14 and the pressure satisfies
|p− p′| < 10−14.
The global stress tensor of each jammed disk packing

is calculated via the virial expression:

Σαβ = L−2
N∑
i>j

rijαfijβ , (2)

where rijα is the α-component of the separation vector
r⃗ij = (xij , yij)

T pointing from the center of disk j to
the center of disk i and fijβ is the β-component of the

interparticle force f⃗ij = −(dU/drij)r̂ij on disk i from j.
The pressure and shear stress are defined as p = (Σxx +
Σyy)/2 and Σ = −Σxy.
We first generate an ensemble of Ne ∼ 104 jammed

disk packings at low pressure p = 10−7. We then com-
press each of the packings in small pressure increments
∆p with each increment in pressure followed by enthalpy
minimization. We choose ∆p such that we have Np ≈ 103

pressure values evenly spaced on a logarithmic scale be-
tween p = 10−7 and 10−2.

B. Calculation of global and local shear moduli

1. Global shear modulus

We calculate the global shear modulus of each packing
using the expression: G = GA − GNA [28, 29], where
the affine term GA is the response to the applied affine
simple shear strain and the nonaffine term GNA gives the
nonaffine response of the system as it relaxes to a new
potential energy minimum after the applied simple shear.
A simple shear increment δγ applied to the packing at
an angle θ to the x-axis, as illustrated in Fig. 1, changes
the position of disk i to (x′

i, y
′
i)

T = F (x0
i , y

0
i )

T, where
(x0

i , y
0
i )

T is the original position of the disk and

F =

[
1− 1

2δγ sin 2θ
1
2δγ (1 + cos 2θ)

− 1
2δγ (1− cos 2θ) 1 + 1

2δγ sin 2θ

]
(3)

is the deformation gradient tensor. This deformation pre-
serves the area of the box A = L2, but changes the side
lengths of the confining box to L′ = ∥F (L, 0)T∥ and

L′′ = ∥F (0, L)T∥, where ∥(x, y)T∥ =
√

x2 + y2. The
affine and nonaffine contributions to the shear modulus
are

GA =
1

L2

∂2U

∂γ2
, (4a)

GNA =
1

L2
ΞiαM

−1
iαjβΞjβ , (4b)
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where Miαjβ = ∂2U
∂riα∂rjβ

is the dynamical matrix, riα is

the α-component of r⃗i = (xi, yi)
T, and Ξ⃗i =

∂2U
∂r⃗i∂γ

is the

virtual force incurred after a small shear strain increment.
Both the shear stress and shear modulus vary sinu-

soidally with the angle θ at which the simple shear strain
is applied [10, 12]:

Σ = Σa sin 2(θ − θS), (5a)

G = Ga sin 4(θ − θG) +Gd, (5b)

where Σa and Ga are the amplitudes of the shear stress
and shear modulus, θS and θG are the phase shifts of
the shear stress and shear modulus, and Gd is the angle-
averaged shear modulus. The ensemble-averaged ampli-
tude of the shear modulus ⟨Ga⟩ (normalized by ⟨Gd⟩)
reaches a plateau of 1 in the pN2 ≪ 1 limit, whereas
⟨Ga⟩/⟨Gd⟩ ∼ 1/(pN2)κ (with κ ∼ 0.25) tends to zero
in the pN2 ≫ 1 limit [10] as shown in Fig. 2. Since
⟨Ga⟩ ∼ ⟨Gd⟩ and ⟨Gd⟩ > 0 in the pN2 ≪ 1 limit, G > 0
for all θ in this pressure regime. ⟨Ga⟩/⟨Gd⟩ achieves a
peak value > 2 near pN2 ∼ 1. In this regime, it is
most likely to obtain a disk packing with G < 0 and the
system has one extra contact on average compared to
the isostatic packing. In the pN2 ≫ 1 limit, ⟨Ga⟩/⟨Gd⟩
tends to zero, which indicates that the shear modulus is
isotropic and G > 0 in this regime.

2. Local shear modulus

We employed two methods to calculate the local shear
moduli g of subsystems of jammed packings. In the first
method, which assumes an affine response of each sub-
system, each square system is divided into n× n smaller
identical subsystems with an average of nsub = N/n2

disks per subsystem. The notation 1 × 1 indicates that
the subsystem corresponds to the original jammed pack-
ing. The local virial stress tensor for each subsystem ℓ
is

Σℓ
αβ =

n2

L2

∑
i>j

rijαfijβ
qij
rij

, (6)

where qij is the length of the portion of rij that is inside
subsystem ℓ. For this method, we assume that the im-
posed global strain represents the local strain of all sub-
systems. The local pressure and shear stress are defined
as pℓ = (Σℓ

xx + Σℓ
yy)/2 and Σℓ = −Σℓ

xy. We include the
effect of non-affine particle motion on the shear stress
by calculating the shear stress after energy minimiza-
tion in response to an applied affine simple shear strain.
Thus, the local shear modulus is gℓA = dΣℓ/dγ. The
area-weighted sum over all subsystems of the local shear
stress Σℓ and local shear modulus gℓA yield the global
shear stress Σ and shear modulus G.
In the second approach, we seek to more accurately

characterize the local strain of each subsystem. We per-
form Delaunay triangulation using the disk centers as the

vertices of the triangles and define the stress and strain
tensors for each Delaunay triangle. We first apply three
types of deformations separately to a given jammed pack-
ing: 1) uniaxial compression in the x-direction (denoted
as D1), 2) uniaxial compression in the y-direction (D2),
and 3) simple shear with the x-axis as the shear direction
and the y-axis as the shear gradient direction (D3). The
deformation gradient tensors for these three boundary
deformations are:

F |D1
=

[
1− ε 0
0 1

]
, (7a)

F |D2
=

[
1 0
0 1− ε

]
, (7b)

F |D3
=

[
1 ε
0 1

]
, (7c)

where ε is the strain amplitude of the affine deforma-
tion. After imposing a given affine deformation to the
packing (i.e. the boundary and disk positions), the disks
are moved nonaffinely according to the nonaffine “veloc-
ity” [28],

dr⃗m
dε

= −M−1
mnΞ⃗n (8)

with the boundary held fixed. Using the updated disk
positions (x′

m, y′m)T = F (x0
m, y0m)T + εdr⃗m

dε from Eqs. 7
and 8, we can calculate the deformation gradient tensor,

F
∆

i |D=
[
x′
12 x′

13

y′12 y′13

] [
x0
12 x0

13

y012 y013

]−1 ∣∣∣∣
D
, (9)

for each triangle i (with vertex labels 1, 2, and 3) in
a jammed packing with a given applied deformation D.

