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Inhomogeneous environments are rather ubiquitous in nature, often implying anomalies resulting
in deviation from Gaussianity of diffusion processes. While sub- and superdiffusion are usually
due to contrasting environmental features (hindering or favoring the motion, respectively), they
are both observed in systems ranging from the micro- to the cosmological scale. Here we show
how a model encompassing sub- and superdiffusion in an inhomogeneous environment exhibits a
critical singularity in the normalized generator of the cumulants. The singularity originates directly
and exclusively from the asymptotics of the non-Gaussian scaling function of displacement, and
the independence from other details confers it a universal character. Our analysis, based on the
method first applied in [A. L. Stella et al., arXiv:2209.02042 (2022) – accepted by Phys. Rev.
Lett.], shows that the relation connecting the scaling function asymptotis to the diffusion exponent
characteristic of processes in the Richardson class implies a nonstandard extensivity in time of the
cumulant generator. Numerical tests fully confirm the results.

Anomalous spatial diffusion occurs when the mean
squared displacement

〈
x2

〉
∼ t2ν grows non-linearly in

time t, yielding by definition subdiffusion for ν < 1/2
and superdiffusion when ν > 1/2 [1]. Deviations from
normal diffusion (ν = 1/2) are often found in nature in
systems ranging from microscopic to cosmological scales
[2]. Subdiffusion (ν < 1/2) is commonly observed in the
biological contexts of particles moving inside living cells
nuclei, cytoplasm and across membranes [1, 3–13]. Su-
perdiffusion (ν > 1/2) is also rather ubiquitous. It is
found in active intracellular transport [14–17], migration
processes of cells [18] and more complex organisms and
animals [13, 19–22], as well as in the contexts of target
search processes [23], particle dispersion in turbulent flu-
ids [24–26], and cosmic rays transport [27, 28].

In many experimental scenarios exhibiting anoma-
lous diffusion [1] the probability density function (PDF)
p(x, t) of displacement x satisfies at long times t

p(x, t) ∼ t−νf(x/tν) , (1)

where the scaling function f(·) has a non-Gaussian shape
for ν ̸= 1/2 [2]. This type of behavior has also been
analytically established and numerically conjectured in
various models [29–31] and implies an anomalous scaling
of displacement in time [32]. This means that, as a con-
sequence of non-Gaussianity, with f(·) integrable on the
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real axis R and decaying to zero sufficiently fast for large
absolute argument, the n-th order cumulant of displace-
ment diverges as tnν for t → ∞. Indeed, this cumulant
can be obtained by n-th order differentiation with respect
to λ at λ = 0 of

logG(λ, t) = log
(∫

R dxe
λxP (x, t)

)
(2)

∼ log
(∫

R dze
λtνzf(z)

)
,

where G is a moment generating function, and we put
z = x/tν . In Ref. [33] it was shown that for a variety of
models with non-Gaussian scaling f can be proven [34]
to have the asymptotic (large |z|) shape:

f(z) ∼ |z|ψe−c|z|
δ+1

(3)

for some positive constant c and exponents δ and ψ,
which for the paradigmatic continuous time random walk
(CTRW) model [35] was verified exactly.
Two known classes of anomalous diffusion processes,

determined through specific relations between the expo-
nents δ and ν, are expected to exhibit the stretched ex-
ponential decay in Eq. 3 [32, 33]. The Fisher class is
characterized by the relation δ = ν/(1 − ν), first estab-
lished in the context of polymers with excluded volume
in equilibrium [36], while the Richardson class relation,
δ = (1 − ν)/ν, stems from a seminal paper dealing with
particles dispersion in turbulent fluids [37]. The latter
is expected to apply when diffusion steps have certain
dependencies on space position [38].
Anomalous scaling is also directly responsible for uni-

versal features of diffusion processes [33]. By the Laplace
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estimate, the generating function G(λ, t) can be shown
to grow asymptotically as ∼ exp(tζε(λ)) for some ζ > 0,
defining a scaling cumulant generating function (SCGF)

