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The averaged steady-state surprisal links a driven stochastic system’s information processing to its
nonequilibrium thermodynamic response. By explicitly accounting for the effects of nonequilibrium
steady states, a decomposition of the surprisal results in an information processing First Law that
extends and tightens—to strict equalities—various information processing Second Laws. Applying
stochastic thermodynamics’ integral fluctuation theorems then shows that the decomposition reduces
to the Second Laws under appropriate limits. In unifying them, the First Law paves the way to
identifying the mechanisms by which nonequilibrium steady-state systems leverage information-
bearing degrees of freedom to extract heat. To illustrate, we analyze an autonomous Maxwellian
information ratchet that tunably violates detailed balance in its effective dynamics. This demonstrates
how the presence of nonequilibrium steady states qualitatively alters an information engine’s allowed
functionality.

I. INTRODUCTION

In 1861, Maxwell introduced a thought experiment in
which a “very neat-fingered being” leveraged observa-
tions to control a system that violated the Second Law
of thermodynamics [1]. A century later, attempting to
resolve the paradox, Landauer quantitatively bounded
the requisite thermodynamic resources for erasing a sin-
gle bit of information in a physical information-bearing
degree of freedom [2]. These results have since stimulated
many explorations of the fundamental physics tying a
system’s thermodynamic behavior to its functioning as
an information processor [3].
One particular line of inquiry focused on autonomous
Maxwellian ratchets. In this, a ratchet embedded in a
thermal environment moves along an information tape,
interacting with a single tape symbol at a time. The infor-
mation in the tape’s cells modifies the ratchet’s statistical
properties while the ratchet absorbs and dissipates energy
[4]. Recent results introduced an information processing
Second Law (IPSL) for such systems that bounds the
asymptotic rate ˙⟨W ⟩ of extracted work [5]:

β ˙⟨W ⟩ ≤ ∆hµ, (1)

where ∆hµ = h′
µ − hµ, h′

µ is the Shannon entropy rate of
the statistical process generating the output tape, hµ is
the same for the input tape, and β is the inverse temper-
ature of the thermal environment.
Notably, the IPSL bound corrected previous “single-
symbol” relations by accounting explicitly for arbitrary-
order temporal correlations in the input and output sym-
bol strings. This, then, led to the discovery that removing
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such correlation increases the system’s capacity to pro-
duce work—despite the ratchet interacting with only a
single symbol at a time.
More recently, Ref. [6] developed a similar IPSL not for the
asymptotic rate of extracted work from an infinite tape,
but for the finite-time ensemble-averaged work extracted
when operating on a finite tape:

β ⟨W ⟩ ≤ ∆H[Z], (2)

where Z is the random variable associated with the joint
space of the ratchet and tape and H[Z] is its Shannon
entropy.
The following first derives a simple information-
thermodynamic equality by considering the averaged
steady-state surprisal of a general driven stochastic pro-
cess:

∆H[Z] = ⟨Wex⟩ − ⟨Qex⟩ − ∆DKL[Z ∥ Λ]. (3)

Here, Z is the random variable associated with a system’s
state, Λ that associated with an environmentally-induced
steady state, and ⟨Wex⟩ and ⟨Qex⟩ are (in entropic units)
the average excess work and heat of nonequilibrium steady
state thermodynamics, respectively [7, 8]. The Kullback-
Leibler divergence [9] DKL[Z ∥ Λ] monitors the difference
in information between the system’s state and the would-
be steady state.
We refer to Eq. (3) as the information processing First
Law (IPFL) since, beyond the obvious change in the joint
system’s information content, the lefthand side acts as a
kernel for describing a ratchet’s information processing—
discussed in detail in Sec. IV. Additionally, the righthand
side expresses a generalized First Law used to define
excess heat and work—discussed further in Secs. II A
and II D. In essence, Eq. (3) expresses a First Law for
the system’s information content in the same way the
original equilibrium First Law does for a system’s energy
(non)conservation.
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Subsequently, we show that the IPFL together
with stochastic thermodynamics’ integral fluctuation
theorems—particularly those presented in Refs. [8, 10]—
generalize and modify the two preceding asymptotic and
finite-tape IPSLs. Identifying the role of the average dis-
sipated housekeeping heat ⟨Qhk⟩ and the divergence from
final steady-state conditions DKL[ZN ∥ ΛN ], it shows that
for finite-tape systems:

−β ⟨Q⟩ ≤ ∆H[Z] + DKL[ZN ∥ ΛN ] − β ⟨Qhk⟩ , (4)

where − ⟨Q⟩ corresponds to the averaged heat extracted
from the thermal environment.
With equilibrium steady states (ESSs), this is the work W
done by the ratchet-tape system: − ⟨Q⟩ = W , recalling
previous bounds. However, as Sec. II E discusses, invok-
ing this equivalence is not generally possible in the case
of nonequilibrium steady states (NESSs). Instead, we give
the bounds in terms of heat extracted from the thermal
environment.
Compared to the extracted-heat form of Eq. (2), which
gives −β ⟨Q⟩ ≤ ∆H[Z], this explicit accounting for the ef-
fects of NESSs and nonequilibrium dynamical (nonsteady)
start and end configurations gives a strictly tighter bound
for finite- and even-state (defined below) systems.
In short, for NESS systems an increase in randomness—as
measured by ∆H[Z]—must additionally compensate for
persistent housekeeping costs—as measured by β ⟨Qhk⟩—
to leverage the thermal environment as a reservoir of
extractable energy.
Finally, we demonstrate that for infinite-tape, finite-
ratchet systems the asymptotic bound is similarly tight-
ened:

−β ˙⟨Q⟩ ≤ ∆hµ − β ˙⟨Qhk⟩, (5)

where β ˙⟨Qhk⟩ is the asymptotic rate of housekeeping
dissipation.
To summarize, fluctuation theorems take the IPFL di-
rectly to a suite of simultaneously-true Second Laws for
information processing. This, once again, mirrors infor-
mational generalization of the familiar equilibrium Second
Law.
Overall, this clarifies and unifies derivations of these IPSLs.
More importantly, it extends their domains to explicitly
include the effects of initial- and final-state dependence
as well as nonequilibrium steady states. Practically, this
opens the door to considering detailed information-energy
tradeoffs for systems that arbitrarily violate detailed bal-
ance in their effective dynamics. The following demon-
strates this via an example ratchet designed to tunably
violate detailed balance while remaining tractable for anal-
ysis. This uncovers qualitative corrections to a ratchet’s
ability to extract heat from its environment.
The development proceeds as follows. First, Sec. II sets
out the preliminary notation and introduces the rele-
vant stochastic dynamical functionals. Section II D maps

