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The synchronization of dust acoustic waves to an external periodic source is studied in the frame-8

work of a driven Korteweg-de Vries-Burgers equation that takes into account the appropriate nonlin-9

ear and dispersive nature of low frequency waves in a dusty plasma medium. For a spatio-temporally10

varying source term the system is shown to demonstrate harmonic (1:1) and super-harmonic (1:2)11

synchronized states. The existence domains of these states are delineated in the form of Arnold12

tongue diagrams in the parametric space of the forcing amplitude and forcing frequency and their13

resemblance to some past experimental results is discussed.14

I. INTRODUCTION15

The nonlinear phenomenon of frequency synchro-16

nization is ubiquitous in many physical, chemical, and bi-17

ological systems and has been the subject of a large num-18

ber of studies over the past several years [1–3]. The sim-19

plest mathematical model describing this phenomenon20

consists of an ensemble of globally coupled nonlinear21

point oscillators that adjust their intrinsic frequencies to22

a common collective frequency as the coupling strength23

is increased [4–7]. Such a nonlinear phenomenon can also24

be observed in a continuum medium (a fluid) where a self-25

excited oscillation or a wave can interact with a driving26

force and adjust its oscillation or wave frequency [8–13].27

A plasma system with its wide variety of collective modes28

and complex nonlinear dynamics provides a rich and chal-29

lenging medium for the exploration of synchronization30

phenomena. A number of past experimental studies have31

examined the driven response of a plasma to an external32

frequency source [9–11, 14–23]. These studies include the33

synchronization of waves and oscillations at ion and dust34

dynamical scales as well as chaos and wave turbulence.35

There have also been a few studies devoted to an inves-36

tigation of mutual synchronization between two plasma37

devices [24–26].38

More recently, synchronization phenomena have39

been experimentally explored in dusty plasma devices40

where it is easy to visualize the low-frequency wave ac-41

tivity using fast video imaging. A dusty plasma is a four-42

component plasma of electrons, ions, neutral gas atoms,43

and micron-size particles of solid matter [27–29]. It can44

be produced in a laboratory device like a glow discharge45

plasma, by introducing micron sized solid particles [30–46

33]. These small solid particles (dust) get negatively47

charged by absorbing more electrons which have a higher48

mobility than ions. Such a charged medium consisting of49

dust, ions and electrons, can sustain a variety of collec-50

∗ ajaz.mir@iitjammu.ac.in
† sanat.tiwari@iitjammu.ac.in

tive modes [29, 34–36]. The dust acoustic wave (DAW)51

or dust density wave (DDW) first theoretically predicted52

by Rao, Shukla and Yu [37] is one such well known low53

frequency compressional mode that is analogous to the54

ion acoustic wave [29, 38]. A DAW can be spontaneously55

excited due to the onset of an ion-streaming instability.56

The DAW has a very low frequency (typically 10–10057

