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We present a general adaptive latent space tuning approach for improving the robustness of ma-
chine learning tools with respect to time variation and distribution shift. We demonstrate our ap-
proach by developing an encoder-decoder convolutional neural network-based virtual 6D phase space
diagnostic of charged particle beams in the HiRES ultrafast electron diffraction (UED) compact par-
ticle accelerator with uncertainty quantification. Our method utilizes model-independent adaptive
feedback to tune a low dimensional 2D latent space representation of ∼1 million dimensional objects
which are the 15 unique 2D projections (x, y),...,(z, pz) of the 6D phase space (x, y, z, px, py, pz) of
the charged particle beams. We demonstrate our method with numerical studies of short electron
bunches utilizing experimentally measured UED input beam distributions.

I. INTRODUCTION

Machine learning (ML) tools such as deep neural net-
works are incredibly useful for a wide range of physics
applications such as providing high accuracy phase space
diagnostics of particle accelerator beams [1], for exact
representations of many-body interactions [2], for accel-
erating lattice quantum Monte Carlo simulations [3], for
reconstructing quantum dynamics from physical observa-
tions [4], for 3D reconstructions of the electron density of
crystals for coherent diffraction imaging [5], for quantum
feedback [6], and even for determining the structures of
unknown networks with time delays [7].

ML for non-stationary systems is an open problem and
an active field of research. Recent studies include the use
of recurrent neural networks for speech perception in non-
stationary noise [8], neural networks for modeling time-
varying audio processors [9], and complex-valued neural
networks for ML on non-stationary physical data [10, 11].
Many approaches for non-stationary systems rely on de-
tecting significant changes after which the weights of neu-
ral networks are updated/re-trained with new informa-
tion or are continuously trained to keep up with continu-
ous changes [12–14]. A powerful class of approaches has
been developed for the case of covariate shift, where the
input distribution P (x) is different for training and test
data, but the conditional distribution of output values
P (y|x) remains unchanged [15], based on importance-
weighting (IW) techniques [16]. IW methods have also
been developed using kernel mean matching methods [17]
and by minimizing the Kullback-Leibler divergence be-
tween a test data density distribution and its estimate
[18, 19]. Methods have also been developed for extract-
ing frequencies and amplitudes from time-series data [20],
and Bayesian methods are being developed for periodic
time-varying systems [21].
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FIG. 1. Overview of the adaptive latent space tuning setup. A
subset Ŷi of the predicted data Ŷ is compared to an available
measurement Yi and the difference is used to guide adaptive
tuning of the low-dimensional latent space representation yL.

In this work, we present a general adaptive latent space
tuning approach, which does not rely on re-training, for
increasing the robustness of encoder-decoder convolu-
tional neural networks (CNN) in the face of time-varying
input distributions as well as time-varying systems for
which the the conditional distribution of output values
P (y|x, t) changes with time. Our method utilizes adap-
tive model-independent feedback directly in the learned
low-dimensional latent space embedding of an encoder-
decoder CNN as shown in Figure 1 in which a subset Ŷi of
the predicted data Ŷ is compared to an online measure-
ment Yi to guide adaptive tuning of the low-dimensional
latent space representation yL. We demonstrate that a
2 dimensions a latent representation (yL ∈ R2) can be
adaptively tuned in an unsupervised approach to recon-
struct million-dimensional sets of high resolution images
for unknown time-varying inputs X(t) beyond the span
of the training data. Our approach has the potential to
benefit a wide range of ML-based tools for complex time-
varying systems for which re-training is not feasible.
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FIG. 2. Example of a system that is periodically re-started and evolves for a fixed time T > 0 while the initial conditions and
system dynamics change with time. The trajectories of 1000 initial conditions sampled from a time-varying probability density
function fX are shown for t ∈ [ti, ti + T ] as well as the corresponding output distributions fY . Each row (A-E) fixes an initial
condition distribution and shows the system’s dynamics for various values of f(t) for the system ẋ = −x(x − 3)2 + f(t)x3 as
f(t) increases from 0 to 0.25. Each column shows the system trajectories for a fixed value of f(t) for various sets of initial
condition distributions. The red arrows point out that in some cases different initial conditions result in identical final condition
distributions, and so the input to output mapping is no longer one-to-one and unique reconstruction may be impossible.

II. TIME-VARYING SYSTEMS AND
DISTRIBUTION SHIFT

In this work, we consider two forms of time variation
which are important for complex systems. The first is
the most common input distribution shift, in which P (x)
is time-varying, but for which the conditional distribu-
tion of output values remains unchanged. The second is
a change of the system itself in which the the the condi-
tional distribution of output values P (y|x, t) also changes
with time. In practice we are interested in repeatable sys-
tems of the form which are re-initialized at starting times
ti and evolve for a fixed amount of time T > 0 over the
time interval t ∈ [ti, ti + T ].

Such systems can be described mathematically by non-
linear time-varying dynamics of the form

dX

dt
= F(X(t), t). (1)

At any given time t if we allow the system to evolve over
a fixed interval of time [t, t+ T ] we get

X(t+ T ) = X(t) +

∫ t+T

t

F(X(τ), τ)dτ, (2)

and we assume that we can measure some function of
this final state which depends on the time-varying initial
condition X(t) which we denote by Y(t) as

Y(t) ≡ G[X(t+ T )], (3)

for some output measurement function G(X).
Many controlled complex processes can be described

by dynamics of the form (1), (2) as illustrated by the fol-
lowing examples. Chemical reactions typically take place
over a fixed time interval [ti, ti+T ] with time-varying ini-
tial conditions such as concentrations and time-varying
dynamics such as environmental temperature changes.
Charged particle beams in accelerators are generated re-
peatedly at times ti, over a wide range of rates, from 1 Hz
up to 1 MHz, with each initial beam distribution slightly
different and with time variation of RF and magnet com-
ponents as the beam is accelerated over the length of the
accelerator for some time T > 0. National power grid
loads are diurnal and seasonal and power grid compo-
nent performance varies with time due to weather and
damage. Finally, as a simple concrete example we con-
sider the scalar dynamic system

ẋ = −x(x− 3)2 + f(t)x3, t ∈ [ti, ti + T ], (4)

where f(t) is a slowly changing parameter relative to the
dynamics ẋ = dx/dt. In Figure 2 we show the evolution
of x(t) for various sets of initial conditions sampled from
some probability density functions fX as well as the dis-
tributions of final conditions Y = X(ti+1). Moving from
left to right in any row (A-E) of Figure 2 the dynamics
x(t) are shown for a fixed distribution of 1000 initial con-
ditions and various values of f(t) as it is slowly increased
from 0 to 0.25 thereby changing the equilibrium points of
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the system. Moving from top to bottom in any column
of Figure 2 the value of f(t) is fixed and the dynamics
x(t) are shown for 1000 initial conditions from various
distributions.