the general stochastic dynamical picture to an explicitly
thermodynamic one, immersed in a single-temperature
environment. This points toward concrete example re-
alizations of the general stochastic theory. Section II E
reviews autonomous Maxwellian information ratchets,
which comprise our example system class.
With the preliminaries in hand, Sec. III derives Eq. (3)’s
IPFL. It applies the IPFL to the information ratchet pic-
ture, revealing strict equalities relating a ratchet’s ther-
modynamic dissipation with its information processing in
transforming an input tape to an output.
Section IV then specializes the IPFL in two ways. First,
Sec. IV A introduces and uses integral fluctuation theo-
rems to take the equality to an inequality. This arrives
at the kernel of previous IPSLs, explicitly generalizing
and tightening that of Ref. [6]. Then, Sec. IV B considers
the asymptotic rate limit of an infinite tape, similarly
generalizing the previous asymptotic IPSL to include the
effects of nonequilibrium dynamical state-dependence and
potentially infinite-state ratchets. The restriction to finite
ratchets in Sec. IV C rounds out our derivations, revealing
a simple correction tightening Ref. [5]’s asymptotic IPSL.
Finally, Sec. V applies the developed theory to a finite-
state information ratchet that arbitrarily violates detailed
balance and so exhibits NESSs. We find that even for
simple cases, NESSs have dramatic effects on a ratchet’s
ability to extract heat, qualitatively changing its land-
scape of allowed behaviors.
Taken together, the results (i) unify both previously-
reported IPSLs for ratchets by deriving them explicitly
from the underlying IPFL and integral fluctuation the-
orems, (ii) place the specific application of autonomous
ratchet function in the broader context of the exchange
between energy and information in complex systems, in-
cluding generally nondetailed-balanced ratchets, and (iii)
demonstrate severe restrictions nonequilibrium dynamical
states place on allowed ratchet functionality—restrictions
critical to understanding the thermodynamics of informa-
tion processing by complex systems.

II. PRELIMINARIES

Consider a system under study (SUS) that stochastically
realizes states z in a countable space Z. It is driven
in discrete time by a protocol written as a sequence of
parameter values λ in a parameter space A, denoted by
λ0:N

.= λ0λ1 . . . λN for a positive integer N . The resulting
driven stochastic process Z0:N is not stationary. However,
we assume it is conditionally stationary: for any protocol
indefinitely fixed at λ, there is a unique corresponding
stationary state distribution πλ.
Initially, we place no further restrictions on our system: it
need not have a particular dynamical structure—Markov,
master equation, Langevin, detailed balanced, and so on.
And, we make no claim about the scale of its state space
or time scale. The protocol itself may be a realization of a
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separate stochastic process, and the state space may be a
joint one with meaningfully decomposable parts. In point
of fact, we treat the latter as an example later. First,
though, we derive our main result in greater generality,
requiring only the conditional stationarity assumption
and involving only the functionals of trajectory-protocol
pairs we now define.

A. Dynamical Functionals

With a would-be stationary distribution πλ associated to
each driving parameter λ, denote its elements by πλ(z).
Without loss of generality we define the steady-state sur-
prisal [7, 8, 10, 11]:

ϕλ(z) .= − ln πλ(z), (6)

so called as it is the Shannon self-information [9] of the
system state being z under the distribution πλ. Hereafter,
we take all logarithms to the natural base and, follow-
ing information-theoretic convention, refer to the unit of
entropy and surprisal as a nat [12].

For notational uniformity, we cast the sequence of station-
ary distributions during a protocol as a stochastic process
over random variables Λt ∼ πλt

. (“∼” reads “distributed
as” [9].) Upon averaging:

⟨πλ|ϕλ⟩ .=
∑
z∈Z

πλ(z) ϕλ(z)

= H[Λ], (7)

the Shannon entropy of the distribution πλ.

We now define stochastic excess work Wex and stochastic
excess heat Qex as distinct contributions to a system’s
change in steady-state surprisal:

∆ϕ = ∆λϕ︸︷︷︸ + ∆zϕ︸︷︷︸
.= Wex − Qex, (8)

where, for N time steps:

∆λϕ
.=

N−1∑
n=0

ϕλn+1(zn) − ϕλn
(zn) and (9)

∆zϕ
.=

N−1∑
n=0

ϕλn+1(zn+1) − ϕλn+1(zn). (10)

That is, by stochastic excess work Wex we refer to the
change in steady-state surprisal owing to a changing en-
vironmental drive. And, by stochastic excess heat Qex
we identify the change in steady-state surprisal owing to
the system’s state change—its response or adaptation to
environmental conditions.

Next, we denote the conditional path irreversibility by Q:

Q .= ln Pr (Z1:N = z1:N | Z0 = z0 ; λ0:N )
Pr
(
Z1:N = z̃N−1:0

∣∣ Z0 = z̃N ; λ̃N :0
) , (11)

where the tilde indicates negation of odd-parity variables,
such as momentum and magnetic field.
The stochastic excess heat Qex can be viewed as a piece
of this path irreversibility—that associated with changes
in the steady-state surprisal. What remains we term the
stochastic housekeeping heat Qhk:

Qhk
.= Q − Qex. (12)

In restricted cases it carries additional interpretation: if
the stochastic dynamics are Markov (order 1) and the
state and protocol variables are even (requiring no nega-
tion in the denominator), then Qhk measures detailed
balance violation in the stochastic dynamics. If the state
or control variables are odd, but we retain the Markov
condition, then a part of Qhk measures detailed balance
violation—see Refs. [13–15] for more on this breakdown.
As stated, however, Qhk requires neither Markov dynam-
ics nor even state and protocol variables, and we must take
care not to over-interpret. In this general setting, it is sim-
ply that portion of a particular trajectory’s irreversibility—
conditioned on initial and final configurations—that is
not attributable to changes in the system’s steady-state
surprisal along its forward path.

B. Nonequilibrium Dynamical States

In the special case where the system is Markovian (order
1) and subject to an indefinitely fixed drive—yielding
a stationary Markov process—the rate of housekeeping
heat takes the same form as that of asymptotic entropy
production, familiar in stochastic thermodynamics [16].
The latter on average is sometimes taken to measure the
system’s fundamental time-reversal asymmetry [17, 18].
However, the following considers the more general case
of systems that have not yet reached their steady-state
distributions—processes that are not stationary. While
Eqs. (8)–(12) leverage a suite of “would-be” stationary
distributions, they are defined for arbitrary paths, in-
cluding when the system is nowhere near such a steady
state at any stage of the observed interval. We call such
transient state distributions µt ≁ πλt

nonequilibrium dy-
namical states (NEDSs). In treating system trajectories
that begin and/or end in NEDSs, a final term appear-
ing in our derivations and related results remains: the
nonsteady-state addition to stochastic free energy:

Fnss
µ∥λ(z) .= ln µ(z)

πλ(z) . (13)

Like ϕ, Wex, Qex, Q, and Qhk, this nonsteady-state addi-
tion to stochastic free energy’s definition recalls connec-
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tions to stochastic-thermodynamic energies and entropies
of interest. We have been careful thus far to avoid over-
interpretation in this vein, instead electing to treat these
quantities as stochastic-dynamically meaningful in their
own right. In the next section, however, we select a partic-
ular thermodynamic scheme and explicitly map the pre-
ceding functionals to their thermodynamically-meaningful
counterparts.

C. Thermodynamic Scheme

To place physical constraints on our stochastically-
evolving system of interest and to aid interpretation, we
now embed it in an isothermal environment at inverse tem-
perature β

.= kBT , with kB Boltzmann’s constant, and
connect it to two ideal [19] work reservoirs—one parame-
terized by λ that couples with the stochastic dynamics
and one labeled an auxiliary reservoir, representing other-
wise unaccounted-for degrees of freedom and providing for
nonequilibrium steady states [8]. See Fig. 1 for an illustra-
tion. Additionally, we require that the underlying system
dynamics are Markovian—or at least that there exists a
Markov chain representation of the process for each λ,
with which we can calculate the preceding functionals
[20].

