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The stiffness of biological membranes determines the work required by cellular machinery to
form and dismantle vesicles and other lipidic shapes. Model membrane stiffness can be determined
from the equilibrium distribution of giant unilamellar vesicle surface undulations observable by
phase contrast microscopy. With two or more components, lateral fluctuations of composition will
couple to surface undulations depending on the curvature sensitivity of the constituent lipids. The
result is a broader distribution of undulations whose complete relaxation is partially determined
by lipid diffusion. In this work, kinetic anaysis of the undulations of giant unilamellar vesicles
made of phospatidylcholine-phosphatidylethanolamine mixtures validates the molecular mechanism
by which the membrane is made 25% softer than a single-component one. The mechanism is relevant
to biological membranes, which have diverse and curvature-sensitive lipids.

I. INTRODUCTION

The cellular membrane is a complex mixture of many
lipids and proteins, which may be attached peripherally,
reside in one leaflet, or cross both. Membrane shape is
highly influenced by a complicated cytoskeletal network.
To isolate the mechanical effect of individual lipid com-
ponents in such a system is currently infeasible. Giant
unilamellar vesicles (GUVs) are an excellent membrane
model system to which complexity can be introduced
gradually [1]. Rather than attempting to visualize the
distributions and motions of individual membrane com-
ponents spectroscopically, with GUVs the influence of
those components on the projected bilayer shape can be
directly observed.

GUV mechanics are typically described using the Hel-
frich/Canham [2, 3] (HC) energy density, H:

HHC =
κ

2
(c1 + c2 − c0)2 + κ̄c1c2 (1)

where κ is the membrane bending rigidity, c1 + c2 is the
total curvature where HHC is being evaluated, c1c2 is the
Gaussian curvature, and c0 is the bilayer spontaneous
curvature.

We refer to the range of the magnitude of undulations
of the GUV as the dynamic ensemble and to the relax-
ation times of the undulations as GUV kinetics. GUV
mechanics are typically analyzed in terms of the dynamic
ensemble. The bending stiffness is typically inferred from
the range of the dynamic ensemble; larger fluctuations
indicate a softer bilayer susceptible to thermal agita-
tion. The stiffness also impacts kinetics; with a stronger
restoring force, stiffer bilayers relax more quickly. The
undulation of a GUV is visible to both phase contrast
and confocal microscopy [4].

Some membrane mechanical parameters can also be
inferred from static structures under external stress. An

estimate of the stiffness of the red blood cell [5] as well as
simple model membranes [6] can be obtained from anal-
ysis of the shape of membranes under micropipette aspi-
ration. Even the challenging modulus of Gaussian cur-
vature can be deduced from the analysis of the shapes of
GUVs composed from a ternary mixture that phase sepa-
rate into microscopic ordered and disordered domains [7].
In this case, the external stress is the line tension be-
tween domains, to which the shape of the surrounding
vesicle adapts. The spontaneous curvature of lipid con-
stituents can also be inferred by pulling nanoscale tubes
using optically-trapped beads. The force required for
inward or outward tubulation will depend on the spon-
taneous curvature of the whole bilayer [8–10].

Setting aside the extreme case of macroscopic phase
separation, lipid mixtures of complex molecular compo-
sition raise the possibility of lipid-lipid interactions giv-
ing rise to inhomogeneity invisible to microscopy. When
nanometer-scale heterogeneity is a strong determinant
of mechanical properties, the variation of lipid concen-
trations will modify the fluctuation spectrum of GUVs
non-linearly. The characterization of the effect of com-
plex lipid heterogeneity by GUV fluctuations is closely
related to the main target of interest: a model of the
mechanics of cellular membranes.

This work examines a simple mechanism of softening
in complex membranes, what we term diffusional soften-
ing [11]. Diffusional softening results from the dynamic
coupling between the lateral distribution of lipids and
the membrane undulations. It has been proposed as a
method for determining lipid or protein diffusion con-
stants [12–14]. The mechanism only applies for leaflets
with a mixture of lipids with varied spontaneous cur-
vature. It is independent of the asymmetry of composi-
tion between leaflets. The effect was originally described
by Leibler in 1986 for general inclusions [15], likely ap-
plicable to inclusions like alamethicin [16], fusion pep-
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tides [17] and other proteins [14], but the theory applies
equally well to lipids [12, 18–20]. The width and relax-
ation time of nanotubes of lipid mixtures pulled from
black lipid membranes strongly imply that lipid sorting
leads to constriction of the tube, implying softness [21].
Non-linear variation of κ has been observed in simple
simulations of two component mixtures, in which the
mixture of a stiff and soft lipid appears softer than even
a pure bilayer of the soft lipid (see Fig. 3a of Ref. [22]
and Fig. 8 of Ref. [23]). As shown below, the softening
of κ is quadratic in the spontaneous curvature difference
between lipids, and goes as χ(1−χ), where χ is the mixed
mole fraction for a binary mixture, consistent with the
observations in Refs. [22, 23].