Hz) [14, 30] due to the large mass of the dust parti-58

cles and can consequently be visually observed; through59

its images and video recording [31, 39–41]. The term60

‘dust density wave’ originated as a generalization of ‘dust61

acoustic wave’, after observing wavefronts (visible in the62

dust cloud) that appeared to be oblique with respect to63

the ion drift direction [42]. Two key factors led to the64

use of the term DDW, namely, the presence of ion drift65

and an oblique orientation of the wavefront and its prop-66

agation, with respect to the ion drift. Since then, many67

research groups have used the term ‘dust density wave’68

and ‘dust acoustic wave’ synonymously [14, 31, 35, 43–69

45]. The present work focuses on the synchronization of70

DAW using the forced Korteweg-de Vries-Burgers (fKdV-71

B) model.72

Synchronization of dust acoustic waves has been73

studied in an anodic plasma [15], radio-frequency (RF)74

and direct-current (DC) plasmas [14, 16, 46]. Pilch et75

al. [15] reported the entrainment of DAWs through a76

driving modulation to the anode. Ruhunusiri et al. [14]77

reported observation of harmonic, super-harmonic, and78

sub-harmonic synchrony of self-excited cnoidal DAWs.79

This was achieved through the driven modulation of the80

streaming ions in the dust cloud. Their experiments81

showed parametric regions for the occurrence of such syn-82

chrony in the form of Arnold tongue diagrams in the83

state space of the driving frequency and driving ampli-84

tude. They also observed features like the branching of85

the tongues and the existence of an amplitude threshold86

for synchronization to occur. Williams et al. [16] com-87

pared DAW synchronization in RF and DC generated88

plasmas. Their results suggested that in a RF plasma,89

synchronization was restricted to a part of the dust cloud90

volume unlike the complete dust cloud synchrony in a91

DC discharge plasma. Deka et al. [46] observed the syn-92
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chronization of self-excited DDW, through the suppres-93

sion mechanism, by modulating ion streaming using an94

external sinusoidal driver. Recently, Liu et al. [47] car-95

ried out experiments in the Plasma Kristall-4 (PK-4) de-96

vice on board the International Space Station (ISS) un-97

der micro-gravity conditions and reported phase locking98

for harmonic synchronization. The present work is mo-99

tivated by Ruhunusiri et al. [14] experiment on global100

synchronization of a DDW driven by an ion flow. Unlike101

the DDW in some experiments [42, 48], the wavefronts102

were not obliquely propagating, as the experiment was103

designed to have a planar symmetry, provided by prox-104

imity to a planar electrode, so the wavefronts were nearly105

perpendicular to the ion flow direction.106

Theoretical efforts towards interpretation and phys-107

ical understanding of these experimental results have so108

far been limited to providing qualitative comparisons109

with results obtained from very simple dynamical mod-110

els. One of the commonly employed mathematical model111

is the periodically forced Van der Pol (fVdP) oscilla-112

tor [1, 3, 49],113

d2x

dt2
− (c1 − c2x2)