System Under Study

T λ

aux

Q Wλ

Waux = Qhk

FIG. 1. The thermodynamic scheme considered: the Marko-
vian stochastic system under study is coupled to an ideal
heat bath, an ideal work reservoir parameterized by λ, and an
auxiliary reservoir that accounts for maintaining nonequilib-
rium steady states. Here, we restrict the auxiliary reservoir’s
function solely to maintaining nonequilibrium steady states
induced by the system’s dynamics, so that |Waux| = |Qhk|.

If the system’s dynamics are microscopic—or if the un-
derlying coarse-graining scheme does not include hidden
entropy-producing transitions—then the conditional path
irreversibility maps directly to the total heat dissipated
by the system to its thermal environment: Q → βQ [21].
Otherwise, it provides a lower bound for total heat—there
may be unaccounted-for dissipation in hidden degrees of
freedom [22]. (Note that, following our unit convention,
βQ—as well as the other energies per kBT to appear
shortly—is thus measured in nats.)

Similarly, the stochastic excess and housekeeping heats
map to the excess and housekeeping heats of steady-state
thermodynamics: Qex → βQex, Qhk → βQhk, and we
have Q = Qex + Qhk [7, 8, 10, 11, 13, 15, 23, 24]. In this
way, the total heat dissipation splits into one component
due to the system’s response to environmental stimuli—
the excess heat Qex—and one due to maintaining NESSs—
the housekeeping heat Qhk.
The nonsteady-state addition to stochastic free energy,
meanwhile, becomes the nonsteady-state (or nonequilib-
rium) addition to free energy, capturing state-dependent
contributions to free energy resulting from initially- (and
finally-) nonsteady-state configurations.
Absent the ESS limit, the stochastic excess work becomes
just excess work via Wex → βWex and carries the interpre-
tation as that work done atop the change in steady-state
free energy that would be dissipated if the system relaxed
to its stationary distribution, given that it started in one.
Or, more specifically:

Wdiss
.= Wex − kBT∆Fnss

µ∥λ (14)

is the dissipated work [7, 8]—that done atop the change in
nonequilibrium free energy as the system evolves between
two NEDSs.
Finally, underlying each of these quantities, the steady-
state surprisal ϕλ itself is interpreted as a nonequilibrium
potential [25].
Unfortunately, in the NESS setting, defining a steady-state
free energy analogous to the equilibrium free energy of ESS
systems remains problematic [7, 8]. Furthermore, directly
mapping surprisals to energies is in general impossible, as
is operationally defining work and state energies [25]. As
a result, we can give explicit construction of neither Wλ

nor Waux.
We can, however, make useful headway by placing an
additional restriction on the auxiliary bath. Hereafter,
we assume the bath provides only that energy required
to maintain NESSs, so that |Wλ| = |Qhk| at all times.
This corresponds to assuming that the only unaccounted-
for degrees of freedom are those strictly necessary for
maintaining nonequilibrium steady states as implied by
the observed stochastic dynamic. This means, in turn,
the ESS limit of Qhk → 0 corresponds to eliminating
the auxiliary bath, leaving a system coupled only to one
ideal heat reservoir and one ideal work reservoir, mirroring
common schemes in stochastic thermodynamics [5, 26, 27].

D. Excess and Thermodynamic First Laws

We call Eq. (8) the excess First Law due to its structural
similarity to the First Law of thermodynamics. To see
why, let us now take a detour to the Qhk → 0, ESS limit:
We are left with the canonical ensemble of statistical
mechanics. Our system is affixed only to an ideal heat
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bath and an ideal work reservoir and, without issue now,
we assign to each state z an energy Eλ(z) to obtain [26]:

∆E = ∆λE︸ ︷︷ ︸+ ∆zE︸ ︷︷ ︸
.= W − Q. (15)

Equation (15) defines work and heat in this restricted case
as distinct contributions to the system’s change in energy.
Superficially, Eq. (8) is then a First Law for steady-state
surprisal in exactly the same way that Eq. (15) is a First
Law for energy.
The change of viewpoint from E to ϕ as the central object
represents a subtle but useful generalization. Helpfully, it
comes without additional risk, since the same restrictions
that give Eq. (15) also imply:

• Boltzmann-distributed steady states [28], so that:

kBTϕλ(z) = Eλ(z) − F eq, (16)

with F eq the equilibrium free energy (the usual loga-
rithm of the canonical partition function);

• For excess work [29]:

Wex → β(W − ∆F eq) , (17)

we now have a consistent notion of steady-state (equi-
librium) free energy; and

• All dissipated heat is excess:

Qex → βQ. (18)

And so, for ESSs:

kBT∆ϕ = ∆E − ∆F eq

= (W − ∆F eq) − Q. (19)

Thus, mapping from energetic to surprisal-based First
Laws involves only the switch in viewpoint from total
work to excess work as the more direct quantity. Here,
it is that work done atop the change in equilibrium free
energy. Since fluctuation theorems are phrased quite
naturally in terms of functionals of ϕ and realized path
probabilities [7, 8, 10], taking the First Law of Eq. (8) as
a starting point is particularly helpful when working with
those theorems.
Treating ϕ as more fundamental than E carries utility
beyond this convenience, however. There are many more-
general settings than the canonical ensemble. These in-
clude, for example, biological, active matter, and other
NESS systems not Boltzmann-distributed in the energies
at stationarity [30–32]. In these cases, in defining Wex
stochastic-dynamically, Eq. (8) circumvents issues with
appropriately defining nonequilibrium steady-state free
energies [7, 8]. Finally, in any situation where a rela-
tionship between E and ϕ can be derived, one can map
Eq. (8) to Eq. (15) directly. Moreover, the former retains

its meaning and, as we shall show, utility—even when the
latter is far from familiar.
Such is often the case in highly coarse-grained, effective
state-space models of mesoscopic complex phenomena
where, at best, one estimates bounds on “true” entropy
production [22, 33–36]. The coarse-grained dynamics
themselves, however, may be directly observed. And
in these cases, Eq. (8) holds exactly and remains inter-
pretable at the level of the observed phenomena. This is
reminiscent of several similarly-phrased fluctuation the-
orems; e.g., Ref. [8]’s NESS trajectory class fluctuation
theorem.

E. Information Ratchets

We are especially interested in a particular decomposition
of Z into distinct subspaces—a ratchet and a semi-infinite
information tape. Figure 2 illustrates the setting.

Ratchet

A BT λ

aux

XtYt−1Yt−2Yt−3. . . Xt+1 Xt+2 Xt+3 . . .

Output Input

Time

Q Wλ

Waux = Qhk

FIG. 2. Information ratchet system: At each time step, the
ratchet moves along the tape, interacting with one symbol at
a time and exchanging energy with the coupled reservoirs in
the process. New here is the auxiliary reservoir that allows for
nonequilibrium steady states and another mode of energy ex-
change with the ratchet-tape subsystem. (Illustration created
in part by modifying Ref. [37]’s Fig. 1, with permission from
the authors.)

