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When applying an oscillatory electric potential to an electrolyte solution, it is commonly assumed that the
choice of which electrode is grounded or powered does not matter because the time-average of the electric po-
tential is zero. Recent theoretical, numerical, and experimental work, however, has established that certain
types of multimodal oscillatory potentials that are “non-antiperodic” can induce a net steady field toward
either the grounded or powered electrode [Hashemi et al., Phys. Rev. E 105, 065001 (2022)]. Here, we
elaborate on the nature of these steady fields through numerical and theoretical analyses of the asymmetric
rectified electric field (AREF). We demonstrate that AREFs induced by a nonantiperiodic electric potential,
e.g., by a two-mode waveform with modes at 2 and 3 Hz, invariably yields a steady field that is spatially
dissymmetric between two parallel electrodes, such that swapping which electrode is powered changes the
direction of the field. Furthermore, we show that, while the single-mode AREF occurs in asymmetric elec-
trolytes, nonantiperiodic electric potentials create a steady field in electrolytes even if the cations and anions
have the same mobilities. Additionally, using a perturbation expansion, we demonstrate that the dissym-
metric AREF occurs due to odd nonlinear orders of the applied potential. We further generalize the theory
by demonstrating that the dissymmetric field occurs for all classes of zero-time-average (no dc bias) periodic
potentials, including triangular and rectangular pulses, and we discuss how these steady fields can tremen-
dously change the interpretation, design, and applications of electrochemical and electrokinetic systems.

I. INTRODUCTION

Application of ac electric potentials to liquids is a
ubiquitous element of electrokinetic systems, including
induced-charge-electrokinetics (ICEK) [1, 2], ac electroos-
mosis (ACEQO) [3-6], and electrohydrodynamic (EHD)
manipulation of colloids [7-10]. Over the last few decades, a
great body of research has focused on evaluating the dynamic
response of liquids to ac polarization, in order to find the
induced electric field and ion concentrations within the
liquid [11-13]. However, ion-containing liquids respond to ac
polarizations in intricate ways, especially when the dissolved
ions have unequal mobilities. In particular, recent studies
have established the existence of an induced, long-range,
steady field in liquids, referred to as an asymmetric rectified
electric field (AREF) [14-17]. A perfectly sinusoidal poten-
tial induces an electric field with a nonzero time-average, a
zero-frequency component, as a direct result of the nonlinear
effects and ionic mobility mismatch. AREF was shown to
provide qualitative explanations for several long-standing
questions in electrokinetics and to significantly change the
interpretation of experimental observations [14, 18, 19).

For a single-mode sinusoidal applied potential of amplitude
¢o and angular frequency w, the one-dimensional AREF be-
tween parallel electrodes is antisymmetric with respect to
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the midplane [14]. Depending on the applied frequency, elec-
trolyte type, and electrode spacing, AREF may change sign
several times within the liquid [15]. However, it remains iden-
tically zero at the midplane and at the electrodes. Such an an-
tisymmetric shape indicates that the AREF does not change
upon swapping the powered and the grounded electrodes, or
introducing any time or phase lag to the applied potential.
However, the aforementioned characteristics of AREF do
not necessarily hold for other classes of zero-time-average (no
dc bias) periodic potentials. In fact, a recent numerical and
experimental study by Hashemi et al. [20] shows that oscilla-
tory potentials with a certain time symmetry break can induce
AREFs that are dissymmetric (as different from antisym-
metric) in space. Such behavior, is a reminiscent of so called
“temporal ratchets,” a well-known phenomenon in the context
of point particles and optical and quantum lattice systems [21—
24]. Here, we provide an extensive numerical and theoretical
analysis of the ratchet AREF, its origin, and its important im-
plications to electrokinetics. In particular, we investigate the
AREF induced by an applied multimodal electric potential.

II. PROBLEM STATEMENT

Consider a dilute binary 1-1 electrolyte confined by two
parallel, planar, electrodes spaced by a gap 2¢ (Fig. 1). A
two-mode potential ¥ (t) = @g[sin(wt)+sin(awt)], with « a
rational number, is applied on the electrodes as
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FIG. 1. Schematic diagram of the problem. An electrolyte

confined between parallel, planar, electrodes, separated by a gap
2¢, and powered by a multimodal potential ¥ (¢) with period 27.