dx

dt
+ ω2

0x = Adr cos(2πfdrt) (1)114

which describes the displacement x of a harmonic os-115

cillator with a natural frequency ω0, with terms for a116

nonlinear damping c2x
2dx/dt, a source of energy for self-117

excitation c1dx/dt, and a periodic driving source at a fre-118

quency fdr. The fVdP oscillator can exhibit synchroniza-119

tion not only at fdr/f0 ≈ 1, which is called “harmonic”120

synchronization, but at ratios that are rational numbers.121

If fdr/f0 > 1, the synchronization is said to be “super-122

harmonic”, whereas if fdr/f0 < 1 it is “sub-harmonic”.123

Although the VdP oscillator model has been used in124

the past as a reference for characterizing synchroniza-125

tion phenomena in plasmas and other media that sup-126

port the propagation of waves [10, 11, 14, 18, 24, 46, 50].127

It should be pointed out that as a point oscillator model128

its dynamics is restricted to nonlinear oscillations and it129

cannot correctly represent nonlinear waves. This is also130

evident from the fact that the VdP model is an ordinary131

differential equation in time and therefore has no spatial132

dynamics that characterizes a propagating wave. In ad-133

dition, for nonlinear dust acoustic or dust density waves134

dispersion plays an important role in defining their prop-135

agation characteristics and this is not built into the VdP136

model. As a promising step in capturing spatial proper-137

ties of a wave, one modelling approach to explain cluster138

or partial synchronization of propagating DDWs [51] un-139

der microgravity conditions [42] used a chain of coupled140

Van der Pol oscillators [52]. As a further advance, how-141

ever, there remains a need to develop a simple theoret-142

ical model, based on a wave equation, that successfully143

describes the global synchronization of waves exhibiting144

both nonlinearity and dispersion, in a plasma medium.145

In this paper, we present such a model and use it146

to demonstrate synchronization of nonlinear dust acous-147

tic waves to an external driver. The fKdV-B model is148

a generalization of the fKdV model that was developed149

by Sen et al. [53] for driven nonlinear acoustic waves and150

subsequently extensively used to study nonlinear precur-151

sor solitons in dusty plasma experiments [54, 55]. For152

our study we include viscous dissipation in the model,153

an important feature of most laboratory studies of dusty154

plasmas [56, 57], which converts the fKdV to a fKdV-155

B model. Such a model provides a proper theoretical156

framework for the study of synchronization in a realistic157

dispersive plasma system that includes natural growth158

and dissipation of waves. The driving term is chosen to159

have an oscillatory form that has both a temporal and160

spatial periodicity. Our numerical solution of the model161

equation, show clear signatures of harmonic (1:1) and162

super-harmonic (1:2) synchronization. The characteris-163

tic features of the synchronization are delineated using164

power spectral density (PSD) plots, phase space plots165

and Lissajous plots obtained from the time-series data166

collected at one spatial location. A parametric plot in167

the form of an Arnold tongue diagram shows multiple168

tongues, each corresponding to the existence region of a169

harmonic or a higher-order super-harmonic synchronized170

state. The harmonic tongue also show a branching be-171

haviour.172

The rest of the paper is organized as follows. Sec-173

tion II briefly describes the fKdV-B model and the nu-174

merical approach adopted to solve it. The section also175

presents some numerical results for the undriven KdV176

and KdV-B equations as background information on the177

characteristic nonlinear features of the waves and to de-178

scribe the diagnostic tools to be used for identifying syn-179

chronization phenomena. Section III presents our main180

results on harmonic and super-harmonic synchronization181

using the fKdV-B model. A brief summary and some182

concluding discussion are provided in section IV.183

II. THE FKDV-B EQUATION AND THE184

NUMERICAL APPROACH185

The fKdV-B equation, a one-dimensional driven186

nonlinear partial differential equation, is of the form:187

∂n(x, t)

∂t
+ αn(x, t)

∂n(x, t)

∂x
188

+ β
∂3n(x, t)

∂x3
− η

∂2n(x, t)

∂x2
= Fs(x, t). (2)189

Here n(x, t) is the dependent variable (the perturbed190

density in this case) and Fs(x, t) is an external spatio-191

temporal forcing term. α, β, and η are positive quantities192

representing the strength of nonlinearity, dispersion, and193

viscous damping, respectively. The spatial coordinate x194

and time t are normalized by the plasma Debye length195

λD and the dust plasma period ω−1pd , respectively.196

It should be mentioned that the KdV equation (i.e.,197

Eq. (2) in the absence of the viscous damping and driv-198

ing term) has been shown to model the evolution of199

weakly nonlinear waves in dusty plasmas both in the200
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presence [38] and in the absence [37] of ion-streaming.201