The ratchet interacts directly with only a single
information-tape cell at a time. (Hereafter, we refer to
a bit since we consider a tape with a binary alphabet.
Generalizing to other alphabet sizes is straightforward.)
Furthermore, we assume that any violation of detailed
balance is strictly due to the ratchet system interacting
with a single bit. That is, there are no energetic fluxes
through the extended tape except as facilitated by the
ratchet-tape interaction. We assume that the joint dy-
namics of the ratchet, interacting bit, and reservoirs is
Markovian. At each time step, the ratchet:
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1. Moves one cell along the tape, putting it in contact
with the next interaction bit; and

2. Thermalizes (perhaps incompletely) with the cou-
pled reservoirs for a time τ .

We do not assign an energy to each state in the joint
dynamics, since detailed balance is not required. (Previ-
ous studies imposed detailed balance during the thermal-
ization step to fix relative state energies [4, 5, 38, 39].)
Indeed, in the presence of nonequilibrium steady states,
assignment of state energies—or even a formal, consistent
definition of total work—is not generally possible [25].
This precludes direct comparison with previous ratchet
studies [5, 6, 39], wherein total work extracted was upper
bounded via a lower bound on total dissipated heat.

Rather, here we leverage the fact that in this isothermal
setting (Q, Qex, Qhk) → (βQ, βQex, βQhk) and consider
dissipated heats directly. In particular, when discussing
thermodynamic functionality, we focus on exchanges with
the heat bath. That is, instead of the “engine” regime
previously defined by ⟨W ⟩ > 0 [5, 39], for example, we
refer to the “heat engine” regime defined by − ⟨Q⟩ > 0—
where energy is on average extracted from the thermal
reservoir.

To describe and decompose the information-bearing de-
grees of freedom, we split the random variable Zn into
three parts: the random variable Rn (with alphabet Rn)
corresponds to the ratchet subsystem’s state at time n;
the joint random variable Xn:∞ to the input tape at time
n—that portion of the information tape to which the
ratchet has not yet written—and the joint random vari-
able Y0:n−1, for the output tape, to which the ratchet has
written. Thus, at each n, Zn = (Rn, Xn:∞, Y0:n−1). This
mirrors the decompositions of Refs. [5, 39].

III. INFORMATION PROCESSING FIRST LAW

Let us return to the general stochastic-dynamical setting,
with no assumption of any particular thermodynamic
scheme. Let µn be the NEDS at time step n, such that
Zn ∼ µn. Suppose we have a system that begins in µ0
and ends in µN , as driven by the protocol λ0:N . We begin
by equating the trajectory (over all possible state-space
trajectories z0:N ) and state averages (justified in App. A)
of the change in steady-state surprisal:

⟨∆ϕλ⟩ = ∆ ⟨µ|ϕλ⟩
.= ⟨µN |ϕλN

⟩ − ⟨µ0|ϕλ0⟩ . (20)

The lefthand side is, by definition, ⟨Wex⟩ − ⟨Qex⟩. This
is the averaged First Law for ϕ as in Eq. (8).

For the righthand side, notice that:

⟨µ|ϕλ⟩ =
∑
z∈Z

µ(z)ϕλ(z)

= −
∑
z∈Z

µ(z) ln πλ(z)

= H[Z] + DKL[Z ∥ Λ]. (21)

Hence, we have the information processing first law
(IPFL):

∆H[Z] + ∆DKL[Z ∥ Λ] = ⟨Wex⟩ − ⟨Qex⟩ . (22)

The lefthand side accounts for the “information process-
ing”: the Shannon entropy change of the system plus the
change in its divergence from the local stationary distribu-
tion. (Alternatively, the change in cross entropy between
the system’s state distribution and the local steady-state
distribution.)

Moving ∆DKL[Z ∥ Λ]—the averaged change in nonsteady-
state free energy from Eq. (13)—to the righthand side
recovers Eq. (3). This is, quite directly, a First Law for
information processing that expresses its changes in terms
of averages of the stochastic-dynamical functionals Wex,
Qex, and Fnss

µ∥λ. These are the functionals that, under
appropriate thermodynamic schemes as in Fig. 1, carry
entropic and energetic meaning. This IPFL holds gener-
ally for transitions between NEDSs, implying validity for
NESS and even nonthermal systems, since the generalized
excess quantities are still well-defined by Eq. (8).

Stated in the form of Eq. (22), the IPFL makes no refer-
ence to the “conjugate” or “reversed” dynamics involved
in the definitions of Q and by extension Qhk. Rather, it
is concerned strictly with averages weighted by forward
trajectories. However, substituting Eq. (12) does involve
these conjugated dynamics. This leads to expressing the
IPFL equivalently as:

∆H[Z]+⟨Q⟩ = ⟨Wex⟩+⟨Qhk⟩−∆DKL[Z ∥ Λ]. (23)

Here, the lefthand side is stochastic thermodynamics’
familiar (average of) total entropy production ∆Stot, bro-
ken into system (∆H[Z]) and environment (⟨Q⟩) pieces
[7, 40, 41]. The righthand side thus represents an alterna-
tive decomposition of the total entropy production into
excess environmental (⟨Wex⟩) and housekeeping (⟨Qhk⟩)
components, as well as one due to initial (and final) state
dependence (∆DKL[Z ∥ Λ]) [7, 8, 42, 43]. The IPFL, then,
expresses a particular decomposition of the average total
entropy production. In the appropriate settings, the de-
composition directly links change in information content
with thermodynamic processes without invoking conju-
gated dynamics.
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A. Application to Information Ratchets

Arriving at Eq. (22) required minimal assumptions about
the underlying SUS. Now, we wish to specialize it to the
information ratchet system of Sec. II E and Fig. 2. In par-
ticular, the isothermal environment takes our stochastic-
dynamical functionals to thermodynamic energies. And,
the distinct ratchet and tape subspaces allow for mean-
ingful decomposition of the information-bearing degrees
of freedom.
First, we expand ∆H[Z] = H[ZN ] − H[Z0] from Eq. (22).
Splitting the joint Shannon entropies, making use of mu-
tual informations—denoted I[· : ·] for the (symmetric)
mutual information between two random variables [9]—
and bearing in mind that changes in indices for X, Y, R
are to be inferred from the breakdowns of ZN and Z0:

∆H[Z] = ∆H[R] + ∆H[X, Y ] − ∆I[R : X, Y ]
= ∆H[R] + ∆H[X] + ∆H[Y ]

− ∆I[R : X, Y ] − ∆I[X : Y ]. (24)

This further decomposes the IPFL of Eq. (22):

⟨Wex⟩ − ⟨Qex⟩
= ∆H[R] + ∆H[X] + H[Y0:N−1]

− ∆I[R : X, Y ] − I[XN :∞ : Y0:N−1]
+ ∆DKL[Z ∥ Λ]. (25)

Equivalently, the decomposition of average total entropy
production in Eq. (23) becomes:

⟨Wex⟩ + ⟨Qhk⟩ − ∆DKL[Z ∥ Λ]
= ⟨Q⟩ + ∆H[R] + ∆H[X] + H[Y0:N−1]

− ∆I[R : X, Y ] − I[XN :∞ : Y0:N−1].
(26)

Equation (24)’s decomposition took Eqs. (22) and (23)
to Eqs. (25) and (26), respectively. The decomposition
is identical to that in Ref. [5]. However, there the goal
was to take asymptotic rates. That, together with the
finite-state ratchet requirement, removed several terms.
Here, we pause to interpret each term in its finite-time
context and comment on its contribution to the averaged
total entropy production.
The first term ⟨Q⟩ is the environment’s contribution to the
total entropy production. All that remains is contributed
by the joint ratchet-tape system.
The second term ∆H[R] monitors the change in infor-
mation content of the ratchet’s states—a change in the
ratchet’s internal memory. If, as the ratchet interacts
with the tape, it gains memory in this sense, this specific
part of the joint system must become more randomized.
And, equivalently, this term contributes an increase to
the total entropy production.
The third term ∆H[X] = H[XN :∞] − H[X0:∞] quantifies
a change in the information content of the input tape.