Whereas the undulations of a single component bilayer

relax with timescale r3η
κ

(2l+1)(2l2+2l−1)
(l−1)l2(l+1)2(l+2) , for diffusional

softening the timescale is perturbed by the relaxation
of the lateral compositional fluctuation, which goes as
r2

D0

1
l(l+1) . Here η is the solvent viscosity, l is the degree

of the spherical harmonic (SH), r is the vesicle radius,
and D0 is the diffusion constant. This mechanism can
thus be distinguished by the l-dependence of the undula-
tion relaxation time. The time-scales also differ in their
dependence on the vesicle radius.

The bending modulus for gel-phase systems ap-
proaches zero near the phase transition (see Fig. 13 of
Ref. [24] and Fig. 6 of Ref. [25]). Thermal fluctuations
of many mechanical properties are sufficient to explain
this, including the area-per-lipid, which differs greatly
between the gel and fluid phases. Differing curvature
preference of gel and fluid phases would also contribute
to bilayer softening. This is a clear indication of how
dynamically fluctuating material properties lead to pro-
found changes in softness. Moreover, the kinetics of the
gel-fluid transition should influence the relaxation time
of visible undulations.

This work uses analysis of the kinetics of GUV re-
laxation, supported by simulation, to distinguish the in-
trinsic bending modulus from the diffusionally-softened
bending modulus.

The dynamic fluctuations of GUVs composed either
completely of POPC or of 40% DOPE and 60% POPC
are first presented. The reduced softness of the mixed
system (22kBT ) compared to pure POPC (28kBT ) is
shown to be consistent with diffusional softening on the
basis of a kinetic fit to the autocorrelation function of
the GUV undulation amplitude.

To validate the model, the kinetics of the relaxing
GUV are compared to continuum simulations that in-
corporate the HC energy, as well as the experimentally-
validated relaxation times of the undulation and lateral-
compositional fluctuations. Fitting the time-dependence
of auto-correlation functions is not straightforward.
Choices of how to compare fits to the experimental data
impact the accuracy and precision of the extracted model

parameters. To account for this ambiguity in an even-
handed way, the expected error and optimal fitting strat-
egy is derived from the simulations, rather than the ex-
periments. Then, the fitting scheme is applied to the
time auto-correlation function of GUV undulations, as
measured by phase-contrast microscopy.

II. METHODS

The theory is first developed to describe the mecha-
nism of diffusional softening, including the kinetics nec-
essary for modeling. The experimental and simulation
protocols for characterizing GUV fluctuations are then
provided, as well as how a framework was developed to
most precisely fit the experiment as well as to anticipate
stochastic error.

A. Theory

The HC energy density is modified by the presence of
PE by subtracting the homogeneous (background) HC
energy and adding in the contribution from the PE lipid:

HHC(r) = H̄HC(r) + ∆HPE(r) (2)

where

H̄HC(r) =
κ

2
(c1(r) + c2(r)− c̄0)

2
(3)

and

∆HPE(r) =

∫
A

dS′ρ(r′)w(r − r′)
κm

2

[
(c1 + c2 − c0,PE)

2−

(c1 + c2 − c̄0)
2 ]
. (4)

Here w(r) is the spatial extent of a single lipid [26] and
ρ(r′) is the number of PE lipids per unit area in the outer
leaflet of the GUV (a trivial extension to both leaflets is
made below). Note that the bending modulus is assumed
to be homogeneous; the change in energy density only
reflects changes in c0. Assuming perfectly local spatial
extent for a lipid,

wlocal(r) = Apδ(r) (5)

where Ap is the area of a PE lipid, yields

∆HPE(r) = Apρ(r)
κm

2

[
(c1 + c2 − c0,PE)

2−

(c1 + c2 − c̄0)
2 ]
. (6)

= Apρ(r)
κm

2
(c1 + c2)∆cPE + ∆Hconst., (7)

where here ∆Hconst. is a constant term independent of
vesicle curvature. The assumption of perfectly local ex-
tent is justified as long as the undulation wavelength



3

considered is much greater than the mechanical extent
of the lipid. According to the mechanical extent of sim-
ulated PE lipids [26], this is easily justified. arger li-
pidic patches requiring treatment at higher q could be
described with finite spatial extent.