Using F
∆

i |D, we can determine the associated Green-
Lagrangian strain tensor,

E
∆

i |D=
1

2
((F

∆

i )
TF

∆

i − I) |D, (10)

where I is the 2×2 identity matrix, and the difference in
the 2nd Piola-Kirchhoff material stress tensor for triangle
i before and after the deformation,

Σ
m,∆

i |D= det(F
∆

i )(F
∆

i )
−1Σ

∆

i (F
∆

i )
−T |D −Σ

∆

i , (11)

which are used to calculate the 3 × 3 stiffness matrix of
each triangle,

Ĉ∆
i =

cxxxx cxxyy cxxxy
cyyxx cyyyy cyyxy
cxyxx cxyyy cxyxy

 . (12)

The nine components of Ĉ∆
i can be obtained from

Hooke’s law relating stress and strain, i.e. by solving
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the following set of nine equations:Σ
m,∆
ixx

Σm,∆
iyy

Σm,∆
ixy


D1

= Ĉ∆
i

 E∆
ixx

E∆
iyy

2E∆
ixy


D1

, (13a)

Σ
m,∆
ixx

Σm,∆
iyy

Σm,∆
ixy


D2

= Ĉ∆
i

 E∆
ixx

E∆
iyy

2E∆
ixy


D2

, (13b)

Σ
m,∆
ixx

Σm,∆
iyy

Σm,∆
ixy


D3

= Ĉ∆
i

 E∆
ixx

E∆
iyy

2E∆
ixy


D3

. (13c)

In this work, since we are interested in studying the shear
modulus, we focus on the component cxyxy ≡ gℓDT .

Similar to Eq. 2, the virial stress tensor of each triangle
i is defined as

Σ∆
iαβ =

1

2

∑
m>n

rmnαfmnβ , (14)

where m and n refer to the three disks forming a given
Delaunay triangle i. Note that each contacting pair of
disks is shared by two triangles and thus the stress from
this contact contributes half to each triangle. The area
factor in Eq. 2 is not included in Eq. 14 to simplify the
classification of triangle types. (See Appendix A.)

The virial stress and deformation gradient tensors for
a subsystem ℓ that is composed of nℓ connected triangles
are

Σ
ℓ
=

nℓ∑
i

Σ
∆

i , (15a)

F
ℓ
=

1

Aℓ

nℓ∑
i

A∆
i F

∆

i , (15b)

where Σ
∆

i , F
∆

i , and A∆
i are the virial stress tensor, de-

formation gradient tensor, and area of triangle i, respec-
tively, and Aℓ =

∑nℓ

i A∆
i . We can substitute Eqs. 15a

and 15b into Eqs. 10, 11 and 13 to obtain the Green-

Lagrangian strain tensor E
ℓ
, material stress tensor Σ

m,ℓ
,

and the associated stiffness tensor Ĉℓ of subsystem ℓ.
In Sec. III C, we will consider a range of subsystems
with different sizes, e.g. single Delaunay triangles, pairs
of triangles that share one edge, polygons whose ver-
tices correspond to a disk and its Voronoi-neighbor disks,
and subsystems containing an average number of disks
nsub = 2N/n2 whose centroids are located within squares
of side length L/n.

The main difference between the affine-strain and De-
launay triangulation methods for determining the local
shear modulus is whether one chooses the deformation
gradient tensor applied to the boundary as the local de-

formation gradient tensor or the F
ℓ
that minimizes the

magnitude of the non-affine displacement for each local

FIG. 3. (a) Ensemble-averaged positive contribution (⟨G+⟩,
solid symbols), absolute value of the negative contribution
(⟨|G−|⟩, open symbols), and total global shear modulus (⟨G⟩,
half-filled symbols) multiplied by N and plotted as a function
of the scaled pressure pN2 for N = 64 (black squares), 256
(red circles), and 1024 (blue triangles). ⟨G⟩N is multiplied by
a factor of 10 to improve visualization. The solid and dashed
lines have slopes 1 and 0.5, respectively. The inset shows
(⟨G+⟩ − G+

0 )N (solid symbols) and (⟨G⟩ − G0)N (half-filled
symbols) as a function of pN2. For pN2 < 1, they possess
power-law scaling exponents of ∼ 0.75 and 1, respectively.
(b) The fraction F− (solid symbols) of jammed packings with
negative shear moduli (G < 0) plotted as a function of pN2 for
the same systems in (a). Open symbols represent the ensem-
ble average of the difference in the total number of contacts
Nc relative to the isostatic contact number N iso

c = 2N0 − 1,
where N0 is the number of non-rattler disks [43], plotted as
a function of pN2. (c) Ensemble-averaged standard deviation
of the shear modulus, SG, scaled by N and plotted as a func-
tion of pN2.

region. Thus, the Delaunay triangulation method for cal-
culating the local shear modulus considers the effects of
non-affine particle motion on both the shear stress and
local strain.

III. RESULTS

Our results are organized into three subsections. In
Sec. III A, we describe how the inclusion of jammed pack-
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FIG. 4. The probability distribution P(G∗) of shifted and
normalized global shear moduli, where G∗ = (G − ⟨G⟩)/SG

and SG is the standard deviation in G for jammed disk pack-
ings with (a) pN2 = 4 × 10−4, (b) 1, and (c) 58 and system
sizes N = 64 (black squares), 256 (red circles), and 1024 (blue
triangles). The solid lines in (a) and (c) represent a Gamma
distribution with shape parameter k = 0.5 (Eq. 22) and a
skew-normal distribution (Eq. B3), respectively. An interpo-
lation between these two forms (Eq. B6) is shown as the solid
line in (b). The parameters that specify the distributions in
(b) and (c) are given in Table I.

ings with negative shear moduli affects the pressure de-
pendence of the ensemble-averaged global shear modulus
⟨G⟩. We also show that the global shear modulus distri-
bution P(G) collapses with pN2 and its form varies from
a right-skewed Gamma distribution in the pN2 → 0 limit
to a left-skewed Gaussian distribution in the pN2 ≫ 1
limit. In Sec. III B, we describe the results for the distri-
bution of the local shear moduli P(gℓA) using the affine-
strain method for decomposing the stress and strain ten-
sors for each subsystem. We show that the affine local
shear moduli possess long-range spatial correlations over
the full range of pn2

sub, where nsub is the size of each
subsystem. In Sec. III C, we show that the form of P(gℓ)
differs for gℓ defined using the affine and non-affine meth-

FIG. 5. The global shear modulus G (solid line) and shear
stress Σ (dashed line) plotted as a function of the shear angle
θ for a given N = 64 jammed packing in the pN2 ≪ 1 limit.
The vertical dotted lines indicate values of the shear angle
θc at which Σ(θc) = 0. At θc, G(θc) is a minimum, which
indicates that θG − θS = π/8.

ods. The spatial correlations of gℓDT defined using the
non-affine method with Delaunay triangulation are much
weaker than gℓA defined using the affine method over the
full range of pn2

sub. We also show that jammed disk pack-
ings with global shear moduli G > 0 can possess negative
local shear moduli.