ε(λ) = lim
t→∞

1

tζ
logG(λ, t) , (4)

which exhibits a power-law singularity ∝ |λ| 1+δ
δ around

λ = 0 [33]. Universality of the singular behavior is ex-
pected since the derivation shows that the singularity is
determined by the asymptotic large |z| behavior of the
scaling function, which can be common to different pro-
cesses. Of such universality, the model we are going to
consider below (Eq. 5), provides an explicit example.
The exponent ζ in Eq. 4 determines the extensivity in
time of the logarithm of the generating function. The
Fisher class is consistent with a standard definition of
the SCGF, in which log(G) is simply divided by t in
Eq. 4 (hence ζ = 1). This extensivity in time re-
minds the extensivity in size one encounters when dealing
with equilibrium critical phenomena, so that the t → ∞
limit yields the analogue of a difference of equilibrium
free energy densities, with time playing the role of size
[39, 40]. Indeed, the whole discussion of the consequences
of anomalous scaling presented in the case of diffusion in
the Fisher class [33] can be applied also to critical sys-
tems in equilibrium. Consider for example a finite Ising
model on a regular lattice box (in two or more dimen-
sions) with N spins at the critical temperature and in
zero magnetic field. The role of displacement is played
by the total magnetization, which, normalized by an ap-
propriate power of N (acting as time) becomes a contin-
uous variable analogous to our z in the N → ∞ limit.
The probability distribution of the total magnetization
obeys a scaling with N of the form in Eq. 1, and the
scaling function is not known exactly, but a behavior like
in Eq. 3 has been conjectured [41, 42]. As we show
below, for the Richardson class the method foresees a
non-standard extensivity in time and the necessity to di-
vide the generator by a power tζ , with ζ ̸= 1 depending
on the diffusion exponent [33]. In spite of the different
extensivity involved, also our derivation for Richardson
processes should be regarded as a way of establishing
a parallel between equilibrium criticality and dynamics
[33], according to a general strategy on which much of
our understanding of non-equilibrium is based [43–45].

The approach of Ref. [33] was explicitly applied and
shown to predict exact results for the continuous time
random walk (CTRW) model and fractional drift diffu-
sion equations [4, 35, 46]. Both free and biased mod-
els exhibited sub-diffusion, while only in the biased case
super-diffusion could be encompassed. Moreover, all such
applications implied adoption of standard extensivity of
the cumulant generator (ζ = 1 in Eq. 15), as appropri-
ate for processes in the Fisher class. It remains an open
issue to test the validity of this analysis for processes be-
longing to the Richardson class and possibly displaying
both sub- and super-diffusion regimes. The present work
is devoted to the exploration of a specific diffusion model

with both such features.
The process we consider in this work was introduced

in Ref. [38] to model a scenario of inhomonogenous dif-
fusion, in which the diffusion constant has an explicit
dependence on the position [47–50]. We show how this
model can exhibit anomalous scaling at all times, imply-
ing that Eq. 1 holds as an equality. However, unlike in
the case of the CTRW model a direct analytical evalu-
ation of the SCGF is not feasible for this process. We
show how the method of Ref. [33] allows to circumvent
this problem and to correctly estimate the leading singu-
lar term of the SCGF, proven to abide by a non-trivial
Richardson-like extensivity. We highlight the existence
of a universal singularity for the SCGF, as in the case
of CTRW and fractional diffusion equations. Through
large deviation theory [43, 44] we show how the PDF
in the long-time limit is modulated by a non standard
singular rate function, related to the extensivity tζ of
the SCGF (Eq. 4). Ultimately, numerical evaluations of
the integrals in the asymptotic regime corroborate the
correctness of the predictions of the method first imple-
mented in Ref. [33].
Following Ref. [38] we start from the Langevin equa-

tion for a particle moving on a one-dimensional axis:

dx

dt
=

√
2D(x)ξ(t) (5)

where ξ is a δ-correlated white Gaussian noise
⟨ξ(t)ξ(t′)⟩ = δ(t − t′), while the diffusion coefficient has
a power-law spatial dependence D(x) = D0|x|q for some
D0 > 0 and any q < 2. Adopting Stratonovich prescrip-
tion, the corresponding Fokker-Plank equation is:

∂tp(x, t) = ∂x

[√
D(x)∂x

[√
D(x)p(x, t)

]]
(6)

Given an initial condition p(x, t = 0) = δ(x), the prob-
ability density function regulating the process can be
shown to be [38]

p(x, t) =
|x|−q/2√
4πD0t

e
− |x|2−q

(2−q)2D0t (7)

yielding a mean squared displacement

〈
x2(t)

〉
=

Γ
(

6−q
2(2−q)

)
π1/2

(2− q)
4

2−q (D0t)
2

2−q (8)

where Γ(·) is the complete Gamma function. It is there-
fore clear how this model provides subdiffusion in the
case q < 0 and superdiffusion for 0 < q < 2, with the
following relation connecting the spatial dependence of
the diffusion constant with the diffusion exponent ν:

ν =
1

2− q
. (9)

The PDF of the process can be easily seen to abide by
the scaling form of Eq. 1 with

f(z) =
|z| 1−2ν

2ν

√
4πD0

e−
ν2|z|1/ν

D0 (10)
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FIG. 1. Examples of SCGFs ε(λ) (a) and rate functions I(w)
(b) for different regimes of anomalous diffusion: subdiffusion
(dotted blue shades), superdiffusion (dashed green shades)
and normal diffusion (solid red). Both exhibit the expected
power-law singularity predicted in Eqs. 15 and 17 for λ = 0
and w = 0, respectively.

as scaling function, where we remind that z = x/tν . We
stress again that the scaling in Eq. 7 holds exactly at
all times, not only asymptotically as requested by Eq.
1. Another remarkable fact is that the behavior of the
scaling function in Eq. 3 holds on the whole z axis. It can
be shown that both these circumstances are determined
by the particular initial condition chosen for the process
[51]. Setting p(x, 0) = δ(x − x0) with some nonzero x0
would lead to the validity of the scaling form in Eqs. 7
and 10 only for large t and large |z| [51, 52].

For every 0 < ν < 1 the generating function of the mo-
ments can be found through the two-sided Laplace trans-

form G(λ, t) =
∫ +∞
−∞ dx eλxp(x, t) [53], which in terms of

the rescaled displacement z reads:

G(λ, t) =
1√

4πD0

∫ +∞

−∞
dz |z|

1−2ν
2ν eλzt

ν− ν2|z|1/ν
D0 (11)

An exact evaluation of this integral for long t is not fea-
sible, so that application of the Laplace’s maximization
method of Ref. [33] for its estimate, besides being sug-
gested by the form of the tails, appears mandatory.

As time increases, the integrand in Eq. 11 concen-
trates around some specific value z̄ that maximizes the
argument of the exponential. Separating the analysis for
positive and negative values of z we find

z̄ = sgn(λ)

(
1

ν
D0|λ|tν

) ν
1−ν

(12)

where sgn(·) represents the sign function, implying that
z̄ and λ have the same sign. Moreover, for long times z̄
diverges to +∞ and −∞ as a power of t for λ > 0 and
λ < 0, respectively. Substituting such value in the ex-
ponential form and performing the Gaussian integration
centered in z̄ allows to obtain asymptotically [33]

logG(λ, t) = λtν z̄ − ν2

D0
z̄1/ν + (13)

+ 1
2 log(

1
2(1−ν) ) +O(z̄−1/ν)

where a term proportional to log z̄ turns out to have pref-
actor equal to zero. The cancellation of this term ∝ log z̄
is due to the fact that, with reference to the notations
adopted in Eq. 3, the exponents characterizing the tails
of f(z) satisfy ψ = (δ − 1)/2, which is also valid for the
cases of anomalous diffusion studied in Ref. [33].
Taking into account Eq. 12, we can eventually write

logG(λ, t) = (1− ν)
(
D0

ν t|λ|
1/ν

) ν
1−ν + (14)