The average elastic curvature energy, without coupling
to PE, is then:

ĒHC =
κ

2

∫
A

dSH̄HC(r). (8)

For a vesicle, both the membrane shape R(θ, φ) and
lipid distribution ρ(θ, φ) are expanded in SH:

R(θ, φ) = r

(
1 +

lmax∑
l=2

m=l∑
m=−l

ulmYlm(θ, φ)

)
(9)

ρ(θ, φ) = ρ0 +

lmax∑
l=1

m=l∑
m=−l

ρlmYlm(θ, φ) (10)

with coefficients ulm (unitless) and ρlm (units per area).
With the curvature written as the divergence of the nor-
mal, the compositionally-averaged elastic energy ĒHC is
evaluated from H̄HC(r) (Eq. 3) as:

ĒHC =
κ

2

∫
dA (∇ · n)

2
. (11)

Taking a second order approximation the curvature en-
ergy (Eq. 8) is:

ĒHC =
κ

2
(l − 1)l(l + 1)(l + 2)u2

lm (12)

Given a bilayer with a mole fraction χ of one lipid (here
DOPE) and 1− χ background lipids (here, POPC), the
energy of a density fluctuation is given by

Eρ =
Apr

2kBT

4χ(1− χ)
ρ2
lm. (13)

This is a purely entropic factor.
The coupling of ρlm and ulm by ∆HPE(r) is similarly

evaluated in SH:

∆EPE = κm

∫
dA∆cPEApρlmYlm

(
∇ · n− 2

r

)
(14)

= κm∆cPEApr(l
2 + l − 2)ulmρlm (15)

Note that in our model, ∆EPE for the inner leaflet of
the bilayer requires only switching the sign of curvature;
it is the negative of ∆EPE for the outer leaflet. As the
coupling depends linearly on ρlm, it is irrelevant whether
lipids are modeled to be in the outer leaflet (with ∆cPE)
or in the inner leaflet (with −∆cPE). We therefore state,
without loss of generality, that they are distributed sym-
metrically throughout the bilayer as in the experiment.

To further cast the model as the bilayer coupling, we
reintroduce the bilayer κ, with κ = 2κm:

∆EPE =
1

2
κ∆cPEApr(l

2 + l − 2)ulmρlm (16)

Combining Eqs. 12, 13, and 16, the total energy is

Etotal = ĒHC + Eρ + ∆EPE. (17)

The expectation of u2
lm is determined by

〈u2
lm〉 = Z−1

∫
dulm

∫
dρlmu

2
lme−Etotal/kBT , (18)

where

Z =

∫
dulm

∫
dρlme−Etotal/kBT . (19)

For a single-component membrane (χ = 0 or ∆cPE = 0),
integration leads to

〈u2
lm〉 =

kBT

κ(l − 1)l(l + 1)(l + 2)
, (20)

from which the bending rigidity can be determined.
At higher q where diffusion is slower than the re-

laxation of undulations, the membrane auto-correlation
function reflects the time-scales of the two processes
and how they are coupled through spontaneous curva-
ture. We can derive a theoretical prediction of the auto-
correlation function from the dynamics of the system.

The expectation of u2
lm, ρ2

lm, and ulmρlm are:

〈u2
lm〉 =

kBT

κ(l − 1)l(l + 1)(l + 1)
(21)

×
(
1 + α+O[∆c3PE]

)
〈ρ2
lm〉 =

2χ(1− χ)

Apr2
(22)

×
(
1 + α+O[∆c3PE]

)
〈ulmρlm〉 =

∆cPEχ(1− χ)

r(l + 1)l
(23)

Where the softening constant

α =
Ap∆c2PEκχ(1− χ)

2kBT

(l − 1)(l + 2)

(l + 1)l
(24)

is defined for convenience, as it arises frequently.
A bilayer with a symmetric or asymmetric mixture of

lipids (with unequal spontaneous curvatures) will expe-
rience apparent softening according to

κapparent = κ (1− α) (25)

Note that the fraction depending on l goes to one rapidly,
giving the diffusional softening for a planar system [11,
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20]. This assumes that both leaflets contain the mixture
χ = ρAp.

Langevin equations model the kinetic relaxation of
coupled membrane undulations and lipid redistribution.
They are:

∂ulm(t)

∂t
= −Γl

(
κ(l − 1)(l + 2)(l(l + 1))ulm

− 1

2
Ap∆cPEκ(l2 + l − 2)rρlm

)
(26)

+
√

2ΓlkBTξ(t)

∂ρlm(t)

∂t
= − D

kBT

(
ApkBTr

2ρlm
2χ(1− χ)

− 1

2
Ap∆cPEκ(l2 + l − 2)rulm

)
(27)

+
√

2Dξ(t)

where ξ(t) describes a stochastic process:

〈ξ(t)〉 = 0

〈ξ(t)ξ(t′)〉 = δ(t− t′)
(28)

Note that when ulm(t) and ρlm(t) are determined nu-
merically below, ξ(t) is simulated by drawing random
numbers from a normal distribution with zero mean and
variance ∆t, where ∆t is the time-step. In Eq. 26, Γl
describes the hydrodynamics associated with the mem-
brane interacting with the solvent, and therefore depends
on the solvent viscosity.

Γl =
1

ηr2

l(l + 1)

(2l + 1)(2l2 + 2l − 1)
(29)

In Eq. 27, D:

D =
D0χ(1− χ)

Apr4
2l(l + 1) (30)

is chosen to give the appropriate diffusion time-scale.
The symbolically-simplified system of two over-damped
harmonic oscillators, coupled together:

dulm
dt

= −khhulm + khpρlm

dρlm
dt

= −kppρlm + kphulm.