A. Global shear modulus

In this section, we describe the pressure and system-
size dependence of the global shear modulus probability
distribution P(G) and the ensemble-averaged value,

⟨G⟩ = (1−F−)⟨G+⟩+ F−⟨G−⟩, (16)

where F− is the fraction of jammed packings with nega-
tive shear moduli, and ⟨G+⟩ and ⟨G−⟩ are the ensemble-
averaged values of the positive and negative global shear
moduli, respectively. First, in Fig. 3 (a), we show that
⟨G⟩ (as well as ⟨G+⟩ and ⟨|G−|⟩) collapse when plotted
versus pN2 as found previously [10, 14]. Previous com-
putational studies of jammed sphere packings (with re-
pulsive linear spring interactions) have also emphasized
that the ensemble-averaged global shear modulus dis-
plays power-law scaling with pressure, ⟨G⟩N ∼ (pN2)β ,
where β ∼ 0.5, in the large-pN2 limit [14, 45]. However,
in Fig. 3 (a), the scaling exponent β ≳ 0.5 in the range
10 ≲ pN2 ≲ 104 [13]. According to Eq. 16, the scaling ex-
ponent β can be larger than 0.5 if F− depends strongly
on pressure, even when both ⟨G+⟩ and ⟨|G−|⟩ scale as
(pN2)0.5 at large values of pN2 (cf. Fig. 3 (a)). In partic-
ular, we show in Fig. 3 (b) that the fraction F− of pack-
ings with negative global shear moduli has strong pN2

dependence; it forms a peak with F− ∼ 0.5 for pN2 ∼ 1,
where the disk packings have gained one additional con-
tact ⟨Nc − N iso

c ⟩ = 1, and falls to zero for both smaller
and larger values of pN2. Indeed, previous studies have
shown that β ≈ 0.5 for pN2 > 1 for ensembles of jammed
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FIG. 6. (a) Probability distribution P(Gd, Ga) for jammed
disk packings with N = 64 at low pressure p = 10−7. (b)
Probability distribution P(Σ2

a, Ga) for jammed packings with
N = 64 and p = 10−7. The dashed line obeys Ga = AcΣ

2
a. In

both panels, the probability increases from violet to yellow.

packings that are generated using the shear-stabilizing al-
gorithm [10, 12], which ensures that the jammed packings
possess zero residual stress and G > 0 in all directions.

In Fig. 3 (a), we show that in the low-pressure limit
the ensemble-averaged global shear modulus ⟨G⟩ tends
to a constant G0 ∼ N−1 that decreases to zero in the
large-system limit [14]. Previous studies of jammed pack-
ings of frictionless, spherical particles have shown that
(⟨G⟩ −G0)N ∼ (pN2)η with η ∼ 1 for pN2 < 1. Similar
scaling is shown in the inset of Fig. 3 (a). In the cur-
rent studies, we show that (⟨G+⟩ − G+

0 )N ∼ (pN2)η+ ,
where η+ ∼ 0.75, and ⟨|G−|⟩N ∼ pN2 in the low-
pressure limit. The difference in the power-law scaling
exponents for (⟨G⟩ − G0)N and ⟨G+⟩ − G+

0 )N has not
been emphasized in previous studies [10]. The differ-
ence is caused by the presence of negative shear mod-
uli in this regime of pN2, and thus we expect that
(⟨G⟩ − G0)N ∼ ⟨G+⟩ − G+

0 )N ∼ (pN2)η+ will obey the
same scaling relation with η+ ∼ 0.75 < 1 for sufficiently
small pN2 and F− (in the limit of large N). Such sim-
ulations are challenging because they require studies at
successively smaller pressures and improved force balance
as the system size increases. Computational studies fo-

FIG. 7. The skewness µ3 (Eq. 23) of the shifted and normal-
ized distribution of global shear moduli P(G∗) plotted versus
pN2 for N = 64, 256, and 1024.

cusing on the regime pN2 < 10−4 in the large-N limit,
where isostatic systems form their first additional con-
tact, will be carried out in future studies to investigate
the scaling exponents η and η+.
We have shown that the power-law scaling of the

ensemble-averaged shear modulus depends on the frac-
tion of jammed disk packings with negative shear mod-
uli. We will now study the probability distribution of
global shear moduli P(G) as a function of pressure and
system size to determine the prevalence of G < 0. In
Fig. 4, we show the shifted and normalized distributions
P(G∗) = P(G∗)SG, where

G∗ =
G− ⟨G⟩

SG
, (17)

and SG is the standard deviation of P(G). Similar to ⟨G⟩,
SGN collapses for different system sizes when plotted
versus pN2, as shown in Fig. 3 (c). In the pN2 ≪ 1 limit,
SG tends to be a constant SG0 ∼ N−1. For pN2 > 0.1,
SGN begins to increase. In the pN2 ≫ 1 limit, SGN
scales roughly as a power-law (pN2)ζ , where ζ ∼ 0.3.
As we found for the average values, the probability

distribution P(G∗) collapses at fixed pN2 (at different
values of p and N). In the pN2 ≫ 1 limit (e.g. pN2 = 58
in Fig. 4 (c)), P(G∗) obeys a skew-normal distribution
(Eq. B3 in Appendix B) with negative skewness. See Ta-
ble I for the specific parameters of the skew-normal dis-
tribution that describe P(G∗) in Fig. 4 (c). In contrast,
in the pN2 ≪ 1 limit, P(G∗) obeys a Gamma distribu-
tion with shape parameter k = 0.5 for G∗ > −⟨G⟩/SG

and is zero for G∗ < −⟨G⟩/SG, as shown in Fig. 4 (a) for
pN2 = 4× 10−4. (See Eq. B2 in Appendix B.)
We now derive an expression for the probability dis-

tribution P(G) for disk packings in the pN2 ≪ 1 limit.
As shown in Eq. 5, both the global shear modulus G and
shear stress Σ vary sinusoidally with the shear angle θ
(defined in Fig. 1), which implies that the relation be-
tween G and Σ is a Lissajous curve [46] with an angular
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FIG. 8. The probability distribution of normalized global
shear moduli P(G/SG) and probability distribution of nor-
malized local shear moduli P(gℓA/Sgℓ

A
) obtained from the

affine-strain method for different-sized subsystems at (a)
pN2 ≈ 0.1 and (b) 104 for N = 1024. The skewness µ3

of the distributions for each subsystem size is indicated. The
notation n×n indicates that we partitioned each jammed disk
packing into n×n equal-sized, square subsystems. Note that
1×1 indicates that the subsystem corresponds to the original
jammed packing.

frequency ratio of 2. Using Eqs. 5a and 5b, we find that
G and Σ are related via

G(θ) =

(
2[Σ(θ)]2

Σ2
a

− 1

)
Ga sin 4(θG − θS) +Gd

− 2Σ(θ)

Σa

√
1− [Σ(θ)]2

Σ2
a

Ga cos 4(θG − θS).