System (4) illustrates several important properties and
difficulties of time-varying systems. As seen in the top
row (A) of Figure 2, there is a set of initial conditions
which are not sensitive to the time-variation of the sys-
tem dynamics because they remain within the region of
attraction of the equilibrium at x = 0. For this situation,
if the set of initial conditions is not broad enough an ML
model will never have a chance to explore the wider sys-
tem dynamics and will fail for a large distribution shift.

As we move down the rows and the initial condition
distribution’s mean value increases we see that the output
distribution begins to change as the system’s dynamics
evolve with time according to f(t) (B,C). This is a rich
set of initial conditions for which a wide range of the
system dynamics can be more accurately explored.

In the bottom two rows (D,E) we again see a case in
which the set of initial conditions is too limited and there-
for even though the final output distributions do change
as a function of time with evolving f(t), the equilibrium
point at x = 0 is never explored. An additional difficulty
in (D,E) is the fact that the output distributions for dif-
ferent input distributions begin to look almost identical
as f(t) increases (red arrows) because of the large region
of attraction that is evolving with f(t). This results in a
X→ Y map which is not one-to-one.

The general problem of time-varying distribution shift
is not solvable if the changes in initial condition X(t)
or dynamics F(X, t) are arbitrarily large or fast or if
the measurement function G(X) is not one-to-one, in
which case it may be impossible to accurately predict
P (X,Y, t) based on a finite set of data. We start with
some regularization assumptions which restrict the class
of problems being considered.

We consider a system for which many pairs of inputs
and outputs are sampled at times {t1, . . . , tn} to generate
a data set D:

D = {(X(t1),G[X(t1 + T )]), . . . , }
= {(X(t1),Y(t1)), . . . , (X(tn),Y(tn))} . (5)

We assume that the initial conditions of the state X(t)
are bounded within a compact set X , that F(X, t) is
piece-wise continuous in t. For a fixed starting time ti,
we denote two solutions of (1) as X1(ti) 6= X2(ti) for
t ∈ [ti, ti + T ] and assume that F satisfies a Lipschitz
condition for some L > 0 over X

‖F(X1, t)− F(X2, t)‖ ≤ L‖X1 −X2‖ ∀ X1,X2 (6)

and that the variation of the system dynamics is bounded
so there exists M > 0 such that ∀ t1, t2 ∈ [t, t+ T ]

‖F(X1, t1)− F(X2, t2)‖ < M, ∀ X1,X2 ∈ X . (7)

Condition (6) guarantees that each initial condition X(t)
has unique solution {X(τ), τ ∈ [t, t+ T ]}. Condition (7)

FIG. 3. A synthetic example is shown to illustrate cases where
the local unique minimum condition is satisfied and where it
fails as the dashed line is approached.

guarantees that any two trajectories that start at the
same time, ti, but with different initial conditions satisfy
the following bound for all t ∈ [ti, ti +T ] relative to their
initial difference

‖X1(t)−X2(t)‖ ≤ ‖X1(ti)−X2(ti)‖eLT + (M/L)eLT−1.
(8)

The bound (8) also implies that all trajectories remain
within a compact set [22]. In particular, a bound on the
distance between any trajectory X(t) for t ∈ [ti, ti + T ]
and the compact set X is given by

dX (X) ≤ r(L,M, T ) = (M/L)eLT−1. (9)

If we take the union over all balls of radius r(L,M, T )
centered at all X ∈ X :

K =
⋃

X∈X

B(X, r(L,M, T )), (10)

then its closure, K̄, is a compact set containing all pos-
sible values of X(ti + T ). If we then assume that G(X)
is bounded then we guarantee that any value of Y(ti) is
contained within the compact set G(K̄).

For unique tracking in the case of a time varying sys-
tem, considering the mapping

X(t)→ Y(t) = G[X(t+ T )], (11)

we assume that at any time t ∈ [t, t+ T ] the function G
has non-zero derivative so that for any particular X∗(t),
Y∗(t) there is some ε > 0 such that

Y(t) = Y∗(t)⇐⇒ X(t) = X∗(t), ∀ ‖Y(t)−Y∗(t)‖ < ε.
(12)

Figure 3 shows a synthetic example which satisfies the
above property for a portion of time before it fails at the
dashed orange line where the derivative of G is zero.
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FIG. 4. A CNN-based adaptive latent space tuning setup in which a measurement of a single projection Yi is compared to
the distribution’s prediction Ŷi to guide adaptive feedback in the latent space to track the other projections which are not
measured. The relu and selu activation functions are: relu(x) = max{0, x}, selu(x) = {0.1x for x < 0 and x for x > 0}.

III. ADAPTIVE LATENT SPACE TUNING

In our approach, we assume that we are able to per-
form initial training based on measurements of both sys-
tem inputs X(t) and outputs Y(t), but that afterwards
we must rely only on limited diagnostics with loss of in-
put data and only partial output data availability, so
that re-training is impossible. Our approach is to adap-
tively tune an ML model in real-time to keep up with
the time-variation of the system and of its initial con-
ditions based only on limited output measurements. In
what follows, we consider an encoder-decoder CNN ar-
chitecture whose inputs are X(t) which is an image and
vp(t) which is a vector of parameters. The output Y(t) a
stack of images, as shown in Figure 4. Training was car-
ried out using the Adam optimizer built into Tensorflow
to minimize a mean squared error loss with the standard
learning rate of 1e-3 and batch sizes of 32 on a GV100
GPU. To maintain the physical relationship between all
of the images used as inputs and generated as outputs
of the encoder-decoder network we performed a simple
normalization in which each image type was replaced by
I/max{DI}, where the maximum is calculated over each
sample of that image from the entire data set. For ex-
ample the (x, y) projections were each divided by the
maximum value of all of the (x, y) projections within the
training data set so that each pixel lived within the global
bounds [0, 1].

We represent an N ×N input image X(t) as a matrix

I0 =
{
I0 (i0, j0) , i0, j0 ∈ {1, 2, . . . , N}

}
, (13)

which passes through a stride 2 convolutional layer such
that the output image size is reduced by a factor of 4
resulting in a N/2×N/2 image I1. A collection of Nf > 1

filters is used giving an output image I1 whose (i1, j1)
pixel has value

b1 +

Nf∑
n=1

wn × fn

b0n +

1∑
i=−1

1∑
j=−1

F0,ij,n × I0i0+i,j0+j

 .