(31)

Here khh and khp is proportional to η, while kph and kpp
are proportional to D. The sign of khp is positive indi-
cating that amplitude in ρlm amplifies ulm; this choice
implies that curvature is measured in the sense of the
upper leaflet; positive ρlm and positive c0 imply that
ulm increases. This relationship is reversed in the lower

leaflet (positive ρlm implies the lipid density is decreased
in the lower leaflet).

Were curvature and diffusion independent, the two
processes would have relaxation timescales:

τm =
r3η

κ

l2(l + 1)2(l − 1(l + 2)

2l + 1)(2l2 + 2l − 1)

τp =
r2

D0

1

l(l + 1)

(32)

When diffusion is slower than shape fluctuations
kpp << khh and the impact of coupling to the density
depends on khp× kpp as the density slowly impacts ulm.
The time autocorrelation function is:

〈ulm(t)ulm(0)〉 = A+e(−k+t) +A−e(−k−t) (33)

with decay constants

k± =
1

2
(khh + kpp ±

√
k2
hh − 2khhkpp + k2

pp + 4khpkph)

(34)
and time-scales

τ±,l = k−1
± . (35)

For the purpose of interpreting the different time-scales,
consider τ+ as the fast membrane relaxation time-scale
and τ− as the slower diffusion time-scale. A± are the
amplitudes of each exponential.

With kpp << khh and kph small, to first order in the
diffusion constant these rates are:

k+ = khh −
khpkph
khh

=
κ

r3η

(l − 1)l2(l + 1)2(l + 2)

(2l + 1)(2l2 + 2l − 1)r3

−αD0l(l + 1)

r2
+O[D2

0]

k− = kpp −
khpkph
khh

=
D0l(l + 1)

r2
(1− α) +O[D2

0]

(36)
The rates are both decreased by the coupling. The am-
plitudes associated with each exponential decay are

A+ = (1− α)

A− = α
(37)

where the autocorrelation function is normalized to be 1
at t = 0.

B. GUV microscopy

GUVs were prepared by the electroformation method
as it is described previously [27, 28]. Briefly, pure
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine
(POPC) (Avanti Polar Lipids, Germany) or a mixture
of POPC and 40 mol% 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE) (Avanti Polar Lipids,
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FIG. 1: A phase contrast screenshot of a quasi
spherical GUV composed of 40 mol% DOPE and 60
mol% POPC. The vesicle was prepared in 20 mM

sucrose and diluted in 22 mM glucose. The scale bar is
10 µm. Zooming in a patch on the vesicle can be

considered planar. Consider the green (light gray) lipid
to have more positive spontaneous curvature than the
blue (darker gray). Stochastic co-localization of the

green (light gray) lipid stimulates an undulation that
adapts quickly (at the illustrated wavelength with

relaxation time: τm). Over time, diffusion relaxes the
lateral distribution (τp). The net effect is that the

bilayer is softer both in appearance and practice. These
fluctuations can be seen in S1 of the Supplemental

Material.

Germany) were dissolved in chloroform to a final con-
centration of 4 mM. Then, 10 µL of the lipid solution
was spread as a thin film on a pair of indium-tin oxide
(ITO)-coated glass plates (PGO-GmbH, Iserlohn, Ger-
many), which are electrically conductive. Afterwards,
they were dried under a stream of Nitrogen and placed
in a desiccator for 2 h to evaporate the organic solvent.
A Teflon spacer with 2 mm thickness was sandwiched
between the two ITO glasses (conducting sides facing
each other) to form a chamber. The chamber was
filled with 20 mM sucrose solution and connected to a
function generator (Agilent, Waldbronn, Germany). To
initiate the electroswelling process, a sinusoidal alter-
nating current (AC) electric field at 10 Hz frequency
with a 1.6 V (peak to peak) amplitude was applied for
1 hour. The obtained vesicles were harvested from the
chamber and used freshly within 24 h after preparation.
For fluctuation spectroscopy, the vesicle suspension
was 4-fold diluted in 22 mM glucose. The osmolarity
of the sugar solutions was adjusted with osmometer
(Osmomat 3000, Gonotec, Germany). The vesicles
were additionally deflated before imaging by leaving
the observation chamber open for 5 min to let water
evaporate. Membrane fluctuations were observed under
a phase contrast mode of an inverted microscope, Axio
Observer D1 (Zeiss, Germany), equipped with a Ph2
40 x (0.6 NA) objective. High speed video recordings
were performed with a Pco.Edge camera (PCO AG,
Kelheim, Germany). The image acquisition rate was
set to 100 frames per second (fps) at exposure time
of 200 µs. To prevent correlated images, statistics
were averaged for every 4th frame. Only defect-free
quasi-spherical vesicles, 8-21 µm in radius and with
low tension values 10−7 − 10−9 N m−1 were analyzed.
A set of 21000 images (3×7000 frames with 3 min
gap between each recording sequence) were acquired
for each vesicle. All experiments were performed at
25◦C. The vesicle contour was detected through the
lab owned software [29]. This included software for
the construction of spatial and temporal correlation
functions to characterize the shape fluctuations of the
membrane. Vesicle contours were detected through the
Viterbi algorithm. The amplitudes were fit with the
Levenberg-Marquardt algorithm for statistical analysis
and characterization of κapparent. A χ2 test was applied
to determine the range of modes included, with values
in the range of 0.8-1.2.