Hence it can correctly represent both nonlinear dust den-202

sity and dust acoustic waves. Recently Liu et al. [38]203

showed that the cnoidal solution of the KdV shows ex-204

cellent agreement with the DDW profiles observed in the205

dusty plasma experiments [58, 59]. Theoretically the ex-206

perimental DDW evolution was modelled by the KdV207

model in which the ion-streaming was taken into consid-208

eration [38]. Earlier, a theoretical model based on the209

fKdV equation [60] was used to explore the nonlinear210

mixing of longitudinal dust lattice waves observed in the211

dusty plasma experiment [61]. Nonlinear mixing means212

the natural mode and the external forcing mode retain213

their identity after interaction and excited frequencies214

are different combinations of addition, and subtraction215

of the natural and forcing mode. The present theoretical216

fKdV-B model is proposed to understand the global syn-217

chronization of the dust acoustic wave as was observed218

in the dusty plasma experiment [14]. Synchronization219

means the natural mode loses its identity and the sys-220

tem is controlled by the external driver. Here, we model221

synchronization by incorporating the viscous damping222

instead of nonlinear mixing as was done in Ref. [60].223

The fKdV-B equation can be derived from the full fluid-224

Poisson set of equations, in the weakly nonlinear, dis-225

persive and dissipative regime by using a reductive per-226

turbation method [56, 62]. Such a derivation in the ab-227

sence of the viscosity term has been given in detail by228

Sen et al. [53]. The KdV-B equation (i.e., Eq. (2) in229

the absence of the driving term) is well known in the lit-230

erature [56, 57, 62] and has been employed in the past231

to model oscillatory shocks in dusty plasmas [56, 63].232

The model has also been used to study temporal chaos233

or spatial chaos by using a randomly time varying [64]234

or randomly space varying [65] driving term. In earlier235

work by Sen et al. [53] the source term was taken to be a236

constant, while in this work, we use a spatio-temporally237

varying periodic source and carry out a numerical inves-238

tigation of Eq. (2) to study the synchronization of DAWs239

based on the fKdV-B model.240

The driving source is taken to be of the form of a241

cnoidal-square travelling wave,242

Fs(x, t) = Ascn
2[2K(κs){x/λs − fst}; κs] (3)243

where cn is the Jacobi elliptic function, As is the driving244

amplitude, λs is the spatial wave length and fs is the245

driving frequency. K(κ) is the complete elliptic integral246

of first kind and the elliptic parameter κ is a measure of247

the nonlinearity of the wave. The cnoidal-square travel-248

ling wave is an exact solution of the KdV equation. It249

can therefore mimic the driving of the system by a DAW250

arising from an external (coupled) plasma source. For251

the numerical solution of Eq. (2) the initial waveform is252

also taken to be of the form,253

n(x, t = 0) = A0cn
2[2K(κ0){x/λ0}; κ0], (4)254

with the values of A0, f0 and λ0 different from those of255

the driving source. The idea is to see whether the final256

driven modes of the system synchronize to the frequency257

of the driver. Equation (2) is solved for various values of258

fs and As in order to find the regions of synchronization259

in the parameter space of (As, fs).260261

Our numerical investigation of the fKdV-B equation262

is based on the pseudo-spectral method [66] and uses263

periodic boundary conditions. The code is first bench264

marked by reproducing earlier results [53, 67] obtained265

for the fKdV equation. The various parameter values as-266

sociated with the model are taken to be as follows: The267

Jacobi elliptic parameters κ0 = κs = 0.98 for Eqs. (3)268

and (4). The wave vector of the initial perturbation i.e.,269

k0 = 12km where km = (2π)/Lx being the minimum270

wave vector associated with a system of length Lx = 6π.271

The corresponding wavelength i.e., λ0 = (2π)/k0 and272

amplitude A0 of the initial perturbation (i.e., Eq. (4))273

are kept fixed throughout the analysis. We have taken274

ks = 12km and ks = 2 × 12km for studying harmonic275

(1:1), and super-harmonic (1:2) synchronization states.276

The corresponding forcing wavelength is λs = (2π)/ks.277

Throughout the analysis, we have only varied the forc-278

ing amplitude, As and forcing frequency, fs. The co-279

efficient α in Eq. (2) is given by following expression280

α =
[
δ2 + (3δ + σ)σ + (δ/2)(1 + σ2)