(18)

We show in Fig. 5 that at jamming onset the difference in
the phase shift between G(θ) and Σ(θ) satisfies θG−θS =
π/8 and in Fig. 6 (a) we show that Ga = Gd at jamming
onset. Thus, in the pN2 ≪ 1 limit, Eq. 18 becomes

G = 2
Ga

Σ2
a

Σ2. (19)

Further, in Fig. 6 (b), we show that the amplitude of
the shear modulus Ga is proportional to Σ2

a in the pN2 ≪
1 limit, Ga = AcΣ

2
a, where Ac ∼ 1/p2 and Σ2

a ∼ p2/N .
Also, previous studies have shown that the probability
distribution of the shear stress for jammed disk packings

FIG. 9. The Jensen-Shannon divergence DJS between the
probability distribution of global shear moduli P(G∗) at pres-
sure p′ and system size N ′ and the probability distribution of
local shear moduli P(gℓ∗A ) (calculated using the affine-strain
method) at pressure p and system size N for subsystem sizes
(a) n2 = 4 and (b) 25. DJS increases, i.e. the distributions
become more dissimilar, from violet to yellow. The dashed
lines correspond to the power-law scaling p′N ′2 ∼ (pN2)ν ,
where ν ∼ 0.91 and 0.55 in panels (a) and (b), respectively.

generated by isotropic compression is Gaussian centered
on Σ = 0 [47]:

P(Σ) =
1

ωs

√
2π

e−
1
2 (Σ/ωs)

2

, (20)

where ωs is the standard deviation. Using Eqs. 19 and 20,
we show in Appendix C that the probability distribution
of the global shear moduli is a Gamma distribution with
shape parameter k = 0.5 in the pN2 ≪ 1 limit:

PΓ(G) =
1

2ωs

√
πAcG

e
− G

4Acω2
s . (21)

We can now rewrite Eq. 21 in terms of the shifted and
normalized shear modulus G∗ in Eq. 17:

PΓ(G
∗) =

1
√
π
√

1 +
√
2G∗

e−
1
2 (1+

√
2G∗). (22)

This expression is indicated by the solid line in Fig. 4 (a).
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As illustrated in Fig. 4, P(G∗) varies continuously with
pN2 from a Gamma distribution for pN2 ≪ 1 to a skew-
normal distribution for pN2 ≫ 1. P(G∗) at intermediate
values of pN2 can be approximated by a linear combina-
tion of PΓ(G

∗ − G∗
m) (where G∗

m is the location of the
maximum of P(G∗)) and PSN (G∗), as shown in Fig. 4(b).
The best-fit parameters for P(G∗) in Fig. 4 are listed in
Table I. In Fig. 7, we show the skewness

µ3 =
⟨(G− ⟨G⟩)3⟩

SG
3 , (23)

of P(G∗) as a function of pN2. The skewness is positive
in the pN2 ≪ 1 limit since P(G∗) is a Gamma distribu-
tion, it slightly increases with pN2 for pN2 < 0.1, and
then it decreases rapidly for pN2 > 0.1. The skewness
becomes negative and reaches a plateau value µ3 ∼ −1.5
in the pN2 ≫ 1 limit. In addition, the distribution of
shear moduli for G < ⟨G⟩ and pN2 > 0.1 possesses a
power-law tail with exponent ≈ −3.5 [48].

B. Local shear moduli gℓA defined using the
affine-strain method

In this section, we focus on the local shear moduli
of jammed disk packings. In particular, we investigate
whether the local shear moduli of jammed disk packings
mimic the distribution of global shear moduli. For ex-
ample, do jammed disk packings possess negative local
shear moduli? We first calculate the local shear mod-
uli gℓA using the affine-strain method and determine the

probability distribution P(gℓA) and spatial correlations in
gℓA as a function of p and N .

1. Probability distribution of local shear moduli P(gℓA)

The affine-strain method for calculating the local shear
moduli of a jammed disk packing assumes that each of
the n× n subsystems experiences the same simple shear
strain γ. In Sec. II B 2, we defined gℓA = dΣl/dγ, where
the local shear stress Σl is given by Eq. 6. The area-
weighted sum of gℓA over all subsystems yields the global

TABLE I. The parameters that determine the shape of the
probability distributions of the global shear moduli P(G∗) in
Fig. 4, where G∗ = (G − ⟨G⟩)/SG, SG is the standard devi-
ation of G, µSN is the shape parameter of the skew-normal
distribution, PSN (G∗), and 0 ≤ s ≤ 1 determines the relative
contribution of PΓ(G

∗ − G∗
m) (where G∗

m is the location of
the peak in P(G∗)) and PSN (G∗) to P(G∗) (cf. Eqs. B2, B3,
and B6). SSN

G∗ and SΓ
G∗ are the standard deviations of the

PSN (G∗ −Gm) and PΓ(G
∗) contributions to P(G∗).

Distribution
PΓ(G

∗ −G∗
m) PSN (G∗)

s
G∗

m SΓ
G∗ ⟨G∗⟩SN SSN

G∗ µSN

Fig. 4 (b) -0.571 2.446 -0.184 0.503 4.314 0.665
Fig. 4 (c) - - 0.0712 0.735 -1.032 0

FIG. 10. Probability distributions of the normalized and
shifted global P(G∗) and local shear moduli P(gℓ∗A ) (calcu-
lated using the affine-strain method) for values of p and N
and p′ and N ′ that yield similar distributions. The subsys-
tem sizes 1 ≤ n2 ≤ 36 and values of pN2 are indicated. We

show p′N
′2 ≈ 1.5 and 10 in panels (a) and (b), which deter-

mine the shape of P(G∗). The notation n× n indicates that
we partitioned each jammed disk packing into n × n equal-
sized, square subsystems.