C. Simulation

Solving Eqs. 26 and 27 numerically for small discrete
time increments leads to a time-series for the membrane
and distribution modes. The amplitudes of undulations
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Spontaneous Curvature, ∆cPE (nm−1) 0.0 0.140 0.280 0.340

Surface Coverage, χ N/A 0.4

Bending Rigidity, κ (units of kBT ) 33.78

Diffusion Constant, D (µm2/s) N/A 8.0

Viscosity, η (Pa s) 8.9 × 10−4

Area per Lipid, Ap (nm2) 0.634

TABLE I: Simulation parameters

are projected into the equatorial plane

νn =

lmax∑
l=n

ulnPln(cosπ/2)Nln (38)

where, Pln are the associated Lengendre polynomials and
Nln =

√
(2l + 1)(l − n)!/4π(l + n)! is a normalization

factor. Four sets of simulations using parameters to re-
flect the experiments performed were done, values are
in Table I. The time-step is determined by the fastest
membrane undulation mode (∆t << τm,min).

The undulation time autocorrelation function
(〈νn(t)νn(0)〉) is calculated from the time-series of
membrane undulations. This is related to the autocor-
relation function of the vesicle through the projection
of the average amplitudes

〈νn(t)νn(0)〉 =

lmax∑
l=n

〈uln(t)uln(0)〉 (Pln(cosπ/2)Nln)
2

(39)

=

lmax∑
l=n

〈|uln|2〉 (Pln(cosπ/2)Nln)
2

e−t/τl

(40)

This can be fit with the analytical expression derived
above in order to extract the softening factor.

An example correlation function is shown in Fig. 2,
where a single short time simulation spectrum (dashed
lines) is compared to the average of three simulations
(solid lines). Obviously, the single simulation spectrum
contains a lot of noise. The experimental spectra are
also overlaid with noise. For this reason, we average over
three simulations to decrease the noise in the simulation
spectrum. This allows for the determination of fitting
parameters that can be used with experiment.

D. Fitting experimental and simulation
auto-correlation functions

Auto-correlation functions are fit using a functional
form that replicates the theoretical dynamics implied by
Eqs. 36 and 37. These relations govern the dynamics
of the complete SH, yet the functional form must be

0
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FIG. 2: An example of autocorrelation functions from
simulation (for q = 0.515 µm−1). Solid lines are

averaged over three runs and dashed lines are for a
single run. The shaded region is the standard deviation

of the average. Here κ = 33.8kBT and D = 8µm2/s.

for the projection into the plane, just as the simulations
replicate the observable of the GUV microscopy.

Auto-correlation functions for each vesicle projection
are fit by a function

fn(t) =wfastδ(t) +Nauto,n

lmax∑
l=n

|Pln(cos(π/2)Nln|2×(
w+ exp(− t

τ+,l
) + w− exp(− t

τ−,l
)

)
,

(41)
where δ(t) accounts for fast stochastic experimen-
tal noise, τ+,l and τ−,l are the membrane-dominated
and diffusion-dominated relaxation times, respectively
(Eqs. 35 and 36) while the w constants are weights:

w+ = A+(1− wfast) (42)

w− = A−(1− wfast) (43)

such that (with A+ + A− = 1) the weights sum to one.
The constant

Nauto,n =

(
lmax∑
l=n

|Pln(cos(π/2)Nln|2
)−1

(44)

normalizes the auto-correlation function. The diffusion
constant D, bending modulus κ, difference in sponta-
neous curvature ∆cPE are shared parameters for the set
of autocorrelation functions. Additionally, a constant
modeling the magnitude of unresolvable fast (below 0.01
seconds) noise wfast is introduced for each correlation
function.

Note that n denotes the integer mode of the projected
spherical harmonic, which does not decay with a single
timescale even absent particle coupling. Instead, it re-
flects the relaxation of spherical harmonics with l ≥ n.
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However, the majority of the amplitude will be domi-
nated by the lowest mode spherical harmonic with l = n.
Therefore, we attach the wavenumber q = n

R to describe
autocorrelations of νn, expecting the dynamics of modes
with similar q but with varied n on vesicles of varied R
to have similar kinetics. We use q to define the range of
modes appropriate for fitting with the above theoretical
kinetics, as well as to shift the weight bye wq of autocor-
relation functions in χ2 to higher q. With their fast relax-
ation times, autocorrelation functions at higher q have
compressed time domains and thus contribute weakly to
χ2.