(14)
For a deep encoder-decoder CNN the total number of
adjustable parameters easily grows to millions and re-
training requires large collections of new data sets. After
several layers of convolutions we significantly reduce the
size of a relatively large image (52×52→ 7×7) using mul-
tiple filters at each stage, resulting in a tensor of shape
Ni ×Ni ×Nf where Ni ×Ni is the final image size and
Nf is the number of filters in the last convolution layer of
the encoder. We flatten the image and apply dense fully
connected layers which are concatenated with dense lay-
ers acting on the vector input vp(t) resulting in a final
low-dimensional latent space representation, a vector yL

of length NL � Ni,p. We then add an NL dimensional
control input vector yL,c so that the latent space param-
eters are given by

pL = (p1, . . . , pNL
) = (y1 + vc,1, . . . , yNL

+ vc,NL
)

= yL + yL,c, (15)

where the vector yL is the output of the trained encoder
and yL,c the controlled parameters used for adaptively
tuning the latent space (yL,c = 0 when training). The
vector pL is passed through additional fully connected
dense layers before being reshaped into a small image (∼
8×8) which then passes through a series of 2D transpose
convolution layers until a collection of No output images
of size Nim ×Nim are generated in a final layer with Nc

channels with size Ŷ(i, j, d) = Nim×Nim×Nc. Once the
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network is trained this collection of output images is a
general nonlinear function (the generative branch of the
network) of the parameters pL of the form

Ŷ(i, j, d) = F (pL,w,b, {A}) ,
i, j ∈ {1, 2, . . . , No} , d ∈ {1, 2, . . . , Nc} , (16)

where w and b are the weights and biases and {A} are
the set of activation functions of the generative layers.
Our prediction Ŷ is our estimate of some unknown phys-
ical quantity Y which we assume we cannot easily di-
rectly measure fully. In order to enable the adaptive
feedback part of this procedure we must assume that we
have some form of non-invasive online measurement of
M(Y(t)) that can be compared to a simulated measure-

ment of our generated prediction M̂(Ŷ), which we know
how to approximate. For example we may be interested
in a 6D density distribution but we only have direct mea-
surements of one or several 2D projections in which case
both M and M̂ are simply projection operators. A de-
tailed example and simulation study of such a problem
for particle accelerator applications is presented in Sec-
tion IV. We set up a dynamic feedback loop for mini-
mization of a cost function of the form

C(pL(t), t) = µ
[
M(Y(t)), M̂

(
Ŷ (pL(t))

)]
, (17)

where µ is a metric quantifying error, such as the L1

norm of the difference between a pair of 2D projections:

µ[M(Y), M̂(Ŷ)] =

∫∫ ∣∣∣Yi − Ŷi∣∣∣ dx1dx2, (18)

with adaptive latent space dynamics

∂pi
∂t

=
∂vc,i
∂t

=
√
αωi cos (ωit+ kC(pL(t), t)) , (19)

which are chosen based on the results in [23–27].
In (19) α represents a dithering amplitude which con-

trols the size of the dynamic perturbations, k a feedback
gain, and the product kα is as a learning rate. The
dithering frequencies ωi are chosen relative to a base
frequency ω such that they are distinct, of the form
ωi = riω 6= rjω = ωj for i 6= j such that no two frequen-
cies are integer multiple of each other (such as distinct
ri ∈ [1, 1.75]) because non-linearity typically introduces
harmonics into the system dynamics. The convergence
results for this feedback algorithm depend on the param-
eters being orthogonal in Hilbert space such that for any
t > 0 and any measurable f(t) ∈ L2[0, t], the L2[0, t]
inner products in the limit of large frequency ω are:

lim
ω→∞

∫ t

0

cos(ωiτ)f(τ) cos(ωjτ)dτ = 0, (20)

lim
ω→∞

∫ t

0

cos2(ωiτ)f(τ)dτ =
1

2

∫ t

0

f(τ)dτ. (21)

In fact any orthogonal functions can be used, including
non-differentiable and discontinuous square waves, as de-
scribed in more detail in [23, 25, 27]. The resulting on

average dynamics of the evolution of the cost function
with the latent space variables evolving under feedback
(19) are then given by

dC

dt
=
∂C

∂t
+
(
∇pL,c

C
)T ∂pL

∂t

=
∂C

∂t
− kα

2

(
∇pL,c

C
)T (∇pL,c

C
)
. (22)

For a metric of the form (18) which is convex and positive
semi-definite the gradient ∇pL,c

C satisfies the condition∥∥∇pL,c
C
∥∥ > 0, ∀Ŷi 6= Yi, (23)∥∥∇pL,c

C
∥∥ = 0, iff Ŷi = Yi. (24)

Therefore, for any desired accuracy δ > 0 there exists
some lower bound δC > 0 on ‖∇pL,c

C‖ such that

‖Yi(t)− Ŷi(t)‖ > δ =⇒ ‖∇pL,c
C‖ > δC , (25)

which ensures that over the set ‖Yi(t)−Ŷi(t)‖ > δ we can
choose kα > 0 sufficiently large to ensure that dC/dt < 0
according to

dC

dt
=
∂C

∂t
− kα

2

(
∇pL,c

C
)T (∇pL,c

C
)

<
∂C

∂t
− kα

2
δ2C < 0, ∀kα > 2

δ2C

∂C

∂t
. (26)

Therefore, over an annulus of any radius δ > 0 surround-
ing Yi(t) a positive definite function C can be considered
as a Lyapunov function for the overall system dynamics
(17), (19) which is negative definite for sufficiently large

kα > 0 ensuring the asymptotic convergence of Ŷi(t) to
within a δ ball of Yi(t):

lim
t→∞

Ŷi(t) ∈ B(Yi(t), δ). (27)

Finally, based on the assumption (12) made in section II,
there exists an ε > 0 neighborhood of Y(t) such that the

convergence of Ŷi(t) to Yi(t) guarantees the convergence

of Ŷ(t) to Y(t). Therefore, under the above conditions,
it is possible for adaptively tuned latent space param-
eters to track a unique global minimum based only on
limited measurements when the feedback gain kα > 0
is sufficiently large relative to the time variation of the
system ∂C

∂t , such that dC/dt < 0. Furthermore, by the
same arguments, even in the case that the cost function
is not convex we may still maintain a globally optimal
set of latent space parameters as long as we start close
enough to a global minimum and continuously track it
with time as demonstrated in Section VII below.