shear modulus G. In Fig. 8, we show the probability
distribution of local shear moduli P(gℓA) as a function of
subsystem size nsub = N/n2 at pN2 ≈ 0.1 and ≈ 104.
At small values of pN2, the maximum in P(gℓA) remains
roughly unchanged as a function of subsystem size. The
skewness of P(gℓA) decreases with decreasing subsystem
size due to an increasing fraction of negative local shear
moduli, gℓA < 0. Thus, jammed packings with G > 0 in
the pN2 ≪ 1 can contain local regions with negative local
shear moduli. At large values of pN2, the peak position
shifts to smaller gℓA and P(gℓA) becomes more symmetric
as the subsystem size decreases, as shown in Fig. 8 (b).
For all values of pN2, P(gℓA) is more symmetric than
the distributions of the global shear moduli. This result
raises the question of whether there is a combination of
p, N , and nsub at which the probability distributions of
global and local shear moduli have the same form.
An important goal in statistical physics is to describe

the average properties of jammed solids at a given pres-
sure p in the infinite particle number limit, N → ∞.
Obviously, it is challenging to study extremely large,
jammed packings, and thus it would be advantageous if
we could calculate the average mechanical properties of
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FIG. 11. The power-law scaling exponent ν (filled symbols)
in Eq. 26 that relates pairs of pressures and system sizes that
yield matching distributions for the global and local shear
moduli (i.e. DJS ≲ 10−2) plotted as a function of 1/n, where
nsub = N/n2 is the subsystem size. ν is only weakly depen-
dent on system size when we include the factor of N−0.1. The
open symbols with ν = 1 correspond to comparisons of the
distributions of global shear moduli at different values of p
and N , but the same values of pN2.

a packing in the N → ∞ limit by averaging over an en-
semble of smaller jammed packings with N ′ ≪ N . This
question can be recast in terms of the shear modulus: For
what value of p′ and N ′ does the distribution of shear
moduli match that at different values of p and N? This
question can be asked for the global shear moduli at dif-
ferent values of p, p′, N , and N ′ and for local shear mod-
uli within packings at a given p and N and the global
shear modulus at p′ and N ′.
To quantitatively compare two probability distribu-

tions P1(x) and P2(x), where x = gℓ∗A or G∗, we will
calculate their Jensen–Shannon divergence [49],

DJS(P1, P2) =
1

2
(DKL(P1, PM ) +DKL(P2, PM )) , (24)

where PM = 1
2 (P1 + P2),

DKL(P1, PM ) =

∫
P1(x) log2

(
P1(x)

PM (x)

)
dx, (25)

and DJS(P1, P2) is bounded between 0 (when P1 = P2)
and 1 (when there is no similarity between P1 and P2).
In Fig. 9, we determine DJS between P(G∗) for

jammed disk packings at pressure p′ and system size N ′

and P(gℓ∗A ) for jammed disk packings at pressure p and
system size N using subsystems with n2 = 4 and 25. For
pN2 > 1, one can identify values of p′ and N ′ for which
the distribution of global shear moduli P(G∗) matches
the distribution of local shear moduli P(gℓ∗A ) obtained
from jammed disk packings at p and N . Examples of
the matching pairs of distributions are shown in Fig. 10
for p′N ′2 ≈ 1.5 and 10. We find that the pairs p and N
and p′ and N ′ that yield similar distributions obey the

FIG. 12. Spatial correlation function C(r⃗/L) of the shifted
and normalized local shear moduli gℓ∗A (calculated using the
affine-strain method) for jammed disk packings with n2 =
144 and pressures: (a) pN2 = 10−1 and (b) 104. We do
not display correlations for r <

√
2L/n in the inner circular

region.

following scaling relation:

p′N ′2 = A(pN2)ν , (26)

where A is nearly constant over the range of subsystem
and system sizes studied. In Fig. 11, we show that the
power-law scaling exponent ν increases with increasing
subsystem size with a weak overall system-size dependent
correction. Note that the range of pN2 values over which
DJS ≲ 10−2 decreases with increasing n2. In particular,
for pN2 < 1, it is difficult to identify pairs of p′ and N ′

and p andN at which the distributions of local and global
shear moduli are similar. The distributions of the local
and global shear moduli become different in the pN2 ≪ 1
limit because G > 0 for all jammed disk packings in that
limit, yet as the subsystems become smaller, it is more
likely for gℓA < 0.



11

(a)

(b)

(c)

FIG. 13. Images that display the disk motion in an N = 1024
jammed disk packing at pN2 = 1 in response to a simple
shear deformation. (a) An affine simple shear deformation
with strain γ = 10−9 has been applied to the boundaries and
all disks; (b) Nonaffine displacement field following potential
energy minimization with the boundary held fixed after the
simple shear deformation in (a); (c) Total displacement field,
i.e., the sum of the affine and nonaffine displacement fields in
(a) and (b). All displacement vectors have been scaled by a
factor of 6× 107 to improve visualization.

2. Spatial correlations of local shear moduli gℓA

In Fig. 12, we show the spatial correlation function of
the shifted and normalized local shear moduli C(r⃗) =
⟨gℓ∗A (0)gℓ∗A (r⃗)⟩ (using the affine-strain method) for sub-
systems with n2 = 144 and pressures pN2 = 10−2 and
104. Over the full range of pN2, we find that C(r⃗) dis-

plays long-range four-fold spatial correlations. Previous
studies have also found long-ranged spatial correlations
in the local shear stress in zero-temperature amorphous
solids [20]. The long-range, angle-dependent spatial cor-
relations imply that the size of the correlations will de-
pend on the shape of the subsystems that are used to
calculate the local shear modulus gℓA. For example, we
have found that C(r⃗) is significantly different for jammed
packings decomposed into n2 square subsystems with side
lengths L/n and into n2 rectangular subsystems with side
lengths L/n2 and L.

C. Local shear moduli gℓDT defined using the
Delaunay triangulation method

In the previous section, we focused on local shear mod-
uli calculated using the affine-strain method. However,
the disks in jammed packings have significant nonaffine
motion in response to applied simple shear deforma-
tions [28–31], as shown in Fig. 13. In this section, we
characterize the local shear moduli of jammed disk pack-
ings using the Delaunay triangulation method to accu-
rately define the local strain in each subsystem. We cal-
culate the distribution of local shear moduli as a function
of the size and shape of the subsystem, including trian-
gles, polygons, and squares. In addition, we determine
the spatial correlations of the local shear moduli as a
function of pN2.