+ 1
2 log(

1
2(1−ν) ) +O(t−

ν
1−ν )

implying an extensivity appropriate for the Richardson
class [37] with ζ = ν/(1− ν). Consequently, a SCGF can
be defined as

ε(λ) = lim
t→∞

logG(λ, t)

t
ν

1−ν
= (1− ν)

(
D0

ν

) ν
1−ν

|λ|
1

1−ν (15)

which exhibits a power-law singularity of order 1/(1− ν)
around λ = 0 as shown above (Fig. 1a), implying a diver-
gence of the n-th derivative as soon as n exceeds 1/(1−ν).
In the case ν = 1/2 the SCGF of the free Brownian diffu-
sion is recovered, finding also consistency with the SCGF
of a free Markovian (memory-less) CTRW [54, 55].
In Eq. 14 appears a constant term C(ν) =

− 1
2 log(2(1 − ν)) independent of time, which is negative

for sub-, positive for super- and zero for normal diffusion.
In the context of equilibrium critical phenomena this type
of term was obtained in [41] by applying a Laplace max-
imization method to an integral analogous to the one we
used for Eq. 11. This integral was expected to express,
for an N spin Ising model at the critical temperature
and zero magnetic field, the so called Privman-Fisher
anomaly [56, 57], i.e. the N -independent term of the
total free energy of interest in the context of finite size
scaling theory [39]. The analogy of the calculation fol-
lows from the fact that, as mentioned above, the large
argument behavior of the scaling function of the total
magnetization with size was postulated to have the same
form derived in Ref. [33] for the displacement and given
in Eq. 3. The role of λ in Eq. 2 was played there by
an auxiliary nonzero magnetic field. In our context time
takes the place of size, but it appears remarkable that the
constant term C(ν) is nonzero only in case anomalous
scaling holds (ν ̸= 1/2) and its sign marks a distinction
between super- and subdiffusion. The parallel of the ap-
proach of Ref. [33] with studies of anomalous scaling in
equilibrium critical phenomena certainly acquires moti-
vation for deeper investigation in light of the presence of
this analogue of Privman-Fisher term.
Integration of our results within the framework of large

deviation theory [43, 44] shows how the singularity of the
SCGF translates into a singularity of the rate function
I(w) modulating the probability of observing fluctuations

of the rescaled position w = x/t
ν

1−ν [33]. In the case of
normal diffusion (ν = 1/2), w has the meaning of a ve-
locity, while for ν < 1/2 and ν > 1/2 can be interpreted
as a sub- and super-velocity, respectively. For simplic-
ity, we will refer to w as an “anomalous velocity” in this
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FIG. 2. (a) Numerical evaluation of the cumulant gen-
erating function logG(λ = 1, t) for different values of
ν (including sub-, normal and superdiffusion). Plotting

against the rescaled time t
ν

1−ν shows an excellent collapse
already at times t > 1. (b) Numerical evaluation of the
SCGF through the normalized cumulant generating function

t−
ν

1−ν logG(λ, t) at t = 10, hinting the presence of a Richard-
son kind of scaling for the cumulants. An excellent collapse
for 6 decades hints that the SCGF ε(λ) ∼ |λ|1/(1−ν), implying
a power-law singularity of such order around λ = 0.

manuscript. The probability of observing a certain de-
viation from the typical value w = 0 – expected given
the absence of any form of drift in the model – in the
long-time limit follows a large deviation principle

p(x/t
ν

1−ν = w, t) ∼ e−t
ν

1−ν I(w) . (16)

The convexity and differentiability of the SCGF (Eq. 15)
ensures the validity of the Gärtner-Ellis theorem [58, 59]
which allows to express the rate function as Legendre-
Fenchel transform of ε [60, 61]:

I(w) = sup
λ∈R

[wλ− ε(λ)] =
ν2|w|1/ν

D0
(17)

Thus, the anomalous scaling induces a singular behavior
in the rate function (Fig. 1b), as already observed for
processes in the Fisher class [33]. It is worth to stress
here that the above result showing the consequences of
anomalous scaling of the displacement distribution on the
rate function is not related to what in the recent liter-
ature is referred to as “anomalous scaling of dynamical
large deviations” [62–64]. Indeed, by this last expression
the authors refer to situations in which the exponential
decay of the PDF in Eq. 16 occurs with a power of time
different from the one needed to obtain the normalized
observable w.