Our approach attempts to combine the complimentary
strengths of ML and model-independent feedback, to pro-
vide the best of both worlds: an ability to learn directly
from large complex data, while maintaining robustness
to time variation and distribution shift.
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FIG. 5. 2D projections of the first simulated beam with 40 different charge and solenoid settings is shown. For each 2D phase
space projection, the bunch charge is increasing for each row from top to bottom and the solenoid current is increasing for each
column from left to right within the range shown in the top part of Figure 7.
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IV. PARTICLE ACCELERATOR APPLICATION

Charged particle dynamics evolve in a 6 dimensional
phase space (x, y, z, px, py, pz) where (x, y, z) are particle
positions and (px, py, pz) are momentum components. In
accelerator physics, pz is many orders of magnitude larger
than px and py and we usually consider the density func-
tion ρ(x, y, z, x′, y′, E), where (x′, y′) = (px/pz, py/pz)
are angles of motion relative to the acceleration z-axis,
and E is total particle energy. All 6 dimensions are cou-
pled through collective effects such as space charge forces
and coherent synchrotron radiation in which accelerating
charged particles release light which impacts other parti-
cles in the bunch thereby changing their energy [28]. The
influence of collective effects grows as accelerators gener-
ate shorter more intense bunches such as 30 fs bunches
at the SwissFEL X-ray FEL [29], sub 100 fs bunches for
ultra fast electron diffraction (UED) [30], and picosecond
bunch trains for UEDs and multicolor XFELs [31]. Laser
and beam-driven plasma wakefield particle accelerators
(PWA) are especially complex and could greatly benefit
from real-time advanced 6D phase space diagnostics to
aid in control and optimization [32–35].

Typically the initial conditions of charged particle
beams, the 6D phase space distributions at the beam
source, drift unpredictably with time and can only be
measured destructively during lengthy dedicated studies
[36]. Furthermore the beams are accelerated and focused
by magnets and resonant electromagnetic field structures
whose characteristics are uncertain due to hysteresis and
misalignments and drift with time due to disturbances
such as temperature drifts and vibrations. In [37], the
parameter drift was even shown to be large enough to
enable parasitic measurements. Once a machine is run-
ning to perform experiments new detailed beam measure-
ments are typically very limited, especially for the initial
beam conditions which can rely on destructive methods
such as wire scans or lengthy quadrupole magnet scan-
based measurements which interrupt all downstream op-
erations. What is sometimes possible is to record a few
2D projections of a beam’s 6D phase space. For exam-
ple, it is possible to measure the longitudinal phase space
(LPS) of a charged particle bunch by using a transverse
deflecting radio frequency resonant cavity (TCAV) which
measures (z, E) and at many accelerators it is also possi-
ble to measure the transverse beam image (x, y) in higher
energy sections by using scintillating screens which do not
have much impact on the beam dynamics.

In the field of particle accelerators, ML methods are be-
coming popular for the control and diagnostics of charged
particle beams [38–40]. Neural networks are being used
for uncertainty aware anomaly detection to predict er-
rant beam pulses [41], as virtual diagnostics for 4D to-
mographic phase space reconstructions [42], for predict-
ing the transverse emittance of space charge dominated
beams [43], for electron ghost imaging [44], and for con-
trol of accelerator magnets [45]. At CERN, supervised
learning techniques are being applied for the reconstruc-

FIG. 6. The mean absolute error for predictions is shown for
several latent space dimensions normalized by the error of the
lowest dimension choice. For the largest latent space size of
yL ∈ R32 the error was approximately 80% of yL ∈ R2.
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FIG. 7. Top: Averaged percent error as defined in (34) is
shown as a function of beam charge and solenoid current.
Bottom: Averaged percent error as defined in (33) is shown
relative to position in the latent space. Errors shown for train-
ing data.

tion of magnet errors in the incredibly large (thousands of
magnets) LHC lattice [46], for detecting faulty beam po-
sition monitors [47], and for beam dynamics studies [40].
At SLAC, Bayesian methods are being developed for on-
line accelerator tuning [48], for optimization [49], and as
surrogate models for beam diagnostics [50, 51]. At the
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B

A

FIG. 8. True and CNN-based phase space predictions compared for a 0.5 pC bunch with a 4.76 A solenoid current. A: The
top 15 images are the true 2D projections of the phase space. B: The bottom 15 images are the same projections created by
the generative half of the CNN from a 2D latent representation. In each image the dashed yellow curves are the various 1D
projections of the 2D phase space image shown while the blue and red curves are overlayed Gaussian fits to the dashed yellow
projections of the true and CNN-generated 2D phase space images, respectively, for comparison.

SwissFEL, Bayesian methods with safety constraints are
being developed at the SwissFEL and the High-Intensity
Proton Accelerator at PSI [52]. At the EuXFEL, CNNs
have been used to generate incredibly high resolution vir-
tual diagnostics [1]. A laser plasma wakefield accelerator
has also been optimized by utilizing Gaussian processes
at the Central Laser Facility [53].

Although ML tools such as deep neural networks can
learn complex relationships in large systems directly from
data, a major challenge faced by any model-based meth-
ods (physics or data-based) is that of time-varying sys-

tems or systems with distribution shift, which require
extensive re-training and adaptive re-tuning [54]. At Los
Alamos National Laboratory, preliminary adaptive ML
methods have been developed, such as the use of neural
networks together with ES for automatic femtosecond-
level control of the time-varying longitudinal phase space
distribution of the electron beams in free electron lasers
[55], and for mapping downstream measurements to un-
known time-varying input beam distributions [56, 57].
Relative to the results presented here, the two most
closely related published results are those in [42] and
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[57]. In [42] a very nice approach to generating 4D to-
mographic transverse phase space reconstructions of the
(x, y, px, py) projections of a beam’s 6D phase space are
demonstrated utilizing a densely connected neural net-
work unlike our 2D convolutional neural network ap-
proach and without adaptive feedback. The work in [57]
is a collection of preliminary proof-of-principal results on
using a 2D CNN to generate the 2D projections of a 6D
latent space and the in the work presented here we signif-
icantly generalize those preliminary adaptive ML results,
study a much wider range of beam conditions, provide
analytic as well as numerical robustness studies for going
beyond the training data set, and develop methods for
uncertainty quantification.

For our accelerator application, we focus on the High
Repetition-rate Electron Scattering apparatus (HiRES)
at Lawrence Berkeley National Laboratory (LBNL),
which accelerates pC-class, sub-picosecond long electron
bunches up to one million times a second (MHz), provid-
ing some of the most dense 6D phase space among accel-
erators at unique repetition rates, making it an ideal test
bed for advanced algorithm development [58, 59].

We design an encoder-decoder style generative network
with a 2706 dimensional input consisting of a 52× 52 in-
put beam (x, y) distribution image as well as a 2 dimen-
sional vector of bunch charge and solenoid current. Uti-
lize 5 measured input beam distributions together with
95 synthetic input beam distributions generated from
random combinations of principal components extracted
from the measured data [60, 61]. For each of the 100 dis-
tributions we run 40 simulations of beam dynamics with
3D space charge for 10 solenoid currents ranging from
4.65 to 4.85 A and 4 bunch charges of 0.25, 0.5, 0.75, and
1 pC. The 40 combinations of generated (x, y), (x′, y′),
and (z, E) projections for a single input distribution over
the entire range of solenoid current and bunch charge are
shown in Figure 5.