1. Types of Delaunay triangles

We first consider the local shear moduli of subsystems
composed of single triangles obtained from Delaunay tri-
angulation of the disk centers in jammed disk packings.
There are several types of triangles that can be obtained
from Delaunay triangulation of binary disk packings, and
we will classify them based on the form of the triangle
stiffness matrix (Eq. 12). First, we do not consider tri-
angles formed from three disks with no mutual contacts
since they would have zero local stress. We define trian-
gle type-1 as triangles with a single contact among the
three disks. This triangle type can include all possible
disk size combinations since in this case the stiffness ma-
trix is the same for triangles with three large disks, three
small disks, two small disks and one large disk, and two
large disks and one small disk. We define triangle type-2
as triangles with two contacts among any of the three
disks since the stiffness matrix again does not depend on
the size combinations. For triangle types-3, -4, and -5,
all disks are in contact with each other. For type-3, all
three disks are the same size. For type-4, two of the disks
are small and one disk is large. For type-5, two of the
disks are large and one is small. The triangle types are
displayed in Appendix A.
The stiffness matrix depends on each triangle’s orien-

tation. Thus, in Appendix A, we first calculate the ref-
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FIG. 14. The average difference ⟨cRxyxy − c0xyxy⟩ in the stiff-
ness matrix components between single Delaunay triangles in
jammed disk packings and the corresponding reference trian-
gles plotted as a function of pressure p for each triangle type
in Appendix A. Open and filled symbols indicate N = 256
and 1024, respectively, and the dashed lines indicate best fits
to ⟨cRxyxy − c0xyxy⟩ = −λp.

erence stiffness tensor Ĉ∆
i0 for each of the five triangle

types in a specific reference orientation. We then calcu-
late the stiffness matrix for each triangle i in jammed disk
packings using Eq. 13 and transform Ĉ∆

i to the reference

orientation using Ĉ∆
i,R = RĈ∆

i RT, where

R =

 cos2 αr sin2 αr sin 2αr

sin2 αr cos2 αr − sin 2αr

− 1
2 sin 2αr

1
2 sin 2αr cos 2αr

 (27)

and αr is the rotation angle that takes triangle i from the
orientation in the jammed disk packing to the reference
orientation in Appendix A.

In Fig. 14, we show the ensemble-averaged xyxy-
component of the difference in the stiffness tensors,
Ĉ∆

i,R − Ĉ∆
i,0, for triangle i in a given jammed packing

and the corresponding reference triangle as a function
of pressure. (Note that when a triangle changes type
due to a particle rearrangement during compression, we
stop measurements on that particular triangle.) Simi-
lar to the pressure dependence of the global shear mod-
ulus within geometrical families [16, 17], we find that
cRxyxy − c0xyxy = −λp decreases linearly with pressure.
Similar results are found for the other components of
Ĉ∆

i,R − Ĉ∆
i,0.

2. Probability distribution of local shear moduli P(gℓDT )

We first show the probability distributions of the local
shear moduli (i.e. gℓDT ≡ cxyxy from Eq. 12) from sin-
gle Delaunay triangles in jammed disk packings (with-
out performing rotations to the corresponding reference
triangles) in Fig. 15. We find two key features in
P(gℓDT /Sgℓ

DT
) for single Delaunay triangles. First, the

probability of gℓDT < 0 is small over the full range of pN2.

FIG. 15. Probability distributions of the normalized global
P(G/SG) and local shear moduli P(gℓDT /Sgℓ

DT
) obtained

via Delaunay triangulation for different subsystem shapes
and sizes, including single triangles, two adjacent triangles,
Voronoi polygons, and squares with n2 = 1, 4, 16, 36, 64,
100, and 144 at (a) pN2 ≈ 0.1 and (b) 104 and N = 1024.
The notation n×n indicates that we partitioned each jammed
disk packing into n× n equal-sized, square subsystems.

Second, since there are only five Delaunay triangle types
in binary disk packings, P(gℓDT /Sgℓ

DT
) displays multiple

distinct peaks. The peaks at large gℓDT are maintained as
pN2 increases, but the peak at small gℓDT decreases sig-
nificantly. Multiple peaks in P(gℓDT /Sgℓ

DT
) are still found

for gℓDT based on subsystems composed of two adjacent
triangles, whereas, P(gℓDT /Sgℓ

DT
) possess a single peak

for gℓDT based on Voronoi polygons or larger subsystems,
such as the square subsystems with side length L/n and
n ≤ 12.

Similar to P(gℓA/Sgℓ
A
) obtained using the affine-

strain method for calculating the local shear modulus,
P(gℓDT /Sgℓ

DT
) for the Delaunay triangulation method

converges to P(G/SG) as the size of the subsystem in-
creases (i.e. square subsystems with n2 = 1). At large
pN2, P(gℓDT /Sgℓ

DT
) is left-skewed with µ3 < 0 for the

largest subsystem sizes and µ3 increases and becomes
positive with decreasing subsystem size. In Fig. 16, we
directly compare P(gℓ/Sgℓ) for local shear moduli calcu-
lated using the affine-strain and Delaunay triangulation
methods in the pN2 ≫ 1 limit. For small subsystems,
e.g. n2 = 64 and 144, P(gℓ/Sgℓ) for the two methods
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FIG. 16. Probability distributions of normalized local shear
moduli P(gℓ/Sgℓ) obtained using the affine-strain (filled sym-
bols) and Delaunay triangulation (open symbols) methods at
pN2 ≈ 104 over a range of square subsystem sizes, n2 = 4,
16, 64, and 144.

are significantly different. This result stems from the
fact that the nonaffine contributions to the displacement
fields play a more significant role in the mechanical re-
sponse at smaller lengthscales (cf. Fig. 13). The affine-
strain method for calculating the local shear modulus
does not properly characterize the strain tensor of small
subsystems, and thus does not accurately capture gℓ. For
sufficiently large subsystem sizes, i.e., n2 = 4 and 16, the
distributions of local shear moduli obtained from the two
methods become similar.

3. Spatial correlations of local shear moduli gℓDT

In Fig. 17, we show the spatial correlation function of
the normalized and shifted local shear moduli, C(r⃗) =
⟨gℓ∗DT (0)g

ℓ∗
DT (r⃗)⟩, for gℓ∗DT calculated using the Delau-

nay triangulation method. In contrast to C(r⃗) for local
shear moduli calculated using the affine-strain method,
C(r⃗) for local shear moduli calculated using the Delau-
nay triangulation method does not possess strong spa-
tial correlations at low pressures, as shown in Fig. 17
(a). At high pressures, e.g. p = 10−2, C(r⃗) regains
long-range, four-fold symmetric spatial correlations, as
shown in Fig. 17 (b). In Fig. 18, we show that the fluc-
tuations in the spatial correlations, n∆C, collapse with
pn2

sub, where ∆C =
√

⟨(C − ⟨C⟩)2⟩, ⟨·⟩ indicates a spa-
tial average, and nsub = N/n2 is the average number
of particles in each square subsystem with side length
L/n. n∆C ∼ 0.01 is constant in the low-pressure limit.
When pn2

sub ≳ 10−2, n∆C begins to increase, reaches a
peak near pn2

sub ∼ 1, and then decreases for pn2
sub ≳ 1.

The low-pressure regime (i.e. pn2
sub ≲ 10−2) for which

n∆C is constant corresponds to the regime for which the
spatial correlation function of the local shear moduli is
short-ranged.