Finally, let us validate all the above results with nu-
merical calculations. Contrary to the CTRW and frac-
tional drift diffusion examples presented in Ref. [33],
this inhomogeneous diffusion model does not allow for
an exact evaluation of the cumulant generating function
logG. The integral defining the generating function in
Eq. 11 cannot be expressed in terms of explicit func-
tions for any arbitrary value of the diffusion exponent
0 < ν < 1. Therefore, we need to proceed with a nu-
merical estimation of such integral and extrapolate from

FIG. 3. (a) Constant term C(ν) = − 1
2
log(2(1 − ν)) appear-

ing in logG as a result of the Laplace approximation (Eq.
14). The constant is negative for sub-diffusion (ν < 1/2)
and positive for super-diffusion (ν > 1/2) while it is zero
only for normal diffusion (ν = 1/2), in agreement with the
fact that in the last case the scaling function f is Gaussian-
shaped and the Laplace approximation becomes exact. (b)
Numerical integration of Eq. 11 shows a linear dependence of

logG(λ, t) for large values of (λtν)
1

1−ν (inset). Examples for
sub- (blue down-pointing triangles), normal (red circles), and
super- (green up-pointing triangles) diffusion are provided. A
linear-fitting of the asymptotic part returns an intercept that
matches very accurately the constant C(ν), showing that our
Laplace approximation is able to capture exactly an analogue
of the Privman-Fisher term.

the results its asymptotic dependence on time to verify
that the extensivity of the cumulant generating function
is the one predicted for the Richardson class. In Fig. 2a
we report the numerical evaluation of logG(λ = 1, t) as a
function of time, for different diffusion exponents ranging
from ν = 0.3 (sub-diffusion) to ν = 0.7 (super-diffusion)
including the case of normal diffusion ν = 1/2. Plotting
G(λ, t) against tν/(1−ν) in log-log scale, shows an excel-
lent collapse on the bisector line already for t ∼ 1, quickly
consolidating as time increases. This corroborates the va-
lidity of the approach in estimating an extensivity of the
Richardson class through the Laplace method (Eq. 14).
This result hints that for large enough times one should

be able to normalize the cumulant generating function
over tν/(1−ν) and obtain a finite SCGF for all values of λ
(Eq. 15). We do so by evaluating numerically logG(λ, t)
at t = 10 as a function of the Laplace variable λ, again
for different values of ν encompassing sub-, normal and
super-diffusion. Normalizing such integral over tν/(1−ν)

as suggested by the previous analysis, we obtain an es-
timation of the SCGF, which is formally reached only
in the t → ∞ limit. Plotting in log-log scale against
λ1/(1−ν) (Fig. 2b) we find a perfect collapse on the bisec-
tor line for all values of λ, simultaneously corroborating
the full shape of the SCGF predicted in Eq. 15 and the
existence of power-law singularities in the origin as those
reported in Fig. 1.
It is of particular interest also to check the consistency

of our Laplace estimate of the analogue of the Privman-
Fisher term C(ν) in Eq. 14 with the numerical evalu-
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ation of G. In Fig. 3b we plot the result of numerical
integrations of the generating function of the cumulants

(logarithm of Eq. 11) against (λtν)
1

1−ν for values of ν
providing different diffusive regimes. A linear slope is
expected for large values of the ordinate (shown in the
inset), as predicted by the leading order term produced
by the Laplace approximation (Eq. 14). Remarkably,
the intercept obtained by fitting such slope matches very
accurately the constant term C(ν) obtained in the ap-
proximation, suggesting that our method not only allows
to capture correctly the leading order singularities of the
SCGF, but also yields an exact estimate of an analogue
of the Privman-Fisher anomaly [56, 57]. We also note
how, consistently with these results, in Fig. 2(a) we are
able to appreciate how logG for short times approaches
the bisector line from below (negative constant) for sub-
diffusive motions and from above (positive constant) for
super-diffusive motions, while in the case of normal dif-
fusion (zero-costant) the collapse holds at any time.