Or, more specifically for finite alphabets, this is strictly
nonpositive—the opposite of the information contributed
by the random variables X0:N−1. And so, the more ran-
dom the input tape, the more negative this term can
be. We expect memoryless inputs to reduce the potential
to extract heat compared to memoryful ones. That is,
colloquially there is less pattern to scramble [39]. We
shall see later that this is indeed the case for IPSLs. For
the IPFL, in the meantime, this term’s negativity reduces
averaged total entropy production. Intuitively, removing
randomness in the input tape reduces overall entropy
production.
The fourth term ∆H[Y ] is the output tape’s information
content. Its impact on countable spaces—as assumed—is
straightforward. Due to Shannon information’s nonneg-
ativity, the more random the ratchet makes the output
tape, the greater the positive contribution to average total
entropy production.
The fifth term ∆I[R : X, Y ] tracks the change in shared
information between the ratchet and tape. As the ratchet
interacts with bits from the input tape and writes to
the output tape, it induces correlation between it and
the tape. While at first glance this recalls Ref. [39]’s
(de)randomizer axes, it is altogether different. Those axes
tracked induced correlations internal to the information
tape, whereas this term tracks induced correlation between
the ratchet and the (entire input-output) tape. Mutual
information’s positivity makes the contribution to Eq. (24)
strictly nonpositive, lowering the average total entropy
production. In other words, inducing correlation between
the ratchet and tape reduces the joint system’s entropy
production and vice versa.
This mutual information is especially important to con-
sider in tandem with ∆H[R]. While an increase in ratchet
memory alone—unrelated to tape correlation—acts to
increase entropy production, generically an increase in
ratchet memory also enables greater correlation with the
information tape via ∆I[R : X, Y ]. Thus, the ratchet
memory’s effect on entropy production involves both
terms: correlation between the ratchet and tape, enabled
by ratchet memory to capture temporal patterns in the
tape, counteracts the entropy produced by an increase in
ratchet memory alone.
Finally, the sixth term I[XN :∞ : Y0:N−1] is the mutual
information between the input and output tapes. And
so, again due to mutual information’s nonnegativity, it
has the effect of decreasing the averaged total entropy
production.
Taken altogether, Eqs. (25) and (26) delineate exact links
between finite-time ratchet-tape information processing
and the joint system’s thermodynamic behavior. It is a
specialization of the IPFL to the case of a system con-
structed as in Fig. 2. Shortly, we use it as a starting
point to derive and generalize the previously-reported
IPSLs for ratchet-tape systems [5, 6]. However, the in-
equalities in IPSLs are replaced by equalities of the IPFL
in the same way that fluctuation theorems of stochastic
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thermodynamics replace inequalities of thermodynamic
Second Laws with strict equalities. In point of fact, as we
now show, fluctuation theorems directly take the IPFL
to IPSLs.

IV. RATCHET FIRST TO SECOND LAWS

The following derives several specializations to the in-
formation ratchet system class of Sec. II E and Fig. 2,
starting from Eqs. (22) and (23). To do this, it first lever-
ages an integral fluctuation relation to take the equality
to an inequality. It then splits the effective state space as
in Sec. II E, along the way generalizing part of a recently-
reported finite-tape IPSL [6]. Finally, it takes asymptotic
limits to similarly generalize the previous asymptotic IPSL
[5, 38, 39] for these regimes. Since we adopt the same as-
sumptions as Sec. II E, hereafter the underlying dynamics
of the joint ratchet-tape space are Markovian. However,
the statistical process that produces input and output
tape symbol sequences need not be Markovian. In the
infinite tape case, they may even possess infinite-range
temporal correlations.

A. Fluctuations and Second Laws

A crowning achievement of stochastic thermodynamics
over the last several decades was the development fluc-
tuation relations and fluctuation theorems that capture
fluctuations arbitrarily far from equilibrium. (See Ref. [40]
for a recent review.) These come in three main types: (i)
integral, relating to exponential averages over all possible
trajectories [10, 26, 27, 44]; (ii) detailed, exposing a time
reversal (a)symmetry between forward and reverse paths
[7, 21, 45–47]; and trajectory class, interpolating between
the two [8, 41, 48].
A comprehensive review would go too far afield here;
rather see Refs. [24, 49]. Nonetheless, the following uses,
in particular, two integral fluctuation theorems:

1 =
〈

e−(∆Stot)
〉

and (27)

1 =
〈

e−(Wex+Fnss
µ0∥λ0)〉 . (28)

Invoking the convexity of the exponential, we apply
Jensen’s inequality to derive the generalized Second Laws:

∆H[Z] + ⟨Q⟩ ≥ 0 and (29)
⟨Wex⟩ + DKL[Z0 ∥ Λ0] ≥ 0. (30)

Equation (29) is thus a consequence of the total entropy
production integral fluctuation theorem. Equation (28),
first introduced in Ref. [8], generalizes the integral fluctu-
ation theorem of Ref. [10] to include initial-state depen-
dence. The resulting inequality in Eq. (30) shows that
initially-nonsteady states lower the bound on Wex.

The following now demonstrates a suite of IPSLs that
result directly from applying these integral fluctuation
theorems and Jensen’s inequality to the IPFL.
First, Eq. (29) gives, directly:

− ⟨Q⟩ ≤ ∆H[Z]. (31)

While there was no need to substitute into an IPFL ex-
pression, note that Eq. (29)’s lefthand side is identical to
Eq. (23)’s righthand side, and so Eq. (31) is a specializa-
tion of that equality.
Notice that ⟨Q⟩ can be negative so long as ∆H[Z] is
positive. In an appropriate thermal environment, such as
that of Fig. 2, this upper bounds the finite-time extracted
heat and it is (the negation of) Ref. [5]’s Eq. (A7). This
is at the core of the latter’s subsequent derivation, as it
shows how energy may be extracted from a heat bath at
the cost of an increase in the system’s information-bearing
entropy.
In the ESS ratchet setting, such as that considered by
Refs. [5, 6, 39], we may also rephrase this bound in terms
of the averaged work β ⟨W ⟩ done by the system [50]:

β ⟨W ⟩ ≤ ∆H[Z]. (32)

This is exactly Ref. [6]’s finite-tape, single-pass IPSL,
where Z denotes the joint random variable of their ratchet
and tape subspaces.
However, in the NESS setting one cannot directly equate
negative dissipated heat with positive work production, as
detailed previously in Sec. II E. To avoid confusion, then,
we focus on Eq. (31)’s heat bound: Negative averaged
total heat indicates the system’s function as a heat engine,
a net extraction of energy from the thermal environment.
The NESS setting, however, affords us additional IFTs.
We can, for example, substitute Eq. (28) into Eq. (22),
yielding:

− ⟨Qex⟩ ≤ ∆H[Z] + DKL[ZN ∥ ΛN ] (33)

or, equivalently, via Eq. (12):

− ⟨Q⟩ ≤ ∆H[Z] + DKL[ZN ∥ ΛN ] − ⟨Qhk⟩ . (34)

This adjusts the finite-time extracted heat bound to ac-
count for NEDSs. First, for finite spaces, nonsteady final
states raise the bound on extracted heat. That is, we need
not dissipate to full relaxation. The presence of NESSs
instead lowers the bound by the amount of the total house-
keeping heat. Thus, as long as Qhk ≥ DKL[ZN ∥ ΛN ]—
the result of an established IFT in even state spaces
[8]—Eq. (34) is always a tighter bound than Eq. (31).
In this way, Eq. (34) reveals the effect of NEDSs on
the heat-bath equivalent of Ref. [6]’s Eq. (19) and estab-
lishes it under very general conditions. Additionally, two
new effects appear. The ensemble-averaged housekeep-
ing heat Qhk lowers the bound on heat extraction—as
an additional source of dissipation—while the final-state
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dependence DKL[ZN ∥ ΛN ] raises it. That is, we need not
account for what would be dissipation if the system fully
relaxed to its steady states [42]. As before, this bound
is always tighter than Eq. (32) in the case of even state
spaces.