Optimal parameters are found by minimizing

χ2 =
∑
i

wq

t<tmax,q∑
t=0

(fn,i(t)− νn,i(t))2
(45)

where the sum is over all autocorrelation functions for a
vesicle set with q such that qmin < q < qmax. Here tmax,q

depends on q. The time-domain is chosen in terms of
n multiples of the membrane relaxation time, tmax,q =
nτm.

We use a sum of exponentials, one with τm and one
with τp. The difference between these mechanisms is
their q dependence (q−3 vs. q−2). Practically, we fit the
data with the bending modulus and diffusion constants
as two adjustable parameters. In the two-parameter fit
each mode has an additional parameter: the weight of
auto-correlation that is assigned to the diffusion mecha-
nism.

III. RESULTS AND DISCUSSION

The diffusional softening mechanism derived is tested
on both simulation and GUV fluctuation data by fit-
ting fluctuation autocorrelation functions to the model
(Eq. 41). Fitting yields the apparent spontaneous cur-
vature difference (∆cPE), intrinsic bending rigidity (κ),
and lipid diffusion constant (D), extracted purely from
kinetics. Typically, κapparent (equal to (1 − α)κ) would
be determined from the average fluctuations (〈ν2

n〉). In
addition to the kinetic analysis that determines κ and
∆cPE and thus implies κapparent, fluctuation analysis ap-
plied to determine κapparent is shown below.

A. Apparent bending rigidity from GUV
fluctuations

The classic GUV fluctuation experiment extracts the
bending modulus from equilibrium fluctuations (〈ν2

n〉):

κapparent

kBT
=

∑lmax

l=n
(Pln(cosπ/2)Nln)2

(l+2)(l−1)(l(l+1)+σ̄)

〈ν2
n〉

(46)

FIG. 3: Bending rigidity of membranes made of pure
POPC (100 mol%) and DOPE:POPC 40:60 mol%.

Gray diamonds indicate measurements on individual
GUVs. Mean and standard deviation values are shown

to the right.

The bending modulus and tension are fit as in
Ref. [29]. Following determination of each individual
vesicle κapparent by fluctuation analysis, two sets of sim-
ilar vesicles were determined, one for each composition.
The range in κapparent for inclusion into the sets was
determined by sorting the vesicles according to κapparent

and selecting a range with minimal variation in κapparent.
A set of GUVs with similar apparent bending modulus
were selected for analysis, one for PE/PC (8 vesicles with
κapparent from 19.59 to 21.28 kBT with mean 20.27±1.18
kBT ) and one for POPC (nine vesicles with κapparent

from 26.01 to 28.21 kBT with mean 26.69 ± 1.86 kBT ).
The rationale is that variations in bending modulus, for
whatever reason, would imply a variation in relaxation
timescale — although the timescales would still be well
separated. Averaging over all the GUVs, the κapparent

for PE/PC was 21.74 ± 2.52 kBT and for POPC was
28.24± 3.19 kBT , which is shown in 3.

B. Kinetic fits to simulation

Fitting the simulation data validates the fitting soft-
ware and underlying approach. Four simulations were
run, with ∆cPE = {0, 0.14, 0.28, 0.34} nm−1, κ =
33.78 kBT , and D = 8 µm2/s. The bending modu-
lus is overestimated slightly versus the input param-
eter (33.78 − 36.49 kBT ). The diffusion constant is
8 µm2/s within one standard error (< 0.25 µm2/s).
Extracted spontaneous curvatures are slightly overesti-
mated: {0.02, 0.16, 0.30, 0.36} ±0.003 nm−1, in each case
0.02 nm−1 too high.
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The autocorrelation function for each in-plane pro-
jected mode is fit to its model kinetics (Eq. 41). Av-
eraging multiple autocorrelation functions together (for
modes with similar dynamics) illustrates the separate
undulation and diffusion timescales better than noisy
individual fits. Average autocorrelation functions for
three q-ranges are shown in Fig. 4, as well as the av-
erages for the fits. The fit curves shown are solved for
the ∆cPE = 0.28nm−1 data set, adjusting single values
of κ, D, and c0 applicable to all fit curves for a data set.
For the simulation, fast noise is set to zero as this term
only models experimental noise. Error bars are com-
puted by statistical analysis of the correlation functions,
assuming the same kinetics.

The difference between the red (light gray) and black
curves at long time illustrates the effect of curvature-
coupled lipid diffusion on the undulation relaxation
timescale. The agreement of the fits and input model
parameters indicates that the fitting procedure is robust
for simulation data with the same information content
as the experiment.