]
/(δ − 1)2 [55] and281

β = 0.5. We evaluate α = 2.3 with σ = Ti0/Te0 = 0.0036282

where electron and ion temperatures are Te0 = 7 eV and283

Ti0 = 0.025 eV, respectively and δ = ni0/ne0 = 3.4 where284

electron and ion densities are ne0 = 2 × 1014 m−3 and285

ni0 = 6.8× 1014 m−3, respectively. The nonlinearity pa-286

rameters α was measured from experimental parameters287

reported by Flanagan et al. [58] for a wave experiment288

using a setup similar to that of Ruhunusiri et al. [14].289

Since, there is no measurement of the viscosity param-290

eter in Flanagan et al. [58] and no value is reported for291

the experimental setup of Ruhunusiri et al. [14], we treat292

the viscosity coefficient to be a free parameter, which293

we adjust to obtain a good quantitative agreement with294

the signatures of dissipation in the experimental data of295

Ruhunusiri et al. [14], namely the Arnold tongues. A296

value of η = 0.0025 best fits the experimental data. Us-297

ing the experimental plasma parameters [58] and assum-298

ing dust temperature Td = 2 eV, we calculate Γ = 92299

and κ = 2.8. Referring to molecular dynamics simu-300

lations for dusty plasmas for the corresponding closest301

Γ = 100 and κ = 3, the value of normalized viscosity302

is η∗ = 0.04 [68, 69]. This value of viscosity translates303

to η = 0.0027 as per the KdV-B equation normaliza-304

tion, which is fairly close to our chosen value of viscosity305

for the simulations of the fKdV-B model. Furthermore,306

we take the same experimental values of the natural and307

driver frequencies as reported in the experiment [14] to308

carry out numerical solutions of the fKdV-B model i.e.,309

Eq. (2). Also, based on the chosen parameters α, β, κ0310

and k0, the initial perturbation has amplitude A0 = 46.32311

and frequency f0 = 22 Hz, which is derived using the re-312

lationship provided in Mir et al. [60]. The amplitude313

of the initial perturbation chosen in this fashion will be314

governed by the exact solution of the KdV and will be a315
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FIG. 1. PSD for the times-series of KdV (solid line) and KdV-B (dash-dotted line) equations with initial perturbation Eq. (4).
Insets (I) and (II) show the phase space plots and time series, respectively for KdV (solid line) and KdV-B (dash-dotted line)
models.