The starting point in theory to investigate the dynamics
of such a system is the Poisson—Nernst—Planck (PNP) model.
The Poisson equation relates the free charge density to the
electric field gradient,
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while the transport of ions is governed by the Nernst—Planck
equations,
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Here the symbols denote permittivity of the electrolyte,
g; electric potential, ¢; free charge number density, p;
charge of a proton, e; thermal potential, ¢; ion number
concentration, ny; diffusivity, D4 ; location with respect to
the midplane, x; and time, .

Initially, the ions are uniformly distributed n (z,0) =n°
(the bulk electrolyte concentration), and the electric potential
is zero everywhere ¢(x,0)=0. Note that for simplicity, we
neglect the intrinsic zeta potential of the electrodes. Finally,
at ==/ (i.e., the electrodes), we set the flux of ions equal
to zero (i.e., no electrochemistry).

III. NUMERICAL RESULTS & DISCUSSION

The system of equations is solved numerically following the
algorithm reported by Hashemi et al. [14]. (An implementa-

tion of this algorithm is freely available at https://github.

com/rfjd/Poisson-Nernst-Planck.) We focus primarily
on the time-average of the harmonic solutions defined by
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where 27 is the period of the applied potential (or that of
the harmonic solution), and ged(1,c) is the greatest common
divisor of 1 and « [25]. Representative solutions to the AREF
(time-average electric field) in the bulk electrolyte (i.e., several
Debye layer lengths away from the electrodes) are provided in
Fig. 2(a). When a=1, the applied potential is a single-mode
sinusoid which yields the antisymmetric AREF (Fig. 2(a),
dashed red curve). The case of =2 reveals a surprising phe-
nomena: the shape of the AREF becomes dissymmetric with

x/l z/l

FIG. 2. Representative numerical solutions to the AREF
(E) = (E)/(k¢r), (a), and time-average free charge den-
sity (p) (p)/n>°, (b), for two-mode applied potentials
(p(t, —£) ¢o [sin(wt)+sin(awt)], ¢(¢,t) = 0) in the bulk
electrolyte. Parameters: ¢o=10¢7, f=w/(27)=50 Hz, 2(=20
pm, Dy =10"° m?®/s, D_/D; =2, ¢ =1 mM.

a nonzero value even at the midplane (Fig. 2(a), solid blue
curve). Further complicating matters, for « =3, the AREF is
again perfectly antisymmetric (Fig. 2(a), dash-dotted green
curve). Therefore, it appears that depending on «, the in-
duced AREF can be either antisymmetric with a zero value
at the midplane or dissymmetric. The corresponding spatial
distributions of the time-average free charge density (p) are
illustrated in Fig. 2(b) for different o values. Consistent with
the AREF distributions in Fig. 2(a), (p) is spatially even for
a=1 and 3, but takes a dissymmetric shape for a=2.

The behavior becomes more complicated at the Debye
scale (i.e., up a few Debye lengths away from the electrodes).
Fig. 3(a) and (b) show the AREF within 4 Debye lengths
away from the electrodes for « =1 and 2. When a =1
(i.e., a single-mode sinusoidal potential), AREF is zero at
the electrodes, which is a direct result of the antisymmetric
shape of the AREF and the total charge neutrality. The
former can be clarified by a parity analysis of the second-
order perturbation solution (in terms of the applied potential)
to the problem (see Supplemental Material [26]). The total
charge neutrality on the other hand enforces the AREF at
one electrode to be equal to that on the other electrode, that
is (E)_y=(E)¢=K for some constant K. But, for AREF to
be antisymmetric K has to be zero. It is worth mentioning
that while a the total charge neutrality is held (and enforced
by the boundary conditions), AREF breaks the local charge
neutrality. It can be seen from the non-uniform spatial
structure of the AREF and a consideration of Gauss’s law.