Finally, applying the preceding decomposition of ∆H[Z]
to Eq. (34) gives the analogue to Ref. [6]’s finite-tape IPSL,
but further decomposed to both account for NEDSs and
delineate ratchet-tape information dynamics:

−β ⟨Q⟩ ≤ DKL[ZN ∥ ΛN ] − ⟨Qhk⟩
+ ∆H[R] + ∆H[X] + H[Y0:n−1]
− ∆I[R : X, Y ] − I[XN :∞ : Y0:N−1]. (35)

With this, we can translate how each term of ∆H[Z]
affected the averaged total entropy production to its ef-
fect on the maximum extracted work. In short, infor-
mation processing that reduces the averaged total en-
tropy production identically reduces the upper bound
on ensemble-averaged heat extraction. That is, even for
NEDS, extracting heat requires producing entropy.

B. General Asymptotics

The preceding results apply for all finite times or, equiva-
lently, for finite tapes. Now, we address asymptotics. Our
procedure is to take N → ∞ and divide the quantities of
interest by N , giving an asymptotic rate per time step.
For notational simplicity, we use the dot notation for the
thermodynamic quantities:

˙⟨Q⟩ .= lim
N→∞

1
N

⟨Q⟩ (36)

and so on, for ˙⟨Wex⟩, ˙⟨Qex⟩, ˙⟨Qhk⟩, and ˙⟨W ⟩.

Let’s take the asymptotic limit of Eq. (25). In particu-
lar, as in Ref. [5] we have (i) limN→∞ ∆H[X]/N = −hµ,
(minus) the Shannon entropy rate of the process gener-
ating the input tape; (ii) limN→∞ H[Y0:N−1]/N = h′

µ,
the Shannon entropy rate of the process generating the
output tape; and (iii) limN→∞ I[XN :∞ : Y0:N−1]/N = 0.

The remaining two pieces of ∆H[Z], however, vanish only
under restricting to finite-state ratchets. Without that
assumption we are left with an asymptotic IPFL:

˙⟨Wex⟩ − ˙⟨Qex⟩ = ∆hµ

+ lim
N→∞

1
N

(∆H[R] − ∆I[R : X, Y ])

+ lim
N→∞

1
N

∆DKL[ZN ∥ ΛN ]. (37)

And, similarly, write the heat-extraction asymptotic IPSL:

− β ˙⟨Q⟩ ≤ ∆hµ − ˙⟨Qhk⟩

+ lim
N→∞

1
N

(∆H[R] − ∆I[R : X, Y ])

+ lim
N→∞

1
N

DKL[ZN ∥ ΛN ]. (38)

This generalizes the previous bound by accounting ex-
plicitly for final-state dependence, nonequilibrium steady
states, and potentially infinite-state ratchets.
We leave detailed analytical consideration of the remaining
limits for infinite-state ratchets and their con/divergence
to a sequel. However, we will interpret the contextual
meaning of the remaining limits for countably infinite
ratchets.
First, limN→∞ ∆H[R]/N is the rate of change of the
ratchet’s statistical complexity Cµ[R] per time step, lower
bounded by the statistical complexity of its ϵ-machine
representation from computational mechanics [51, 52]. In
essence, this limit measures the rate of increase in ratchet
memory as it reads an infinite stream of incoming bits.
It is only nonzero for a ratchet with an infinite memory
capacity. The resulting device is able to violate the finite-
state asymptotic IPSL by leveraging its infinite internal
memory to produce work in excess of that bound [38]. For
any finite-state ratchet limN→∞ ∆H[R]/N vanishes since
in that case H[RN ] is bounded from above. It vanishes
also for any infinite-state ratchet that does not asymp-
totically gain memory from an infinite stream of inputs.
More precisely, this holds for a ratchet whose internal
state distribution approaches a fixed value unaffected by
the incoming bit stream.
Second, limN→∞ ∆I[R : X, Y ]/N is the rate of change of
correlation between the ratchet and the total informa-
tion tape. This limit is nonzero only if (i) the ratchet
continually gains memory as above and (ii) the ratchet
continually induces correlation between itself and the total
input-output tape.
Finally, limN→∞ ∆DKL[Z ∥ Λ]/N monitors (asymptotic)
movement away from steady-state conditions. Specifically,
it is nonzero only when DKL[ZN ∥ ΛN ] diverges with N—
the system approaches a distribution infinitely far from
stationarity—perhaps by moving progressively farther
away from the underlying stationary distribution at each
step. Colloquially, the interaction timescale is so short
that the ratchet-tape system moves further away from
thermalization by constantly changing the interaction bit.
The presence of this term at all implies the existence of a
stationary distribution for the ratchet-tape system. This
is a fact not guaranteed for infinite ratchets [38, 53], but
assumed by our stochastic (thermo)dynamical formalism.

C. Finite Ratchet Asymptotics

Assuming a finite-state ratchet—in line with potential
physical implementation—simplifies the asymptotic anal-
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ysis. (As it did in Refs. [5, 38].) This results in an
asymptotic IPFL for finite-state systems:

˙⟨Wex⟩ − ˙⟨Qex⟩ = ∆hµ. (39)

And, finally, there is the correction to the previously-
reported IPSL—rewritten as a bound on extracted heat—
for finite ratchets interacting with an infinite tape:

−β ˙⟨Q⟩ ≤ ∆hµ − ˙⟨Qhk⟩. (40)

The correction is simply β ˙⟨Qhk⟩ in the isothermal setting.
For even state spaces this is nonnegative and so tightens
the previous bound. Said simply, housekeeping dissipation
reduces the maximum extracted heat—one cannot harness
what must go toward maintaining NESSs.