C. Kinetic fits to GUV microscopy

Average autocorrelation functions for the same three
q-ranges above are now shown in Fig. 5 for the undula-
tions recorded by GUV microscopy, as well as the aver-
ages for the fits. While like the simulations the single fit
shares mechanical parameters between auto-correlation
functions, now each auto-correlation function has its own
parameterization of the the fast noise. Before plotting,
the fast noise was subtracted from the autocorrelation
function, the average was computed, and, finally, renor-
malized.

Fitting the mechanical parameters of the PE/PC mix-
ture yields κ = 29.90 ± 1.01 kBT , D = 8.2± 0.4µm2/s,
and ∆cPE = 0.340 ± 0.01 nm−1. For the fit to POPC,
κ = 26.35 ± 0.85 kBT , D = 1.1 ± 0.2 µm2/s, and
∆cPE = 0.16±0.007 nm−1. Note that for the pure POPC
GUVs, D and ∆cPE should not be part of the mecha-
nism, and therefore, ∆cPE should be zero with D unre-
solvable. We believe that, for POPC, these values are
indicative of “over-fitting”, that is, the use of nonsensi-
cal parameters that fit stochastic error in the experiment
and systematic error in the model. The fits indicate that,
in contrast to κapparent, κ is similar for the PE/PC and
POPC samples. Furthermore, the difference in ∆cPE for
the two samples compares well to the expected sponta-
neous curvature of DOPE (-0.34 nm−1 [30]) and POPC
(-0.02 nm−1 [31]).

If the whole range of available GUVs were selected for
analysis, the average κ for POPC would be 32.095±1.18
kBT and 30.07 ± 1.52 kBT for PE/PC . Spontaneous
curvatures were similar to the reduced set (0.18 ± 0.01
nm−1 and 0.30 ± 0.007 nm−1 for POPC and PE/PC,

respectively).
The fit results converge for the experiment when tmax,q

is sufficiently large (above 30 times τp), and for qmax

greater than 1 µm−1. Sensitivity of c0 to tmax,q and
qmax are shown in Figs. S3 and S2 of the Supplemental
Material [32].

The fit to the pure POPC shows slow timescale relax-
ations; yet these are inconsistent with diffusional soft-
ening. Foremost, the apparent diffusion constant ex-
tracted (1.1µm2/s) is inconsistent with lipid diffusion,
which is consistently measured to be much larger (ca.
8µm2/s and modestly reduced with cholesterol in dis-
ordered phases [33–36]). That is, the timescale is un-
likely to be due to a contaminant or oxidated lipid. The
timescale appears too small to be a result of lipid flip-
flop, whose characteristic timescale is on the order of
hours [37]. Although the mechanism for the small am-
plitude slow relaxation in pure POPC is unknown, the
effect is larger in PE/PC. While ∆cPE for PE/PC and
POPC (0.340 nm−1 and 0.16 nm−1) appear comparable,
the strength of the effect goes as ∆c2PE, and thus is over
four times larger for PE/PC.

D. Implication of diffusional softening

Fitting the distribution of undulation magnitudes is
sensitive to κapparent. Fitting undulation kinetics ex-
tracts κ, D and ∆c2PE. As presented here, κ only ac-
counts for diffusional softening; structural dynamics that
couple to curvature at faster timescales affect κ.

Kinetic fitting of GUVs demonstrates that the PE/PC
mixture has κ, D and ∆cPE consistent with previous
measurements of spontaneous curvature [30] and diffu-
sion [34], as well as a minimal difference if any, for κ rel-
ative to POPC. That is, the larger and somewhat slower
undulations of the PE/PC mixture are consistent not
with a change in the underlying softness of the bilayer,
but rather through the coupling of the spontaneous cur-
vature of DOPE to dynamic undulations.

Separating mechanistic contributions to κapparent is
critical for developing a complete model of the mem-
brane, including its equilibrium and non-equilibrium re-
laxation behavior. In the absence of the model of diffu-
sional softening, extrapolating κapparent to 100% DOPE
yields, relative to pure POPC, an extremely small value
for pure DOPE, ca. 10.64 kBT . In contrast, in the dif-
fusional softening model, κ depends weakly on DOPE
fraction. Note that while pure DOPE does not readily
form lamellar phases at this temperature, its bending
modulus in the hexagonal phase is 22-26kBT , depending
on the incorporation of interstitial tetradecane [30].

The principal indication of diffusional softening is the
long-timescale auto-correlation of the undulation ampli-
tude. The initial fast undulation kinetics cannot be used
reliably to determine κ; the undulation rate k+ is re-
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FIG. 4: The average of the autocorrelation 〈νq(t)νq(0)〉 over similar modes for the simulation (solid) and fits
(dashed). POPC is colored in black. The ∆cPE = 0.28 nm−1 is colored red. The shaded regions indicate two

standard errors from the simulation obtained by averaging over similar modes. The label at t = 0.2 s on all three
plots is shown in bold for a common reference. Here κ = 33.8kBT and D = 8µm2/s.
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FIG. 5: The average of the autocorrelation 〈νq(t)νq(0)〉 over similar modes for the experiment (solid) and fits
(dashed). POPC is colored in black. The DOPE/POPC mixture is colored red. Filled curves indicate two standard

errors from the experiment obtained by averaging over similar modes.

duced by coupling to diffusion (by ατ−1
p ). The impact

of this “friction” is reduced at high q as τp grows relative
to τm.