When « = 2, an astonishingly large AREF is induced
on the electrodes (/24 orders of magnitude larger than the
AREF in the bulk electrolyte). We note, however, that the
total charge neutrality still holds. The mere observation of a
nonzero AREF at the electrodes for =2 is consistent with
the dissymmetric shape of AREF in the bulk electrolyte:
the integral of the AREF over the entire domain has to
be zero, i.e., fi(E)dac ={(¢)—¢— ()¢ =0. In other words,
the nonzero AREF at the electrodes and the dissymmetric
shape of the AREF in the bulk electrolyte are interrelated.
A qualitatively consistent behavior is observed for the
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FIG. 3. Representative numerical solutions to the AREF

(E) = (E)/(k¢r), (a, b), and time-average free charge den-
sity (p) = (p)/n>, (c, d), for two-mode applied potentials
(p(t,—£) = ¢po [sin(wt)+sin(awt)], ¢(¢,t) =0) at the Debye scale.
For visualization purposes, the (p) data for «=2 in (c, d) are di-
vided by 100. The spatial variable y denotes the distance from the
corresponding electrode. Parameters: ¢o=10¢7, f=w/(2m)=50
Hz, 20=20 pm, D; =10"° m?/s, D_/D; =2, ¢ =1 mM.

distribution of p (Fig. 3(c) and (d)). The induced (p) on the
two electrodes are the same for a=1. However, when a=2,
there is a sign flip in the time-average free charge density
induced at the two electrodes ({p)_¢=—{p)¢).

We now ask what happens if we flip the sign of the applied
potential (—(t) instead of 1)(¢)). For a=1 (antisymmetric
AREF), the curves of the induced AREF by () and —1)(t)
potentials are superimposed (Fig. 4(a)). However, flipping
the sign of the potential when =2 (dissymmetric AREF)
yields a mirrored version of the AREF with respect to the
midplane (Fig. 4(b)). It is worth mentioning that the sum
of the solid red (¢(t)) and dashed blue (—(t)) curves in
Fig. 4(b) is antisymmetric and zero at the midplane; the
dissymmetric components of the AREFs due to ¢(t) and
—1)(t) potentials cancel each other.

We provide an explanation for this numerical observation
using symmetry arguments. Note that the field-induced
ion motion depends only on the potential gradient (not the
potential itself). Therefore, one can show that flipping the
sign of a periodic, time-varying, potential ¢ (t) at x=—{ is
equivalent to swapping the powered and grounded electrodes
(by adding the potential 1 (¢) to the both electrodes). In
other words, the electric field induced by applying —(t)
on the electrode at © = —¢ is the same as that induced
by applying 1 (t) on the electrode at x=/¢. Now, a simple
change of variable z — —x clarifies that if the potential ()
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FIG. 4. Flipping the sign of the applied potential at x=—¢ for
a=1 (a), and 2 (b). Parameters: ¢o=10¢r, f=w/(27) =50
Hz, 20=20 pm, D; =10"° m?/s, D_/D; =2, ¢> =1 mM.

yields the electric field FE(x,t), the potential —t(t) would
yield the mirrored version, —E(—x,t) (cf. Fig. 4(b)).
Focusing on the midplane (xz = 0), one can write that
the functional E(0,t)=e(t)=f(1,t) is odd in ¢). Therefore,
if €(t) is the induced electric field at the midplane due
to the potential ¢ (t), —e(t) would be that due to the
potential —(t). Now consider antiperiodic potentials, i.e.,
Y(t+71) = —(t). We prove that (¢) (i.e., AREF at the
midplane) has to be zero for antiperiodic potentials:

e(t+7)=f(Wt+7)=f(=¢t)=—€(t). ()

Therefore, e(t+7)=—¢(t), which upon taking a time-average
yields (e) =—(e), indicating () =0. It is worth mentioning
that the above argument is general and holds for any
antiperiodic potential (t). It appears that for such
potentials the zero-frequency components of the induced
electric field cancel each other at the midplane, yielding
an antisymmetric AREF. However, they do not necessarily
cancel out when the excitation is nonantiperiodic.