V. ASYMMETRIC STOCHASTIC 4-CYCLE

The presence of housekeeping dissipation in Eq. (40) sug-
gests meaningful change in ratchet functional thermo-
dynamics [54], depending on the degree to which the
joint ratchet-bit system violates detailed balance. To
demonstrate this dependence we introduce the asymmet-
ric stochastic 4-cycle (AS4C)—a two-state ratchet coupled
to an information tape. The states are labeled A and
B. With joint ratchet-bit Markov chain states ordered
by (A ⊗ 0, A ⊗ 1, B ⊗ 1, B ⊗ 0), the dynamics obey the
row-stochastic transition matrix:

T(p, q) .=

 0 p 0 1 − p
1 − p 0 p 0

0 1 − qp 0 qp
p 0 1 − p 0

 . (41)

This two-parameter ratchet family, pictured in Fig. 3,
generically violates detailed balance and allows 0 → 1
and 1 → 0 transitions to be unequally favored in terms
of transition probabilities. The latter fact manifests as a
rotational asymmetry in the cycle—given by the scaling
parameter q ∈ (0, 1]. When q = 1, the cycle is symmetric:
0 → 1 and 1 → 0 transitions are equally favored, but the
system exhibits stationary directionality in its joint state
space. In the symmetric case, detailed balance is achieved
only when p = 1

2 .
The extent to which a discrete- and even-state Markov
chain system violates detailed balance on average is given
by ˙⟨Qhk⟩. Via a single-step average of Eq. (12) we thus
obtain for discrete time:

˙⟨Qhk⟩ =
∑
i ̸=j

π(i)[T]ij log
π(i)[T]ij
π(j)[T]ji

, (42)

where i and j index the states.
This is also the exact amount by which the previous
asymptotic ESS IPSL Eq. (1) was tightened by our NESS

A⊗ 1

A⊗ 0 B⊗ 0

B⊗ 1

p

p

qp

p

1− p

1− qp

1− p

1− p

FIG. 3. Markov chain describing the joint ratchet-bit dynamics
of the asymmetric stochastic 4-cycle (AS4C) ratchet family.
The behavior is parameterized by p ∈ (0, 1) and q ∈ (0, 1]. The
ratchet generically violates detailed balance. When q ̸= 1 it
controls rotational asymmetry and can probabilistically favor
either 0 → 1 or 1 → 0 transitions. The symmetric value q = 1
equally favors these transitions, but the dynamics of the joint
space still exhibits directionality. Detailed balance is satisfied
in this case only for p = 1/2.

IPSL in Eq. (40). To visualize this difference—the de-
gree of tightening—Fig. 4 plots ˙⟨Qhk⟩ while sweeping
parameters p and q.
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FIG. 4. Averaged rate of housekeeping entropy production
˙⟨Qhk⟩—measured in nats per time step, in keeping with our

convention that surprisal takes units of nat—for the asym-
metric stochastic 4-cycle, as a function of parameters p and q.
This is the exact amount by which Eq. (40) tightens Eq. (1).
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A. Input-Output Transducer

As one sees, ˙⟨Qhk⟩ is far from zero over a wide range of
the parameter space. These are entropies that must be
produced—equivalently in the isothermal setting, heat
that must be dissipated—to maintain the system’s NESS
character. And so, one expects, they significantly impact
the system’s ability to leverage an information reservoir
to extract heat from a thermal environment. This is to
say, with our correction to the ESS IPSL in hand, we can
analyze bounds on the functional thermodynamics of this
ratchet family.
To do so, we must calculate the remaining terms in
Eq. (40), namely the Shannon entropy rates hµ and h′

µ

of the processes generating the input and output state
sequences. Following Refs. [5, 39], we achieve this by first
translating our 4-state joint ratchet-bit Markov chain into
a 2-state ratchet transducer that accepts as input the
process generating the input symbol statistics—in the
form of a hidden Markov chain (HMC)—and produces as
output the HMC generating the output symbol statistics.
A transducer is specified by its input-output-labeled ma-
trices M(out|in):

M(out|in) .= PT
in TPout. (43)

The AS4C ratchet has two projection matrices P0 and P1
given by:

P0 =

1 0
0 0
0 0
0 1

 and P1 =

0 0
1 0
0 1
0 0

 . (44)

A B
1|0 : p

0|1 : 1− p

1|0 : 1− p

0|1 : qp

0|0 : 1− p

1|1 : p

0|0 : p

1|1 : 1− qp

FIG. 5. The transducer corresponding to the 4-state joint
ratchet-bit Markov chain of the asymmetric stochastic 4-cycle
(AS4C). The transducer has two internal states, A and B, and
accepts 0 or 1 as an input bit symbol. The transitions (graph
edges) are labeled output bit|input bit : probability.

This defines the AS4C’s transducer, whose state-transition
diagram is visualized in Fig. 5. Now, we compose it with
any input HMC—specified by its symbol-labeled transi-
tion matrices U(x)—to give the output HMC producing
the symbol statistics on the output tape, specified by V(y)

[39, 55]. The output HMC state space is the Cartesian
product of the state spaces of the input HMC and the

transducer. Let i and j index the states of the input
HMC and i′ and j′ index those of the transducer. Then:

V
(y)

i×i′→j×j′ =
∑

x

M
(y|x)
i′j′ U

(x)
ij . (45)

B. All-1s Driving

To simplify determining h′
µ, we drive the AS4C trans-

ducer with the all-ones process: an input tape of all 1s,
exhibiting no randomness whatsoever. Note that generi-
cally the output HMC of a memoryless ratchet driven by
a memoryless input process results in a highly nonunifilar
output HMC [56], for which determining the entropy rate
is very challenging [39]. However, for all-1s driving, the
AS4C produces the unifilar output HMC shown in Fig. 6.

A B0 : 1− p 0 : qp

1 : p

1 : 1− qp

FIG. 6. Output HMC given by the AS4C transducer acting
on the all-1s input tape. The ratchet in this case scrambles
an informationless input, thereby introducing the capacity to
do work.

Since this HMC is unifilar—an internal state and an
output symbol completely determine the next internal
state—and since its two states make probabilistically dis-
tinct future predictions, it is a finite-state ϵ-machine of
computational mechanics [52]. That the output tape’s
process can be described this way enables direct calcula-
tion of the output entropy rate [57]. Letting i and j index
the output HMC’s internal states, π be its stationary
distribution, and y an output symbol, one has:

h′
µ = −

∑
y,i,j

π(i)V (y)
ij log V

(y)
ij . (46)

Figure 7 plots this over the parameter space.
Setting the input process to have zero randomness also
sets hµ = 0 for it: ∆hµ = h′

µ, all intrinsic randomness in
the output tape is induced by the ratchet and, therefore, is
available as a thermodynamic resource for heat extraction.
For the case of totally ordered input, Eq. (40) reads:

−β ˙⟨Q⟩ ≤ h′
µ − ˙⟨Qhk⟩. (47)

Summarizing the requirements for net heat extraction:
the ratchet must, at minimum, induce randomness in the
output tape faster than it dissipates entropy to maintain
its NESS.
Since with this particular driving ∆hµ > 0 for all param-
eter combinations, the information eraser functionality of
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FIG. 7. Change in Shannon entropy rate ∆hµ of the informa-
tion tape, as generated by the AS4C ratchet driven by the
all-1s process. Since the input process is entirely ordered with
hµ = 0, this represents the ESS IPSL’s maximum upper bound
−β ˙⟨Q⟩min. And this, in turn, precludes eraser functionality.
That is, one cannot erase information that was never there.

Refs. [5, 39] is precluded. Instead, we have either a heat
engine (⟨Q⟩ < 0) or a dud (⟨Q⟩ ≥ 0). Most importantly,
the presence of ˙⟨Qhk⟩ here restricts the regions of parame-
ter space where the ratchet can function as a heat engine.
Or, alternatively, for some p and q the housekeeping costs
are higher than the ratchet’s ability to compensate by
scrambling the information tape. This forces the previous
“potential engine” regions into dud regions.
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FIG. 8. NESS-tightened upper bound on heat extraction
−β ˙⟨Q⟩min = ∆hµ − ˙⟨Qhk⟩ for the AS4C driven by the all-1s
process. To the extent that this differs from Fig. 7, superim-
posed here in gray, it represents a change of maximum possible
net heat extraction.