stable solution of KdV for this particular amplitude.316

We evolve the initial perturbation in Eq. (2) over317

long times for these various different parameter values.318

During the spatio-temporal evolution, we collect a time-319

series of the density field at a fixed spatial location and320

use it to calculate the power spectral density. The PSD321

provides a useful tool for distinguishing between synchro-322

nized and un-synchronized states.323

As an illustrative example, we show in Fig. 1 the324

PSD, the time-series and the phase space plot of the so-325

lution, obtained for a KdV (solid line) equation (Eq. (2)326

for η = As = 0). The time-series data has been collected327

up to tmax = 80 ω−1pd with a time step dt = 10−5 ω−1pd .328

The maximum sampling frequency fS = 1/dt and the329

Nyquist frequency is fN = fS/2. This leads to a fre-330

quency resolution of df = 1/tmax for the collected time-331

series. The time-series data corresponding to the first332

few tens of periods is discarded to remove transient ef-333

fects while constructing the PSD. In Fig. 1 the nonlinear334

character of the mode is evident from the presence of the335

higher harmonics in the PSD and from the shape of wave336

form in the time-series. The natural mode of KdV has a337

frequency f0 = 22 Hz. The single cycle phase space plot338

(solid line) with its form resembling a separatrix curve339

indicates an undamped nonlinear periodic wave, in this340

case the exact cnoidal-square wave. Also, for compari-341

son, we present in Fig. 1 the corresponding results for342

the undriven KdV-B (dash-dotted) equation (Eq. (2) for343

η = 0.0025 and As = 0) on top of the KdV (solid line)344

equation. The effect of viscous damping is seen in the fre-345

quency shift of the fundamental component in the PSD346

towards a lower value of fη0 = 15 Hz, the reduced am-347

plitude in the time-series and the spiralling of the phase348

space plot (dash-dotted) towards the origin. It is clear349

that in the presence of finite viscosity the cnoidal-square350

wave can no longer be sustained as a nonlinear solution351

of Eq. (2) with Fs = 0 and the initial perturbation decays352

in time. The question is whether by driving the system353

with a periodic source one can revive and sustain a non-354

linear solution that is also synchronized with the driver.355

The answer is in the positive and we next present our356

results on such a phenomenon.357

III. SYNCHRONIZATION IN FKDV-B MODEL358

In this section we present the main results of our work,359

namely, the synchronization of the solutions of Eq. (2) to360

an external driver of the form given by Eq. (3). We begin361

by discussing harmonic (1:1) synchronization for which362

we choose the driving frequency to be slightly away from363

the fundamental frequency of f0 = 22 Hz that is char-364

acteristic fundamental frequency of the undriven system.365

Two cases are considered, namely, fs = 21 and fs = 23366

Hz. The driving amplitude in both cases is taken to be367368

As = 0.40A0. Figure 2 shows the attainment of harmonic369

(1:1) synchronization for both these cases with subplots370

(a, b) devoted to fs = 21 Hz and (c, d) to fs = 23 Hz,371

respectively. As can be seen from the time-series plots372

in (a) and (c) the driven solutions are indeed locked to373

the driver. This is also clearly seen in the PSDs where374

the fundamental frequencies of the driven solutions are375

indeed at the frequency of the driver. Furthermore, the376

phase space plots in (b) and (d) show that these solutions377

constitute undamped nonlinear periodic waves that are378

maintained by a balance between the nonlinear steep-379

ening, dispersive broadening, viscous damping and am-380

plification due to the external pumping by the driving381

term. The resultant phase space curve, that has the char-382

acteristic shape of a separatrix, represents a stationary383

cnoidal wave solution. The presence of dissipation seems384

to be necessary for sustaining this synchronized driven385

solution. We have found that in the partial differential386

equation Eq. (2), including not just nonlinear and dis-387

persive terms, but also a linear dissipative term, allowed388

achieving synchronization of a wave. When we turned389
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FIG. 2. The harmonic (1:1) synchronization in the fKdV-B model with fs < f0 and fs > f0. The time-series of the fKdV-B
model (solid line) and the forcing (dash-dotted line) at driver frequency (a) fs = 21 Hz with threshold amplitude As = 0.40A0

and (b) fs = 23 Hz with threshold amplitude As = 0.40A0. (c) PSD of times-series (a). (d) PSD of time-series (b). The inset
(I) is the phase space plot and the inset (II) is the Lissajous figure which reflects the frequency locking at the driver frequency.

FIG. 3. The super-harmonic (1:2) synchronization in the fKdV-B model with fs < 2f0 and fs > 2f0. The time-series of the
fKdV-B model (solid line) and the forcing (dash-dotted line) at driver frequency (a) fs = 43 Hz with threshold amplitude
As = 0.60A0 and (b) fs = 45 Hz with threshold amplitude As = 0.50A0. (c) PSD of times-series (a). (d) PSD of time-series
(b). The inset (I) is the phase space plot and the inset (II) is the Lissajous figure which reflects the frequency locking at half
of the driver frequency.

off dissipation, by setting the viscosity coefficient to zero390

in Eq. (2), we did not observe synchronization of the391

wave, for the conditions that we studied here. This is392

different from the case of a point oscillator, as described393

by the Van der Pol oscillator Eq. (1), which requires a394

nonlinear dissipation term to obtain synchronization. In395
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FIG. 4. The Arnold tongue diagram for harmonic (1:1) and
super-harmonic (1:2) synchronization states in the fKdV-B
model. The amplitude is varied from As = 0.10A0 to As =
0.70A0 for 1:1, and As = 0.20A0 to As = 0.70A0 for 1:2
synchronization.