Fig. 5 illustrates several examples of the antiperiodic and
nonantiperiodic two-mode potentials. One can show that ()
is antiperiodic if a, in its simplified fractional form, can be ex-
pressed as {odd integer}/{odd integer} (e.g., «=1,3,3,5,...).
Otherwise, the two-mode potential is nonantiperiodic (e.g.,
a=2,%,3.4,...). (See Hashemi et al. [20] for a simple proof.)
Our numerical results for a wide range of « values corrob-
orate our theory. For all antiperiodic potentials tested, the
AREF is zero at the midplane, and is antisymmetric in space
(e.g., =1 and 3 in Fig. 2(a)). Furthermore, a dissymmetric
AREF with a nonzero value at the midplane is induced
for nonantiperiodic potentials (e.g., « = 2 in Fig. 2(a)).
It should be noted though that the degree by which the
AREF becomes dissymmetric is a complicated function of .
However, regardless of the system parameters, =2 appears
to induce the most significant dissymmetric behavior.

In Fig. 6(a), we show the effect of the two-mode potential
amplitude, ¢y, on the induced AREF for « = 2. As a
high-order nonlinear phenomena [27], the dissymmetry
rapidly grows with the amplitude. At sufficiently low
amplitudes, the dissymmetry disappears and the AREF is
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FIG. 5. Examples of antiperiodic (a), and nonantiperiodic (b),
two-mode applied potentials ¢o[sin(wt)+sin(awt)].

almost antisymmetric (cf. Fig. 6(a), dashed red curve). An
interesting finding here is that unlike the single-mode AREF,
the curves of different voltage amplitudes do not collapse.
There is no scaling factor (as a function of ®;) that maps all
of the AREF curves onto a master curve. This is particularly
significant to the application of the AREF in particle height
bifurcation [28, 29]. It has been established that for a
single mode potential, the AREF-induced levitation height
of charged colloids is insensitive to the amplitude of the
potential, as are the zeros of the AREF, which determine
approximately the heights at which the total force on a
colloid is zero [14, 18]. Here, however, the zeros of the AREF,
and hence the levitation heights of the colloids, depend on
the applied potential. This adds another parameter, along
with the applied frequency, to tune the levitation height.

The effect of the applied frequency f =w/(27) is more
complicated. Even for a single mode potential, it has been es-
tablished that the spatial oscillation of the AREF (its shape)
is very sensitive to frequency [14, 15]. For the two-mode
potential, similar to the antisymmetric AREF, increasing the
frequency amplifies the AREF peak magnitude in the bulk
and shifts the peak location toward the electrodes [14, 15],
albeit through a more complex pattern (cf. Fig. 6(b)). Fur-
thermore, we note that the dissymmetry intensifies substan-
tially with frequency. More importantly, the sign of AREF
at the midplane is changed upon changing the frequency.

In Fig. 7 we inspect the effect of electrolyte type on the
dissymmetric AREF. We focus here only on 1-1 electrolytes,
and defer an analysis of electrolytes with valence mismatch
to future efforts. Two reference results for D_ /Dy =1 and 2
are also depicted for comparison. We observe that changing
the electrolyte from KOH (Dy =1.96 x 10~? m?/s, D_ =
527 x 1079 m?/s) to HCl (D4 =9.31 x 1072 m?/s, D_ =
2.03x 1072 m?/s) reverses the direction of the dissymmetric
AREF. Such a field reversal has been observed for the single-
mode AREF as well (see for example Fig. 2 in [14] and Fig. 8
in [16]). Interestingly, for KCl, with Dy ~D_ (D;=1.96
107%m? /s, D_=2.03x10~2m?/s), we observe a steady field
with magnitudes comparable to KOH and HCI, which is unex-
pected for such a moderate amplitude of the electric potential.
(See [15] for a detailed analysis of the effect of ionic mobility
mismatch on the magnitude of the AREF.) In fact, our results
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FIG. 6. Effects of the two-mode potential amplitude (a), and
frequency (b), on the dissymmetric AREF. For visualization
purposes the data in (a) are scaled by ® with ®y = ¢o/or.
Parameters: ¢o=10¢7 (b), f=w/(27)=50 Hz (a), «=2, 20=20
pm, Dy =10"° m?/s, D_/D; =2, ¢ =1 mM.
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FIG. 7. Spatial structure of the dissymmetric AREF for
different 1-1 binary electrolytes. Parameters: ¢o = 10¢7r (b),
f=w/(2m)=050 Hz (a), a =2, 20=20 pm, ¢ =1 mM. The
reference results correspond to Dy =107 m?/s.

indicate that the steady field is generated even in a symmet-
ric electrolyte (see the Dy =D_ case in Fig. 7). In contrast,
the single-mode AREF can only be generated in asymmetric
electrolytes. Here, the source of asymmetry that yields the
steady field is the applied nonantiperiodic electric potential.