This is indeed the case, as Fig. 8 shows. In fact, only a
small part of engine functionality remains within bounds.
Figure 9 shows this directly, where only “potential engine”
regions of parameter space are colored. Since an entirely
ordered input drives the ratchet, without accounting for
the NESS correction one would expect all parameter space

to allow potential heat extraction. In this way, explicitly
accounting for a system’s NESS nature enables qualitative
(and quantitative) correction to its allowed behaviors.
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FIG. 9. Parameter space regions that permit the all-1s-driven
AS4C ratchet to function as a heat engine. Notably, this
includes only a band centered around detailed-balanced dy-
namics. The remainder of the uncolored parameter space
forces −β ˙⟨Q⟩min < 0, where the ratchet dissipates heat on
average.

VI. CONCLUSION

We began by deriving, under very general circumstances,
an IPFL that connects ensemble-averaged thermodynamic
behavior to a system’s information processing via a strict
equality. We showed that this equality is, equivalently,
a decomposition of stochastic thermodynamics’ average
total entropy production. To get there, we placed very
few restrictions on the underlying system’s dynamics,
considering transitions between nonequilibrium dynamical
states.
From this First Law, we then applied integral fluctua-
tion theorems to take the equalities to inequalities, re-
producing and then tightening established bounds on
average heat extraction. By splitting the system into
ratchet and tape subspaces and considering both finite and
infinite-time cases, we similarly reproduced and then tight-
ened previous IPSLs of autonomous Maxwellian ratchets
[5, 6, 38, 39] to explicate the effects of nonequilibrium
dynamical states. Finally, we illustrated these results
with an example ratchet-tape system—the AS4C, driven
by the ordered all-1s process. This demonstrated that,
even under extreme simplification, the presence of NESSs
introduced qualitative corrections to a ratchet’s allowed
behavior. In short, the presence of housekeeping entropy
costs, induced by NESSs, directly counteracts a ratchet’s
ability to leverage information creation to extract energy
from a heat bath.
Much room for further development remains, particularly
in light of the role of fluctuation theorems in deriving these
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IPSLs. While our derivation concerned full ensemble av-
erages, recent development of trajectory-class fluctuation
theorems [8, 41] highlight opportunities to derive trajec-
tory class IPSLs that are more amenable to experimental
verification via their freedom from rare-event statistical
errors [58].
That odd-parity variables allow for meaningful decomposi-
tion of the housekeeping heat suggests further explication
of their effects on the derived IPFLs and IPSLs, including
bounds on asymptotic work extraction. Indeed, recent
results in stochastic thermodynamics show that where a
known, constrained splitting of the joint state space is
available, it may be used to tighten the corresponding
Second Laws [59]. Additionally, considering that infinite-
state ratchets revealed new contributions to the underly-
ing IPSL, their convergence or divergence in general cases
warrants detailed analytical investigation.
Finally, the fact that the NESS setting does not straight-
forwardly account for work extraction itself warrants fur-
ther study. Indeed, even without the formal challenges
surrounding work calculation, the presence of three ther-
modynamic reservoirs implies additional net fluxes. While
the result remains that information-bearing degrees of
freedom can—in principle—provide a thermodynamic re-
source, the presence of additional dissipation from NESSs
suggests that care must be taken when determining infor-
mation engine efficiency: two ratchets that produce the
same asymptotic work may nevertheless produce (poten-
tially very) different heats.
Taken together, these results demonstrate that combining
familiar tools—average change in steady-state surprisal
and a single integral fluctuation theorem—simplifies and
generalizes deriving IPSLs. In turn, these bound the ex-
tent to which systems can leverage information-bearing de-
grees of freedom to support thermodynamic functionality.
Furthermore, we showed explicitly how such inequalities
arise from underlying equalities. This appeared in much
the same way as stochastic thermodynamics’ fluctuation
theorems simplify to the original statement of the Second
Law [26, 27].
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Appendix A: Trajectory versus State Averaging

The main result relies on the equivalence between ⟨∆ϕλ⟩
and ∆ ⟨µ|ϕλ⟩ = ⟨µN |ϕλN

⟩ − ⟨µ0|ϕλ0⟩. The former refers
to ∆ϕλ’s average over an ensemble {z0:N } of repeated
trajectories and, thus, means ⟨∆ϕλ⟩ = ⟨Wex⟩ − ⟨Qex⟩.
The latter refers to two specific state averages of ϕλ—
namely, those at the trajectory’s endpoints. And, it is
equal to ∆H[Z] + ∆DKL[Z ∥ Λ], via the arguments in
Eq. (21). We establish the equivalence between the path
and state averages of ∆ϕλ here.
The trajectory average of a path-dependent functional
g : ZN → R, denoted ⟨g⟩, is:

⟨g⟩ .=
∫

g(z0:N ) Pr (z0:N )
(

N∏
i=0

dzi

)
. (A1)

We will extend this definition to functionals from Zn → R
for integer n, where 1 ≤ n < N , by simply placing the
functional in the integral above while keeping the average
over the full trajectory space ZN .
The state average of a function f : Z → R, denoted ⟨µi|f⟩,
is:

⟨µi|f⟩ .=
∫

f(zi) Pr (zi) dzi . (A2)

Claim. For any f(zn) that depends only on one point
zn, 0 ≤ n ≤ N in the path, the path and state averages
are equal: ⟨f⟩ = ⟨µn|f⟩.

Proof. We explicitly evaluate the trajectory average. Con-
sider two cases: (i) n = N , and (ii) 0 ≤ n < N .

(i) First, split the path probability into two pieces:
Pr (z0:N ) = Pr (z0:N−1) Pr (zN | z0:N−1). Now, evalu-
ate the integrals for dz0 through dzN−1:∫

Pr (z0:N−1) Pr (zN | z0:N−1)
(

N−1∏
i=0

dzi

)
= Pr (zN ) ,

by the law of total probability. The remainder is the
dzN integral:∫

Pr (zN ) f(zN ) dzN = ⟨µN |f⟩ ,

by definition.

(ii) Again split the probability, but now as Pr (z0:N ) =
Pr (z0:n) Pr (zn+1:N | z0:n). Evaluate the integrals for
dzn+1 through dzN :∫

Pr (zn+1:N | z0:n)
(

N∏
i=n+1

dzi

)
= 1
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by probability conservation. What remains is exactly
case (i).

This assumes a truly finite stochastic process, such that no
conditioning before z0 or after zN is possible or relevant.
However, the result is robust in the limit of a bi-infinite
stochastic process. Evaluating the future integral in (ii)
still yields 1 in the N → ∞ limit. And, then, the past
integral in (i) still gives Pr (zn), even as the lower bound
extends to −∞.

Furthermore, we did not require Markovity, ergodicity, or
stationarity for the underlying stochastic process. The
result, then, appears quite general. This is not too sur-
prising: a point function’s average over paths should
not depend on the path. Yet the link between path-
independent (∆ϕλ) and path-dependent (Wex and Qex)
quantities provided by the nonaveraged First Law renders
it particularly useful.
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