E. GUV relaxation kinetics as a probe for
structural heterogeneity

Any structure with curvature coupling different from
the bulk will influence the magnitude and kinetics of
GUV fluctuations. Thus, in theory, kinetics can be used
to infer the dynamics and coupling strength of complex
structures such as nanodomains and lipid multimers.
Coupling of GM1 to curvature is a plausible explanation
for the dramatic softening of POPC/GM1 mixtures [38],
where at mol fractions less than 10% GM1 the bend-
ing modulus is less than 25% of that of pure POPC.
Such softening could indicate that size (Ap) and/or cou-
pling strength (∆cPE) of the GM1-enriched structural

unit exceeds that of a typical lipid. The proximity of the
gel/fluid transition suggests the possibility of curvature-
sensitive GM1 multimers.

Experiments clearly indicate liquid ordered domains
have increased κ compared with disordered phases [7].
The magnitude of the effect is likely sufficiently large
that the linearized treatment of the coupling α is inad-
equate. For stiff domains that couple strongly to cur-
vature, α quickly becomes larger than one, indicating a
breakdown in the theory. Indeed softening is non-linear
above 5 mol% GM1 in POPC.

IV. CONCLUSION

The dynamic coupling of the lateral distribution of
curvature sensitive lipids to membrane undulations leads
to diffusional softening of the membrane [12, 15, 18, 21].
The undulation autocorrelation function implies the in-
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trinsic bending rigidity of the membrane, the diffusion
constant of the underlying lipids, and the magnitude of
the spontaneous curvature difference (through the time-
scale). The intrinsic bending rigidity of the membrane
determined from the kinetics is related to the apparent
bending rigidity determined from the fluctuation spec-
trum through the softening factor. The experiment and
model corroborate a similar experiment on membrane
nanotubes by Bashkirov et al [21], in which DOPE also
softened a majority PC bilayer according to Eq. 25.

A key factor of the diffusional softening mechanism is
how coupling of undulations to diffusion acts as a “fric-
tion”. The impact of this force depends on q. The re-
sponse of membrane undulations to this frictional force
is observed in the relaxation kinetics of membrane un-
dulations. Membrane viscosity [39] and interleaflet fric-
tion [40, 41] also influence membrane undulation kinetics
at shorter timescales. Understanding how undulation ki-
netics is modified by these terms has proved crucial for
understanding the fine mechanisms of membrane shape
dynamics [42].

It is critical to understand the extent of this mech-
anism when inferring the bending modulus of complex
mixtures. For example, conflicting results have recently
been published for the bending modulus of cholesterol
in DOPC. Neutron spin-echo experiments, which probe
relaxation times of bilayers below the timescale of diffu-
sion, indicate the bilayer is stiffer [43]. Yet multiple tech-
niques that probe equilibrium fluctuations have shown
that κapparent is unchanged [8, 19, 29, 44]. Hexagonal
phase experiments indicate that cholesterol will have
a high negative spontaneous curvature in fluid bilay-
ers [30]. Accepting the diffusional softening mechanism,
cholesterol is expected to soften a DOPC bilayer, in
the absence of a stiffening effect. Note however, that
to fully resolve the reported discrepancy, membrane vis-
cosity contributions in time-correlation analysis should
be interrogated; recent analysis indicates that viscosity
affects a broader array of undulations of smaller lipo-
somes than previously anticipated, suggesting another
possible change in the interpretation of spin echo exper-

iments [39].

GUV fluctuations suggest that cholesterol at 10 mol%
reduces the κapparent of SOPC, while increasing κapparent

at higher concentrations [45]. X-ray derived data con-
tradicts this [44]. In either case the effect is sufficiently
small as to be difficult to statistically distinguish. Hexag-
onal phase experiments with variable osmotic stress (a
technique for which lateral redistribution is irrelevant)
indicate cholesterol stiffens DOPC and DOPE some-
what. Considering diffusional softening, it is possible
that cholesterol is both stiffening the underlying κ while
lowering κapparent such that the change is minimal. In-
terpreting neutron spin echo experiments [46] is challeng-
ing [47]. Indeed other interpretations of the discrepancy
between equilibrium and kinetic techniques are plausible,
such as cholesterol-driven changes in the neutral surface
of bending or the area compressibility independent of the
bending modulus [48]. This case illustrates the impor-
tance of deducing the molecular mechanism of changes
in bilayer stiffness.

V. DATA SHARING

Data files of the GUV fluctuations, along with the
software to simulate and fit their kinetics, are publicly
available [49].
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