Summarizing, we showed that the method of Ref. [33]
applies to a diffusion process in the Richardson class, pre-
dicting correctly the nonstandard extensivity in time of
the cumulants generator logG(λ, t) and the singularity
of the scaling cumulant generating function ε(λ) in the
Laplace variable λ. The model considered is remarkable
in several respects. In first place it satisfies scaling for
all t and presents the form in Eq. 1 of the scaling func-
tion on the whole z axis. The fact that these properties
become only asymptotic for initial conditions different
from p(x, 0) = δ(x) provides a concrete example of the
way universality mechanisms operate in the approach.

Indeed, the results of Ref. [51] allow to easily verify that
adoption of p(x, 0) = δ(x − x0) leaves scaling valid for
t→ ∞ with the same form of scaling function at large |z|.
Thus, the leading singular behavior does not change for
these modified initial conditions [33]. Another remark-
able feature of the model is the simple ν-dependent form
of the analogue of the Privman-Fisher term, which dis-
tinguishes with its sign between sub- and super-diffusion.
Once verified that the approach of Ref. [33] works suc-
cessfully for processes in both the Fisher and the Richard-
son class, it is legitimate to ask if, in view of its flexibility,
the range of applications could encompass also diffusions
outside these classes. The formalism leading to equations
like Eq. 13 in fact leaves room for different relations link-
ing ν and δ, only at the cost of adjusting the extensivity
in time of logG. The exploration of such possibilities,
or a deeper understanding of the reason why Fisher and
Richardson relations play a special role is left for future
investigations.
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[58] J. Gärtner, On large deviations from the invariant mea-
sure, Theory of Probability & Its Applications 22, 24
(1977), https://doi.org/10.1137/1122003.

[59] R. S. Ellis, Large deviations for a general class of random
vectors, The Annals of Probability 12, 1 (1984).

[60] R. T. Rockafellar, Convex analysis, Vol. 18 (Princeton
university press, 1970).

[61] G. Teza, S. Iubini, M. Baiesi, A. L. Stella, and C. Van-
derzande, Rate dependence of current and fluctuations
in jump models with negative differential mobility, Phys-
ica A: Statistical Mechanics and its Applications 552,
123176 (2020), tributes of Non-equilibrium Statistical
Physics.

[62] D. Nickelsen and H. Touchette, Anomalous scaling of dy-
namical large deviations, Phys. Rev. Lett. 121, 090602
(2018).

[63] N. R. Smith, Anomalous scaling and first-order dynam-
ical phase transition in large deviations of the ornstein-
uhlenbeck process, Phys. Rev. E 105, 014120 (2022).

[64] D. Nickelsen and H. Touchette, Noise correction of large
deviations with anomalous scaling, Phys. Rev. E 105,
064102 (2022).

https://doi.org/10.1103/PhysRevLett.125.110601
https://doi.org/10.1103/PhysRevLett.125.110601
http://paduaresearch.cab.unipd.it/12995/
http://paduaresearch.cab.unipd.it/12995/
https://doi.org/10.1103/PhysRevB.30.322
https://doi.org/10.1137/1122003
https://doi.org/10.1137/1122003
https://arxiv.org/abs/https://doi.org/10.1137/1122003
http://www.jstor.org/stable/2243592
https://doi.org/https://doi.org/10.1016/j.physa.2019.123176
https://doi.org/https://doi.org/10.1016/j.physa.2019.123176
https://doi.org/https://doi.org/10.1016/j.physa.2019.123176
https://doi.org/10.1103/PhysRevLett.121.090602
https://doi.org/10.1103/PhysRevLett.121.090602
https://doi.org/10.1103/PhysRevE.105.014120
https://doi.org/10.1103/PhysRevE.105.064102
https://doi.org/10.1103/PhysRevE.105.064102

	Universal singularities of anomalous diffusion in the Richardson class
	Abstract
	Acknowledgments
	References