Following Hashemi et al. [14], we have performed several
consistency checks on the numerical results, such as the
feasibility of the calculated instantaneous ion concentrations,
electric field, and induced zeta potential at the electrode
surface. Furthermore, the numerical solution converges and
the total mass is conserved. We have inspected the total

charge neutrality by ff ,0%(0)/ dz2dx=0 and, alternatively,
by (E)_¢=(E),. The condition fZ(E) =0 is also checked
to ensure that the numerical solution satisfies the boundary
conditions. A concern in the dynamic solution of the
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FIG. 8. Dissymmetric AREF due to a zero-time-average

triangular pulse potential applied at z = —¢. (a) Positive (at
t=t1) and negative (at t=t3) triangular pulses of width 7 and
amplitude ¢o. (b) The corresponding induced AREF for different
values of (tz —t1)/7. Parameters: ¢o = 20¢r, 1/(27) =50 Hz,
20=20 pm, D1 =107 m?/s, D_/D; =2, ¢® =1 mM.

PNP equations under oscillatory polarization is whether
quasi-steady state conditions (harmonic solution) are
achieved. We have accurately checked that the quasi-steady
conditions are attained for the present numerical results.

We emphasize that our theory is not limited to any
specific potential wave form. A general zero-mean function
Y(t) with a period 27 has a Fourier series of the form
P(t) = D07 (ay, cos(nmt/T) + by sin(nrt/T)), which is
antiperiodic if a, = b, = 0 for even n. Therefore, any
antiperiodic ¢(t) can be expressed as

w(t) = i <ancos(TT>+bnsin(TL:t>>, (6)

n=1,3,...

and the ratio of any two frequencies will be the ratio of two
odd integers.

It should be understood that for a given applied potential
¥(t) in the first half of the period t € [0,7], there is a unique
antiperiodic potential that occurs by setting ¢ (t47)=—1(¢).
But an infinite number of nonantiperiodic potentials can be
constructed. We demonstrate this argument for a triangular
pulse of period 27, illustrated in Fig. 8. Two pulses of

amplitude ¢y and width %T are applied at t; = iT and
%7’ <ty < %7’. We keep t; fixed and vary to to cover all
possible cases. The induced AREFs are shown in Fig. 8(b)
for different to—t; values. The AREF is antisymmetric only
if to —ty =7 for which the potential in the second half period
becomes the negative of that in the first half (Fig. 8(b), solid
blue curve). All other constructions yield a dissymmetric
AREF. It is interesting to note that the cases to —t; = %T
(consecutive pulses in the first half) and to — ¢; = 37
(maximally apart pulses) provide the maximum dissymmetry
and are mirrored. A simple time shift ¢t — %T shows that the
condition of maximally apart pulses is actually the negative
version of the back-to-back pulses, and therefore yields the

mirrored version of the AREF (cf. Fig. 4(b)).

IV. CONCLUSIONS

In summary, our results show that ions and charged
colloids can be concentrated to one side of a slit channel,
or another, by tuning the applied potential waveform. We
demonstrate that the induced AREF between parallel
electrodes by a nonantiperiodic electric potential is spatially
dissymmetric. An intriguing implication is then that
swapping the powered and grounded electrodes of an electro-
chemical cell alters the system behavior, an observation at
odds with the classical understanding of the electrokinetics.
The dissymmetric AREF can tremendously change the
design of electrokinetic systems and their applications.
It was recently shown at length that the AREF-induced
electrophoretic forces are several orders of magnitude
larger that gravitational and colloidal forces [14, 15, 18, 19].
Researchers can therefore use the dissymmetric AREF to
design electrochemical cells that selectively (to some extent)
separate charged colloidal particles or bioparticles near the
powered or the grounded electrodes. Moreover, the sole
physical implications of the dissymmetric AREF opens a new
chapter for the researchers in the electrokinetic community.
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