The output of our network is a 256×256×15 pixel ob-
ject which is an image with 15 channels. Each of the 15
channels represent a 2D projection of the 6D phase space:
(x, y), (x, z), (x, x′), (x, y′), (x,E), (x′, y), (x′, z), (x′, y′),
(x′, E), (y, z), (y, y′), (y,E), (y′, z), (y′, E), (z, E) down-
stream from the HiRES injector. By forcing the CNN
to simultaneously generate all 15 projections of the 6D
phase space we introduced observational biases directly
through data embodying the underlying physics, allow-
ing the CNN to learn functions that reflect the physical
structure of the data [62]. We demonstrate that the net-
work has learned the correlations in the system and only
use measurements of the 2D (x, y) or (z, E) projections,
which are typically available online, to predict all other
2D phase space projection distributions, which are not
easily measured in accelerators in real-time.

By squeezing our 2706 dimensional input space down
to a general nonlinear representation in a much smaller
latent space (2 in this case), we show that we can quickly
adaptively tune our system by utilizing the encoder-
decoder representation learned by the CNN. This flexibil-

ity allows us to quickly respond to unknown disturbances
and changes, such as unknown changes of the input im-
ages and the input parameters, which create a difference
between a function of the CNN’s generated predictions
and some related measurement. We demonstrate the
method with three different studies as described below.

We experimented with higher dimensional latent
spaces, doubling the latent dimension several times with
a slight improvement in prediction error. The tradeoff
is that a higher dimensional latent space gives small ac-
curacy improvements, but slows down the adaptive feed-
back which must search over a higher dimensional space.
Because the 2D latent space gave accurate predictions we
chose was to maintain optimal adaptive speed at the cost
of a negligible performance drop, as shown in Figure 6.
Another benefit of a low-dimensional latent space is that
the encoder-decoder is forced to try and find a compact
low-dimensional manifold that captures the underlying
structure inherent to the data, whereas a much higher
dimensional latent space would not force any such repre-
sentation and would be much more prone to overfitting
by brute-force memorization

A. Physically interpretable latent space
embedding.

We start by confirming that we can compress our input
data down to an incredibly low dimensional yL ∈ R2 rep-
resentation from which we then accurately generate high
quality detailed phase space projection images. The top
part of Figure 7 shows the percent error of our training
data averaged over all 15 2D phase space predictions and
all 100 input beam distributions as a function of beam
charge and solenoid current. The bottom part of Fig-
ure 7 shows the percent error averaged over all 15 2D
phase space predictions for every single one of the 100
input beam distributions with the positions of the mark-
ers corresponding to their location in the 2D latent space
as mapped by the encoder half of the CNN. In Figure
8 we show all 15 true and reconstructed projections of
a single input beam at a single charge and solenoid cur-
rent value to illustrate the ability of the encoder-decoder
CNN to generate high quality, high resolution (256×256
pixels) images with 15 such images representing a ∼1 mil-
lion dimensional object which is being generated from a
2 dimensional latent embedding.

Some interesting features of the learned latent space
embedding can be seen in Figure 9 where the positions of
all 4000 input beams (100 beam distributions, each at 10
different solenoid strengths and 4 different bunch charge
values) that were used for training are shown. Because
the network was trained with regularization which penal-
ized the norm of network weights, we see that a natural
compact, continuous, and dense latent embedding has
been learned so that one can continuously dynamically
move throughout the latent space. It is worth mention-
ing that a compact and continuous latent embedding can
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FIG. 9. A view of the 2D latent space embedding locations of 4000 different inputs (100 beam distributions each with 10
solenoid strengths and 4 bunch charges). (A) Latent space locations colored by Solenoid strength (T). (B) Latent space
locations colored by charge (pC). (C) Latent space locations colored by input beam distribution number. (D) Zoom in on two
islands of the locations of 100 input beam distributions each for a 1 pC charge at two different solenoid settings with markers
colored by input beam number showing that island to island the network has placed various input beams consistently.

also be forced by more complicated approaches such as
variational autoencoders in cases where the input data
has no natural continuous relationship, however in our
approach we simply penalize the norm of the latent em-
bedding according to the following addition to the cost
function

CL = wL
1

N

N∑
i=1

‖yL,i‖2 , (28)

with a small weight of wL = 10−7, which gently nudges
the latent embedding towards a smaller and more com-
pact continuous representation, but allows the encoder
the freedom of arranging the latent space without any
specific assumptions. This is in contrast to variational
autoencoders which force the latent space to a very par-
ticular normal distribution. It is also worth mentioning
that for this problem, if we had made a variational au-
toencoder version of our encoder-decoder, we could have
easily achieved a continuous latent space as we have here,
but we would have destroyed all physical interpretability
by forcing all of the latent space dimensions to normal
distributions centered at 0.

It is also apparent that the encoder-decoder has
learned some of the underlying physics of the problem
and has naturally clustered and sorted beams by solenoid
current, charge, and input beam distribution. In Figure
9A the markers are colored by solenoid current and can
be seen to form 10 columns with each column correspond-
ing to one of the 10 solenoid current values. In Figure
9B the markers are colored by bunch charge and can be
seen to form 4 rows, corresponding to the 4 bunch charge
values. In Figure 9(C,D) the markers are colored by in-
put beam distribution number and zooming in on two
islands in D shows that the locations of individual input
beams for a given solenoid current and bunch charge are
consistent from island to island.

|Error| [m
m

]

FIG. 10. All 5 of the estimated values of σx based on CNN
predictions are shown relative to their true value for 10 beams.
The markers are colored by error in mm relative to the color-
bar.

B. Uncertainty Quantification

The 6D phase space dynamics of charged particle
beams are coupled and evolve under physics constraints
unique to a given accelerator lattice, as described by the
the relativistic Vlasov equation

∂ρ

∂t
+ v · ∇xρ+

∂p

∂t
· ∇pρ = 0,

∂p

∂t
= q (E + v ×B) ,

p = γmv, γ = 1/

√
1− v2

c2
, v = |v|,

v = (ẋ, ẏ, ż), p = (px, py, pz),

where the electric and magnetic fields include contribu-
tions from charges within the beam as well the exter-
nal electromagnetic fields of accelerator components such
as radio frequency (RF) resonant accelerating cavities,
solenoids, dipoles, and quadrupole magnets. Therefore,
it may be possible to uniquely recover or track various 2D
slices of the 6D phase space based on a single or several
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FIG. 11. log-log plots of fit σ(σ•), • ∈ {x, y, z, x′, y′, E} values vs percent error are shown for all 4000 training data sets.

2D measurements.

Furthermore, all 15 unique 2D distributions are pro-
jections of the same 6D density function. For example,

ρ(x, y) =

∫
z

∫
x′

∫
y′

∫
E

ρ(x, y, z, x′, y′, E)dzdx′dy′dE,

ρ(x′, y′) =

∫
x

∫
y

∫
z

∫
E

ρ(x, y, z, x′, y′, E)dxdydzdE,

ρ(z, E) =

∫
x

∫
x′

∫
y

∫
y′
ρ(x, y, z, x′, y′, E)dxdx′dydy′.