the absence of viscosity one only gets nonlinear mixing396

from the model as has been reported earlier in Mir et397

al. [60, 67]. The amount of viscosity also determines the398

threshold condition for the driver amplitude.399

To explore super-harmonic (1:2) synchronization we400

again consider two cases of fs = 43 Hz and fs = 45 Hz401

which are slightly below and above the first harmonic fre-402

quency 2f0 = 44 Hz of the undriven system. The results403

are shown in Fig. 3 where the subplots (a,c) are devoted404

to fs = 43 Hz and (b,d) to fs = 45 Hz, respectively.405

As in the previous case of harmonic synchronization, we406

see clear evidence of super-harmonic (2:1) synchroniza-407

tion in the time-series plots, the PSDs and the phase408

space plots. The Lissajous figures have a number eight-409

like trajectory which is indicative of a (1:2) synchronized410

state. One significant difference from the harmonic syn-411

chronization case is that the minimum threshold ampli-412

tude for the driver to achieve a 1:2 state is different for413

the cases fs < 2f0 and fs > 2f0. They are As = 0.60A0414

and As = 0.50A0, respectively.415

Finally, in Fig. 4 we present a consolidated picture416

of the existence domain of these synchronized states in417

the parameter space of the driver frequency fs and driver418

amplitude As in form of an Arnold tongue diagram. To419

obtain the Arnold tongue diagram, As is varied in steps of420

4.63 (which is 0.10A0) from 0 to 32.42 (which is 0.70A0)421

while fs is varied in steps of 0.5 Hz for harmonic syn-422

chronization and 1.0 Hz for the super-harmonic case.423

Fig. 4 shows the 1:1 and 1:2 entrained state tongues in424

the fKdV-B model.425

We observe several interesting features in the Arnold426

tongue diagram. To start with, there is always a thresh-427

old amplitude As below which no synchronization occurs.428

For the harmonic (1:1) synchronization it is As = 0.10A0429

for η = 0.0025. This is unlike the harmonic synchro-430

nization phenomenon observed in a driven Van der Pol431

model where no such threshold is found [70]. Another im-432

portant feature is a distinctive branching of the Arnold433

tongue that is clearly seen for the (1:1) states at low434

forcing amplitudes marked with arrows. The branching435

gives rise to a non-synchronized region between the fre-436

quencies fs = 22 Hz to fs = 18 Hz at driver ampli-437

tude As = 0.10A0. This branching narrows down with438

the increase in As. Another branch is seen in between439

fs = 18 Hz and fs = 16.5 Hz which also narrows down440

with increase in As. A third feature is the asymmet-441

ric nature of the tongue structures about f0. The fre-442

quency width over which synchronization can be obtained443

is much broader for fs < f0 compared to fs > f0.444

IV. SUMMARY AND CONCLUSIONS445

To summarize, we have studied the phenomenon446

of synchronization of dust acoustic waves to an exter-447

nal periodic driver in a model system described by the448

forced Korteweg-de Vries-Burgers equation. This equa-449

tion provides a proper theoretical framework and a bet-450

ter physical model compared to the Van der Pol os-451

cillator model for studying the dynamics of nonlinear452

dust acoustic waves by properly accounting for nonlin-453

ear, dispersive and dissipative influences on the waves.454

Using the model, we have successfully demonstrated har-455

monic (1:1) and super-harmonic (1:2) synchronization456

states of DAWs for the experimental values reported by457

Ruhunusiri et al. [14]. In particular, comparison of our458

theoretical Arnold tongue diagram with their experimen-459

tal one shows the following common features. As in the460

experimental Arnold tongue diagram we see the existence461

of amplitude thresholds as well as clear evidence of the462

branching phenomena. However there are also impor-463

tant differences. With our model we have not been able464

to obtain sub-harmonic synchronization that have been465

observed in the experiment. Furthermore, our model uses466

an external driver that closely resembles a nonlinear nat-467

ural mode of the system whereas in the experiment a468

purely time varying external sinusoidal driver has been469

used. However, it is not clear what form this driver takes470

inside the plasma system and whether it manifests it-471

self as a spatio-temporally varying perturbation. These472

and other questions, such as the absence of sub-harmonic473

synchronization in the equation, the neglect of dissipa-474

tion arising from gas friction on the dust particles, etc.,475

remain to be explored in the future in order to further476

improve the model.477
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