To determine the local shear modulus, one must deter-

FIG. 17. Spatial correlation function C(r⃗/L) of the lo-
cal shear moduli (obtained using the Delaunay triangulation
method) of jammed disk packings using square subsystems
with n2 = 144 at (a) pN2 = 10−1 and (b) 104. We do not dis-
play correlations for r <

√
2L/n in the inner circular region.

mine the change in shear stress in response to a change
in the local strain. Both methods, the affine-strain and
Delaunay triangulation methods, consider the effect of
non-affine particle motion on the shear stress by calcu-
lating the shear stress after energy minimization in re-
sponse to an applied affine simple shear strain. The main
difference between the two methods for determining the
local shear modulus is the calculation of the local strain.
The affine-strain method does not compare the change
in stress to the true local strain after energy minimiza-
tion, whereas the Delaunay triangulation method does.
The spatial correlations for the local shear moduli calcu-
lated via the affine-strain method are long-ranged for all
values of pN2, which likely stems from the fact that the
true local strain is not used to determine the local shear
modulus. In contrast, the spatial correlations of the local
shear moduli using Delaunay triangulation to determine
the local strain are short-ranged for pn2

sub ≪ 1. The local
strain in response to a small shear strain is highly het-
erogeneous due to the non-affine particle motion, which
increases near jamming onset [26].
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FIG. 18. The standard deviation ∆C of the spatial correlation
function of local shear moduli gℓDT (multiplied by n) plotted as
a function of pn2

sub, where nsub = N/n2 is the average number
of particles in each square subsystem with side length L/n.
gℓDT is calculated using the Delaunay triangulation method.

4. Correlation between Delaunay triangle orientation and
gℓDT < 0

In Fig. 15, we showed that the local shear moduli for
single Delaunay triangles are nearly all positive over the
full range of pN2. However, we find that there are a sig-
nificant number of negative local shear moduli for sub-
systems composed of two or more adjacent triangles even
in the pN2 ≫ 1 limit. In this section, we investigate
whether there is a difference in the orientation of the tri-
angles within subsystems with positive versus negative
local shear moduli. To address this question, we cal-
culate the probability distribution of the rotation angle
P(αr) of Delaunay triangles relative to the orientation
of the reference triangle types in Appendix A. As shown
in Fig. 19, type-1 triangles in subsystems composed of
two adjacent triangles with gℓDT > 0 are more likely to
possess αr ∼ π/4, which maximizes cxyxy. In contrast,
the most likely αr for type-1 triangles within subsystems
of two adjacent triangles with gℓDT < 0 correspond to αr

that minimize cxyxy. We find similar results for type-
2, -4, and -5 triangles within subsystems composed of
two adjacent triangles. However, for type-3 triangles,
the stiffness tensor is independent of the rotation angle
and thus P(αr) = 1/π is uniformly distributed between
0 and π for type-3 triangles within subsystems composed
of two adjacent triangles and both positive and negative
local shear moduli. (See Fig. 19 (a).)

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In this article, we study the global and local shear
moduli of jammed packings composed of N repulsive,
frictionless disks. The jammed disk packings are gener-
ated via isotropic compression at fixed boundary strain,

FIG. 19. Probability distribution of the rotation angle P(αr)
(Eq. 27) that relates Delaunay triangles in jammed disk pack-
ings to the reference triangle types in Appendix A for (a)
type-3 and (b) type-1 triangles within subsystems composed
of two adjacent triangles with positive (squares) and nega-
tive (circles) local shear moduli. (c) The cxyxx, cxyyy, and
cxyxy components of the stiffness tensor (Eq. 12) for type-1
triangles as a function of αr. The horizontal dashed line in
(a) corresponds to a uniform probability distribution over the
range 0 ≤ αr ≤ π.

and thus they can possess either positive and negative
global shear moduli. We decomposed the ensemble-
averaged global shear modulus into contributions from
packings with positive and negative global shear mod-
uli, ⟨G⟩ = (1 − F−)⟨G+⟩ + F−⟨G−⟩, where F− is the
fraction of packings with negative global shear moduli
and ⟨G+⟩ and ⟨G−⟩ are the ensemble-averaged values for
packings with positive and negative global shear mod-
uli, respectively. We find that ⟨G+⟩N and ⟨|G−|⟩N both
scale as ∼ (pN2)1/2 for pN2 > 1. Despite this, ⟨G⟩N ∼
(pN2)β with β ≳ 0.5 since F− depends strongly on pres-
sure [13]. For pN2 < 1, we find that ⟨|G−|⟩N ∼ pN and
(⟨G+⟩ − G+

0 )N ∼ (pN2)0.75 possess different power-law
scaling exponents.
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Not only do the ensemble-averaged global shear moduli
scale with pN2, but the probability distribution of global
shear moduli P(G) collapses at fixed pN2 and different
values of p and N . We showed analytically that P(G) is a
Gamma distribution with shape parameter k = 0.5 in the
pN2 ≪ 1 limit. As pN2 increases, P(G) transitions from
a Gamma distribution with positive skewness in the small
pN2 limit to a skew-normal distribution with negative
skewness in the large pN2 limit.

We also calculated the local shear moduli of jammed
disk packings gℓ using two distinct methods: the affine-
strain and Delaunay triangle methods. When using the
affine-strain method, we find that P(G∗) and P(gℓ∗A ) pos-
sess similar forms for pN2 > 1 and the spatial correlation
function of the local shear moduli C(r⃗) is long-ranged
with four-fold angular symmetry over the full range of
pN2. However, the affine-strain method does not accu-
rately describe the strongly non-affine displacement fields
that occur in response to applied deformations.

In contrast, the spatial correlation function for gℓDT
calculated using the Delaunay triangulation method de-
pends on pn2

sub, where nsub = N/n2 is the number of
disks per subsystem. In the pn2

sub ≪ 1 limit, the standard
deviation of the spatial correlation function n∆C ∼ 0.01
reaches a small plateau value and C(r⃗) possesses weak
spatial correlations. The short-ranged spatial correla-
tions for the Delaunay triangulation method at low pres-
sure are caused by the random orientations of the trian-
gles and the strong spatial heterogeneity of the non-affine
displacements [26]. n∆C increases with pn2

sub and C(r⃗)
begins to develop long-ranged, four-fold symmetric spa-
tial correlations at pn2

sub > 10−2. We find very few single
Delaunay triangles that possess gℓDT < 0. However, there
is an abundance of subsystems composed of two or more
adjacent triangles that possess gℓDT < 0 and the individ-
ual triangles within these subsystems tend to orient in
directions that minimize the components of the stiffness
tensor.