Considering all 15 projections, each component of the
phase space shows up in 5 different images. Therefore, if
we project any of the 5 images containing x onto the x-
axis the generated distributions should be identical. This
provides a natural method for uncertainty quantification
as we can fit Gaussian distributions to each projection of
every one of the phase space dimensions

ρ(x, y), ρ(x, z), ρ(x, x′), ρ(x, y′), ρ(x,E) −→ σx

ρ(x, y), ρ(y, z), ρ(x′, y), ρ(y, y′), ρ(y,E) −→ σy

ρ(x, z), ρ(y, z), ρ(x′, z), ρ(y′, z), ρ(z, E) −→ σz

ρ(x, x′), ρ(y, x′), ρ(z, x′), ρ(y′, x′), ρ(x′, E) −→ σx′

ρ(x, y′), ρ(y, y′), ρ(z, y′), ρ(y′, x′), ρ(y′, E) −→ σy′

ρ(x,E), ρ(y,E), ρ(z, E), ρ(x′, E), ρ(y′, E) −→ σE

In Figure 11 we show all 5 versions of the predicted σx
fit for 10 different training data samples. Despite all
predictions being very accurate there some variation is
seen.

Considering the 5 different fits of each dimension’s
width we can then consider the standard deviation of
any projection’s predictions. If we denote by {σxi},

i = 1, . . . , 5 the 5 different versions of σx we can define

µ(σx) =
1

5

5∑
i=1

σxi, σ(σx) =

√√√√1

5

5∑
i=1

(σxi − µ(σx))
2
.

(29)
The value of σ(σx) is then a natural un-supervised way
to check whether the generated distributions are physi-
cally consistent. To check this relationship we plot the
standard deviations as defined above for all 6 variables
for each of the 4000 samples in the training data set ver-
sus the percent prediction error averaged over all 15 pro-
jections, as shown in Figure 11. Because the training
data has been learning very accurately the errors are very
small (note the log scales), but nevertheless a correlation
is seen. This relationship will be much more pronounced
in the following sections when new setups with large pre-
diction errors are studied.

V. IMPROVED ROBUSTNESS BEYOND THE
TRAINING SET

For notational convenience, in what follows we will
sometimes re-write our 6D phase space variables as

(x, y, z, x′, y′, E) = (x1, x2, x3, x4, x5, x6), (30)

and denote the 100 input beam distributions as ρini (x, y),
i ∈ {1, . . . , 100} and for each one we consider 40 different
combinations of the two parameters bunch charge [pC]
and solenoid current [A] denoted as pj = (pj1, pj2), j ∈
{1, . . . , 40}. For each such (i, j) input beam / parameter
combination we denote the 15 unique 2D phase space
projections of the beam’s 6D phase space as

ρ̂ijkl(xk, xl), k, l ∈ {1, . . . , 5}, k 6= l, (31)
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FIG. 12. Errors relative to various metrics.

A

B

FIG. 13. The values of beam charge and solenoid current
used to generate the training data are shown in black. CNN
prediction errors are shown for a new grid distinct from and
beyond the span of the training data (A). All prediction errors
are improved by utilizing the adaptive latent space tuning
approach (B).

which are estimates of the true 2D projections ρijkl. For
each 2D phase space projection (k, l) of input beam dis-
tribution i and parameter setting j we quantify the per-

cent absolute phase space prediction error as

Eijkl = 100×

∑
xk

∑
xl

∣∣∣ρ̂ijkl(xk, xl)− ρijkl(xk, xl)∣∣∣∑
xk

∑
xl
ρijkl(xk, xl)

. (32)

We also average over all 15 projections to get an overall
average phase space prediction error for a beam

〈E〉ij =
1

15

∑
k 6=l

Eijkl. (33)

Finally we also calculate the error averaged over all 100
of the different input beams, for each charge and solenoid
parameter setting j, according to

〈E〉j =
1

100

∑
i

[
1

15

∑
k

∑
l

Eijkl

]
. (34)

In the top part of Figure 7 we show the value of 〈E〉j as
defined in Equation 34 at each of the 40 values of bunch
charge and solenoid settings. In the bottom part of Fig-
ure 7 we show the value of 〈E〉ij for all 4000 input beam,
bunch charge, and solenoid setting combinations as well
as their locations in the 2D latent space embedding.

In Figure 12A we plot the average difference Eave as
defined in (33)for all 4000 beams in the training data rela-
tive to one beam located at the center of the latent space,
which we see is a relatively convex function. To test the
feasibility of this limited projection-based latent space
tuning approach in Figure 12B for each beam we plot
the (x, y) difference Eij12 = Eijxy as defined in (32) and
we see that although very close to the center the function
is convex, there is a long valley along the second latent di-
mension which is the beam charge because in this case the
final (x, y) distribution is more sensitive to solenoid cur-
rent than bunch charge. This implies that adaptive feed-
back based on (x, y) projections alone may be relatively
slow depending on the initial condition. In Figure 12C for
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FIG. 14. Error vs σ of the 6D phase space variables is shown with a clear correlation between large prediction errors and the
standard deviation of the predicted Gaussian fits based on five different projections for each phase space dimension.

each beam we plot the (z, E) difference Eij36 = EijzE as
defined in (32) and again see a relatively convex function
with a diagonal valley which again implies that conver-
gence might be slow depending on the initial condition.
Finally in In Figure 12D for each beam we plot the sum
of the errors (Eij12 + Eij36)/2 = (Eijxy + EijzE)/2 and
see that as expected this combination gives a better more
convex overall cost function than either projection alone,
implying that adaptive tuning relative to this metric will
have the best results.

We test the ability of adaptive latent space feedback
to improve the robustness of the encoder-decoder CNN
by utilizing the cost function

C(t) =

∫∫
|ρz,E(t)− ρ̂z,E(t)| dEdz

+

∫∫
|ρx,y(t)− ρ̂x,y(t)| dxdy (35)

such that the CNN’s longitudinal phase space (LPS) pre-
diction ρ̂z,E and transverse beam profile prediction ρ̂x,y
are compared to their measurements as provided by a
TCAV and a scintillating screen. No other projections of
the beam’s phase space are assumed to be available for
measurement.

As described above, the ES-based perturbation of the
latent space parameters takes place according to the ES
dynamics:

dpL1

dt
=
√
αω cos (ωt+ kC(pL, t)) ,

dpL2

dt
=
√
αω sin (ωt+ kC(pL, t)) , (36)

which tracks the time-varying minimum of the analyti-
cally unknown cost function C(t) as defined in (35).

To demonstrate the robustness of this approach be-
yond the span of the training data set, we utilize an in-
put beam distribution that was measured 6 months later
than all of the data that has been used for the neural
network training and for that distribution we compare
the average difference Eave as defined in (33) over a grid
of bunch charge and solenoid current values that is dis-
tinct from and beyond the range of the training data
which is shown in black. Figure 13A shows the average
error Eave of the trained CNN and 13B shows the av-
erage error achieved after 100 steps of ES-based tuning
were taken in the latent space according to (36). The
adaptive latent space tuning approach decreases errors
for higher solenoid current and higher beam charge be-
yond the span of the training data. When the distance
from the training data is made to be very large, for bunch
charge of 1.4 pC, the adaptive method’s performance also
drops off.

In Figure 14 the average error vs σ of the 6D phase
space variables is shown with a clear correlation between
large prediction errors and the standard deviation of the
predicted Gaussian fits based on five different projec-
tions for each phase space dimension. The correlations
are shown of all of the predicted beams including both
the predictions that were adaptively tuned via the latent
space method and those generated by the CNN without
any adaptive tuning.

VI. TRACKING WITH UNKNOWN
TIME-VARYING INPUT BEAMS

Next, we demonstrate that this method can be used to
make the CNN-based diagnostic much more robust to un-
known time variations. We vary the input beam distribu-
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FIG. 15. The top part of the figure shows the location within the 2D latent space to which the CNN maps the input beam
distribution as it is rotated with the colorbar showing rotation angle (0 to 360 deg) for the first two images and the colorbar
showing the average error for the third image. The bottom part of the figure shows the prediction percent error for each of the
phase space projections with and without adaptive ML-based tuning.

tion by rotating it over 360 steps while keeping the CNN’s
input distribution fixed at its initial condition. This sim-
ulates a case in which we may have initially performed
an invasive and slow input beam distribution measure-
ment, but then the beam begins to change and we have
no way of measuring that during operations as it would
require intercepting the low energy beam. In the top part
of Figure 19 we show where the input beam’s represen-
tation would be mapped to within the latent space if the
time-varying input beam was available for measurement.
In the bottom part of Figure 19 we show percent error
for each of the 15 2D phase space projections with and
without adaptive latent space tuning.

The adaptive latent space tuning method is able to ac-

curately track all 15 of the 2D phase space projections
based only on feedback which uses the downstream (x, y)
and (z, E) beam measurements. In Figure 16 we show
the adaptively tuned network’s prediction of all 15 phase
space projections relative to their true values at step 166
of the tracking process, which is when network which is
not tuned has the maximum prediction error. Note that
the error plots in Figure 16 are purposely exaggerated
with color bar scales zoomed in on by a factor of 10 to
emphasize that the small differences between true and
predicted values differ mostly in terms of minor fine de-
tails and textures.
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AML at step 166

Phase space projections at step 166

Absolute value of difference (zoomed in scale by 10X)

FIG. 16. AML predictions and errors are shown for step 166 of tracking with a time-varying input beam distribution. This
is the point where the CNN-based method has the largest error as shown in Figure 15. The absolute value of the difference
between true and predicted projections are shown on a zoomed in color scale which is 10× that of the projection images showing
that the errors are mostly very fine textural details. In each image the dashed yellow curves are the various 1D projections of
the 2D phase space image shown while the blue and red curves are overlayed Gaussian fits to the dashed yellow projections of
the true and CNN-generated 2D phase space images, respectively, for comparison.
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FIG. 17. Top: View of the input parameter values used as
we leave the span of the training data. Bottom: the differ-
ence between the initial distribution and new distributions
along the path shown in the top part of the figure are shown
in black. In green we see the CNN’s predictions which catas-
trophically fail beyond the training set. The blue curve shows
the accuracy achieved by latent space tuning based only on
(z, E) and the red curve shows the same results when based
on (z, E) and (x, y) simultaneously.

VII. TRACKING WITH UNKNOWN
TIME-VARYING INPUT BEAMS AND

UNKNOWN ACCELERATOR AND BEAM
PARAMETERS BEYOND THE TRAINING SET

The final and most challenging demonstration of the
robustness of this AML method utilizes a combination of
time-varying input distributions and beam and accelera-
tor parameters beyond the span of the training set. For
this test we measured an additional input beam distri-
bution at the HiRES injector six months after the initial
training data was collected. We then generated a series
of input beams in which we perform linear interpolation
from one input beam distribution ρ0(x, y) which was seen
during training to the new unseen distribution ρu(x, y)
over 25 steps (n = 1, . . . , 25):

ρ(x, y, n) = ρ0(x, y)
25− n

24
+ ρu(x, y)

n− 1

24
. (37)

During this interpolation we also chose a new unseen
bunch charge Qu and solenoid strength Su far outside
of the span of the training data and interpolated their
values as well starting with initial values Q0, S0 within
the span of the training data:

Q(n) = Q0
25− n

24
+Qu

n− 1

24
, (38)

S(n) = S0
25− n

24
+ Su

n− 1

24
, (39)

as shown in the top part of Figure 17. The bottom part
of Figure 17 shows the growing difference between the
beam’s downstream phase space projections and their ini-
tial values, with the thin lines showing errors of each of
the 15 individual phase space projections and the solid
line showing the average error. The green curves show the
predictions of the trained CNN with an assumed known
knowledge of the input beam distribution and accelerator
parameters. The trained CNN at first performs very well
as the input data is still not very far from the training
set, but quickly catastrophically fails as soon as the edge
of the training data is passed.

We also compare two latent space tuning approaches,
one that utilizes only the (z, E) measurement for feed-
back as shown in blue, and another that utilizes both
(z, E) and (x, y) measurements for feedback resulting in
more accurate tracking beyond the training set as shown
in red. One important feature to notice is that beyond
the training set the CNN alone has a catastrophic failure
resulting in predictions which are further from the truth
than what would have been achieved by just assuming
that the initial state was always the correct one.

In Figure 18, we show the mean values of the predicted
pσx, σy, σz, σx/ , σy/ , and σE relative to their true val-
ues (black), surrounded by envelopes of ±σ. The vertical
dashed lines correspond to the same color lines in Fig-
ure 17 so that it is clear when and how far beyond the
training data predictions are being made. It is clear that
the adaptive ML methods both remain physically con-
sistent and give much more accurate predictions much
further beyond the span of the training data than the
ML method alone. Furthermore, in both the adaptive
and non-adaptive case, the σ envelope provides a useful
unsupervised measure of uncertainty.