These results raise several important, open questions
for future research. First, what is the contribution of
jammed packings with negative shear moduli to the
ensemble-averaged density of vibrational modes D(ω)?
Will the observed power-law scaling of D(ω) ∼ ω4 at
low frequencies be affected by packings with negative
shear moduli [50, 51]? Second, when we calculate the
local shear moduli using Delaunay triangulation, we find
that there are growing spatial correlations with increasing
pressure pn2

sub in contrast to previous work that shows
growing spatial correlations with decreasing pressure as-
sociated with the isostatic length scale [52–54]. What
is the origin of the growing spatial correlations with in-
creasing pressure? Third, the ratio ⟨Ga⟩/⟨Gd⟩ → 0 in
the pN2 ≫ 1 limit, and thus in this limit there are only
two elastic moduli that characterize the mechanical re-
sponse of jammed disk packings, i.e. Gd ≡ G and the
bulk modulus B. However, over a wide range of pN2,
both Ga and Gd (as well as B) are non-zero, and thus
three elastic moduli characterize the mechanical response

of jammed disk packings [55]. Despite this, most previous
work has focused on quantifying the pressure dependence
of only two elastic moduli (G and B) of jammed packings
of spherical particles. In future work, we will character-
ize the pressure dependence of all non-trivial components
of the stiffness tensor for jammed packings of spherical
particles over the full range of pN2. Fourth, we will cor-
relate regions with negative local shear moduli to “soft
spots”[56–58] and shear transformation zones [30, 59, 60]
that occur during applied simple shear deformations [31].
Finally, we showed that the stiffness tensors vary with the
different Delaunay triangle types for systems with short-
ranged repulsive interactions, which is likely responsible
for the anisotropic mechanical response for pN2 < 1.
In future work, we will calculate the local shear mod-
uli of amorphous packings with long-range attractive in-
teractions, e.g. Lennard-Jones pairwise interactions. In
this case, the stiffness tensors for the different Delau-
nay triangle types will likely be similar, which may shift
the crossover from anisotropic to isotropic mechanical re-
sponse to smaller pressures.
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Appendix A: Stiffness tensor of single Delaunay
triangles

We define the five types of Delaunay triangles in
Fig. 20. Type-1 triangles possess a single contact among
the three disks. This triangle type includes all possible
disk size combinations since the stiffness matrix is the
same for single-contact triangles with three large disks,
three small disks, two small disks and one large disk, and
two large disks and one small disk. The center-to-center
separation vector for the two contacting disks is paral-
lel to the vertical axis for the reference type-1 triangle.
We define triangle type-2 as triangles with two contacts
among any of the three disks since the stiffness matrix
again does not depend on the size combinations. For the
reference type-2 triangle, the horizontal axis bisects the
angle αo formed by the two segments between contact-
ing disks. For triangle types-3, -4, and -5, all disks are
in contact with each other and the center-to-center sepa-
ration vector between the same-sized disks is parallel to
the vertical axis. For type-3, all three disks are the same
size. For type-4, two of the disks are small and one disk
is large. For type-5, two of the disks are large and one is
small. The stiffness tensor Ĉ∆

i0 for the triangles with the
reference orientation for each triangle type are provided
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in Fig. 20.

FIG. 20. Definitions of the five types of Delaunay triangles
(with unique stiffness tensors) that occur in jammed packings
of bidisperse disks. Solid lines indicate that adjacent disks are
in contact, whereas dashed lines indicate that the disks are not
in contact. For triange type-2, the angle αo between r⃗12 and

r⃗13 spans arccos
(

r212+r213−r223
2r12r13

)
< αo ≲ 2.2 rad. Below each

triangle type, we display the corresponding stiffness tensors
Ĉ△

i in the specific orientation shown.

Appendix B: Variation in the form of P(G) with pN2

In Fig. 21, we show the probability distribution of the
global shear moduli for jammed disk packings over a wide
range of pressures p and system sizes N . In the pN2 ≪ 1
limit, P(G) obeys a Gamma distribution, which is right-
skewed with P(G) = 0 for G < 0,

PΓ(G) =
1

Γ(k)θk
Gk−1e−

G
θ , (B1)

where Γ(k) is the Gamma function, k and θ are the shape
and scale parameters, the mean is ⟨G⟩ = kθ, and the
variance is S2

G = kθ2. Specifically, in Sec. III A we show
that k = 1/2 in the pN2 ≪ 1 limit, and thus Eq. B1 can
be rewritten as

PΓ(G) = 2−1/4π−1/2S−1
G

(
G

SG

)−1/2

e
− G√

2SG . (B2)

As pN2 increases, the peak in P(G) shifts to larger
values of G, and the distribution evolves from a right-
skewed Gamma distribution toward a left-skewed skew-
normal distribution. In the pN2 ≫ 1 limit, we find that
P(G) = PSN (G), where

PSN (G) =
2
√
1− 2ζ2

π

SG
ϕ

(√
1− 2ζ2

π

G− ⟨G⟩
SG

+

√
2

π
ζ

)

Φ

(
µSN

(√
1− 2ζ2

π

G− ⟨G⟩
SG

+

√
2

π
ζ

))
,

(B3)

ζ = µSN√
1+µ2

SN

, µSN is the skew-normal shape parameter,

ϕ(x) =
1

2π
e−

x2

2 , (B4)

and

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
. (B5)

For intermediate values of pN2, the form of P(G) can
be approximated by a linear combination of PΓ(G) and
PSN (G):

P(G) = sPΓ(G−Gm) + (1− s)PSN (G), (B6)

where 0 ≤ s ≤ 1, Gm corresponds to the location of the
maximum in P(G), and PΓ(G) = 0 for G < Gm.

Appendix C: Derivation of P(G) at jamming onset

In this Appendix, we include details of the derivation
of the form of the probability distribution of the global
shear moduli P(G) in the pN2 ≪ 1 limit. As shown in
Fig. 6 (b), the amplitude of the shear modulus is propor-
tional to the square of the amplitude of the shear stress
at jamming onset, Ga = AcΣ

2
a with proportionality con-

stant Ac = 10−5. Thus, Eq. 19 becomes

G = 2AcΣ
2. (C1)

We first obtain the cumulative distribution function
F (G) and then calculate P(G) = dF/dG. Since Ga = Gd

at jamming onset, F (G) = 0 for G < 0. For G ≥ 0, we
have

F (G) =

∫ √
G

2Ac

−
√

G
2Ac

P(Σ) dΣ

= erf

(√
G/Ac

2ωs

)
,

(C2)

where erf(x) is the error function, using Eqs. 20 and C1.
The probability distribution is obtained by differentiating
Eq. C2 with respect to G:

PΓ(G) =
1

2ωs

√
πAcG

e
− G

4Acω2
s , (C3)

which is a Gamma distribution with the shape parameter
k = 0.5.



17

FIG. 21. The probability distribution of the global shear mod-
uli P(G/SG), where SG is the standard deviation in G, for
jammed disk packings over a range of pressures 10−7 ≤ p ≤
10−2 and system sizes (a) N = 64, (b) 256, and (c) 1024. The
solid lines are examples of fits of P(G) using Eq. B6.
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