Initially, while still comfortably within the span of the
training data, both the AML and the CNN-based predic-
tions are very accurate and almost identical. We show
the AML predictions and their differences from the true
values in Figure 19. In Figure 20 we show the true,
AML, and CNN-based predictions for step 16 where it is
clear that the CNN-based predictions have catastrophi-
cally failed while the adaptive method’s predictions are
still physically consistent approximations of the true dis-
tributions. Finally, in Figure 21 we have gone so far
beyond the training data that even the adaptive method
has failed, which was predicted by the extremely wide σ
band of the unsupervised prediction as shown at step 25
of the σx/ , σz and the σE predictions in Figure 18.



17

0.0

0.2

0.4

0.6

0.8

1.0

x [
m

m
]

true
CNN
AML (z,E)
AML

0.0

0.5

1.0

1.5

y [
m

m
]

0.55

0.60

0.65

0.70

z [
m

m
]

0 10 20
beam number

0.4

0.6

0.8

1.0

1.2

x/  [
m

ra
d]

0 10 20
beam number

1

2

3

4

5

y/  [
m

ra
d]

0 10 20
beam number

0.08

0.10

0.12

0.14

E [
ke

V]

FIG. 18. Mean values surrounded by envelopes of ±σ for the predicted values of σx, σy, σz, σx/ , σy/ , and σE are shown relative
to their true values (black). It is clearly seen that the predictions based on the CNN alone without feedback quickly bifurcate
and diverge beyond the range of the plot while the feedback based networks remain physically consistent much further beyond
the training set. As expected, using both (x, y) and (z, E) measurements has advantages in terms of reconstruction accuracy.

VIII. SUMMARY OF RESULTS

1). In Section II we carried out a general analytic
treatment for a general class of dynamic systems, prov-
ing under what conditions our adaptive feedback method
can be guaranteed to track time-varying systems and to
provide unique results. This in itself is a general mathe-
matical result which can be useful for many time-varying
systems and how to couple adaptive feedback with virtual
diagnostics or other types of models.

2). In Section III we showed how the general adaptive
approach can be applied by using encoder-decoder CNNs,
which are powerful ML tools for working directly with
high dimensional images. Again, this is a general result
that can be applied to any type of image-based data that
describes the evolution of dynamic systems.

3). In Section IV we further specialized the approach
to the special case of a particle accelerator application
in which the measured and generated images are the 2D
projections of a charged particle beam’s 6D phase space.
This is an important application, especially for the parti-
cle accelerator community, for which having such a diag-
nostic would enable finer control over beam properties.

4). In Section IV A we have demonstrated that our
encoder-decoder CNN naturally learned a physically in-
terpretable latent space representation of the high dimen-
sional data.

5). In Section IV B we demonstrate how this method
can be utilized to generate a physics-based uncertainty
quantification (UQ) of the predicted phase space distri-
butions. This is an especially useful result as such high
dimensional deep neural network-based methods usually
lack any kind of UQ.

6). In Section V we demonstrate the improved robust-
ness provided by incorporating feedback within the latent
space as opposed to simply using a trained CNN without
such feedback.

7). In Sections VI and VII we demonstrate that this
method can handle truly time-varying systems whose
variation takes them far beyond the span of the train-
ing data set. This is a novel result which goes far beyond
what is possible with existing ML methods which catas-
trophically fail much sooner than our approach when sim-
ply utilizing a trained ML model without such adaptive
feedback.

IX. CONCLUSIONS

The overall process that we have proposed for 6D
charged particle beam phase space diagnostics can be
broken down into the following algorithmic steps:

1). Data is experimentally collected or supplemented
by synthetic data generated using a physics model and an
encoder-decoder CNN is then trained to learn the under-
lying physics implicit within the data by generating all
phase space projections simultaneously as various chan-
nels of a single output thereby learning correlations be-
tween the various phase space projections.

2). In application, the trained CNN is then applied
in an adaptive and un-supervised manner in which we no
longer have access to the correct input beam distributions
and accelerator or beam parameters, we assume that they
are time-varying cannot be measured non-invasively.

3). Because the network has learned the physics and
correlations inherent in the data, by utilizing the adap-
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AML at step 4

Phase space projections at step 4

Difference (zoomed in scale)

FIG. 19. AML predictions for step 4. At this point both the AML and the CNN-based predictions are very accurate and look
almost identical, so we just show the AML predictions and the difference from the true values.
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CNN at step 17

Phase space projections at step 17

AML at step 17

FIG. 20. AML and CNN predictions for step 16. At this point the CNN-based predictions have broken down, but the AML
method is still providing relatively accurate and physically consistent estimates of the 6D phase space predictions
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CNN at step 25

Phase space projections at step 25

AML at step 25

FIG. 21. AML and CNN predictions for step 25 where both the CNN and AML-based predictions have started to break down.
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tive feedback we are able to track the correct phase space
projections by comparing a subset of the CNN’s predic-
tions to online measurements which guide fast adaptive
feedback within the low-dimensional latent space.

4). As the network begins to make predictions for un-
known beams it also provides a natural form of UQ.

We have demonstrated a general adaptive latent space
tuning method for increasing the robustness of neural
networks relative to time variation / distribution shift
and farther beyond the span of the training data set. This
approach can be useful for a large class of ML-based mod-
els for complex systems in cases where re-training is too
time-consuming or is impossible without invasive mea-
surements that interrupt regular operations. Although
the approach presented here is applicable to any type of
neural network, our demonstration of the approach fo-
cused on convolutional encoder-decoder architectures as
they are incredibly powerful for working with very high
dimensional data such as 2D (images) and 3D (volumes)
distributions directly. We have demonstrated prelimi-
nary studies of the method and for a complex particle
accelerator application we have shown that it is more
robust than traditional encoder-decoder CNNs for track-
ing all 15 projections of a charged particle beam with
unknown and time-varying initial distribution, charge,
and solenoid strength and have also provided a physics-
informed method for uncertainty quantification.
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Universal semiglobally stabilizing feedback under un-
known control directions, IEEE Transactions on Auto-
matic Control 58, 1107 (2012).

[24] A. Scheinker, Simultaneous stabilization and optimiza-
tion of unknown, time-varying systems, in 2013 Ameri-
can Control Conference (IEEE, 2013) pp. 2637–2642.

[25] A. Scheinker and D. Scheinker, Bounded extremum seek-
ing with discontinuous dithers, Automatica 69, 250
(2016).

[26] A. Scheinker, Application of extremum seeking for time-
varying systems to resonance control of RF cavities,
IEEE Transactions on Control Systems Technology 25,
1521 (2016).

[27] A. Scheinker and D. Scheinker, Extremum seeking for
optimal control problems with unknown time-varying
systems and unknown objective functions, International
Journal of Adaptive Control and Signal Processing 35,
1143 (2021).

[28] L. D. Landau, The classical theory of fields, Vol. 2 (Else-
vier, 2013).

[29] A. Malyzhenkov, Y. P. Arbelo, P. Craievich, P. Dijk-
stal, E. Ferrari, S. Reiche, T. Schietinger, P. Juranić, and
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