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Recent studies of elasto-capillary phenomena have triggered interest in a basic variant of the classical Young-
Laplace-Dupré (YLD) problem: The capillary interaction between a liquid drop and a thin solid sheet of low
bending stiffness. Here, we consider a two-dimensional model where the sheet is subjected to an external
tensile load and the drop is characterized by a well-defined Young’s contact angle θY . Using a combination
of numerical, variational, and asymptotic techniques, we discuss wetting as a function of the applied tension.
We find that, for wettable surfaces with 0 < θY < π/2, complete wetting is possible below a critical applied
tension thanks to the deformation of the sheet in contrast with rigid substrates requiring θY = 0. Conversely,
for very large applied tensions, the sheet becomes flat and the classical YLD situation of partial wetting is
recovered. At intermediate tensions, a vesicle forms in the sheet, which encloses most of the fluid and we
provide an accurate asymptotic description of this wetting state in the limit of small bending stiffness. We show
that bending stiffness, however small, affects the entire shape of the vesicle. Rich bifurcation diagrams involving
partial wetting and “vesicle” solution are found. For moderately small bending stiffnesses, partial wetting can
coexist both with the vesicle solution and complete wetting. Finally, we identify a tension-dependent bendo-
capillary length, λBC, and find that the shape of the drop is determined by the ratio A/λ2

BC, where A is the area
of the drop.

I. INTRODUCTION

Elasto-capillary phenomena, namely mechanical deforma-
tions of elastic bodies due to capillary forces, are at the fo-
cus of a growing attention. Indeed, aside from fundamental
interests, this field of research appears to be relevant to the
study of budding in biological cells and other biomimetic sys-
tems [1, 2] and opens new perspectives for fabrication at small
scales where surface tension dominates volume weight. For
example, capillary forces can be used to fold elastic sheets
into desired three-dimensional objects [3–10]. In this context,
focus has been made on sheets with free ends. However, very
thin sheets are often subjected to external tensile loads due to
capillary forces for floating sheets [11–13] or due to clamped
ends [14–16]. We thus propose to fill this gap by studying the
influence of an applied external tension on the wetting states
of a drop deposited on a thin elastic sheet.

One of the basic questions in the study of elasto-capillary
phenomena is how the wetting states are modified, if the un-
derlying assumption of a perfectly rigid, semi-infinite solid
substrate is relaxed, see Fig. 1. When the solid substrate is
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undeformable, the wetting states of a given volume of liq-
uid are determined by the Young-Laplace-Dupré (YLD) equa-
tion [Fig. 1(a)]

cos θY = ∆γ/γ, ∆γ ≡ γsv − γsl, (1)

where θY is the contact angle between the solid-liquid and
liquid-vapor interfaces whereas γsv, γsl, and γ, are respec-
tively, the solid-vapor, solid-liquid, and liquid-vapor surface
energies (see for example [8]). When ∆γ < −γ, surface en-
ergy disfavors any liquid-solid contact (non-wetting). Con-
versely, when ∆γ > γ, the system is said to be in a complete
wetting state. For intermediate values, −γ < ∆γ < γ, that is
0 < θY < π, the system is in a partial wetting state.

When the solid substrate is deformable (low elastic Young’s
modulus E) and thick (unbendable), the local deformation of
the solid surface is on the order of the elasto-capillary length
`EC = γ/E, and the relevant dimensionless parameters are the
ratios, `EC/a, and `EC/R, where a is a microscopic (atomic
or molecular) length, and R is the characteristic drop size.
The rich physics that emerges at various ranges of theses di-
mensionless parameters has been the subject of theoretical
works [17–27] and experiments [28–33] (see also some recent
reviews [34, 35]).

When the solid substrate is a thin, bendable sheet, another
length scale comes into consideration: the bendo-capillary
length `BC =

√
B/γ, where B = Et3/12(1 − ν2) is the

bending stiffness and t is the sheet thickness [36]. The plate is
then easily bent by a liquid drop when `BC is small compared
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(a)

(b)

FIG. 1. (a) Classical Young-Laplace-Dupré picture of partial wetting
on a perfectly rigid substrate, involving liquid-vapor surface tension,
γ, and forces associated with “surface stress”, γsv, γsl, that act par-
allel to the solid surface. (b) Schematic of our model system. Ad-
ditional control parameters: applied tension T and bending modulus
B.

to the size of the drop, i.e. when the bendability parameter
Γ ≡ R2/`2BC = γR2/B is large. In a 2D setting, as we will
consider here, we may replace R2 by the cross-sectional area
A and define Γ as

Γ ≡ A/`2BC = γ A/B. (2)

Meanwhile, the local surface deformation remains small if
`EC/t� 1. This is the situation that we consider in the present
study. The double limit `EC/t � 1 and Γ � 1 can equiva-
lently be expressed as

t� `BC �
√
A, (3)

which states that the bendo-capillary length must be much
larger than the sheet thickness while much smaller than the
drop size. In terms of t alone, the above inequalities yields
the constraint

γ/E � t� (γA/E)
1/3

. (4)

In practice, this parameter regime characterizes a large range
of solid sheets that are commonly studied in the material sci-
ence community: from common elastomers (E ∼ MPa) with
a thickness of few micrometers to stiff polymers (E ∼ GPa)
with a thickness of few hundreds of nanometers. For a charac-
teristic drop size ranging from few tens to few hundreds of mi-
crometers [16], Γ varies roughly between 1 and 106 whereas
`EC/t can be as small as 10−5. Most experiments reported in
Refs. [11–14, 16, 40, 41] satisfy the above constraint where
the far edges of the sheet, away from the liquid drop, may be
free [4–8, 10], clamped [14–16], or subject to a fixed tensile
load by a liquid sub-phase [11–13].

Equations (3) or (4) describe sheets that are “highly bend-
able” yet “nearly inextensible”. In this regime, there is a large
contrast between the bending energy, Ubend, and the strain en-
ergy, Ustrain, whose high cost must be taken into considera-
tion either explicitly (when studying finite liquid volume, in
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FIG. 2. A “wettability state diagram” of our 2D model, for a given
value of 0 < θY < π/2, exhibits three types of energetically-
favourable states of a liquid drop of area A in contact with an elastic
sheet of length L �

√
A and bending modulus B. The control

parameters are the applied tension, T , and the capillary bendability
parameter Γ, Eq. (2). The dot-dashed red line T+

a is a curve derived
from the asymptotic analysis (Sec. V) of the vesicle that approxi-
mates the numerical boundary T+ of existence of the vesicle state.
The vesicle and partial wetting states are illustrated by numerical
solutions; the complete wetting state is sketched for either finite or
infinite L.

which case the liquid drop imposes Gaussian curvature on
the sheet [12, 37–39]), or by imposing an inextensibility con-
straint, as we will do in this paper for a simplified model sys-
tem.

In this paper, we consider a two-dimensional model com-
posed of a liquid cylinder of cross-sectional area A in con-
tact with a rectangular solid sheet of length L � R under
an applied tension T , see Fig. 1(b). We further assume that
gravity is negligible. The absence of Gaussian curvature con-
siderably simplifies the analysis compared to more realistic
3D problems [10–12, 42] and allows us to push the analytical
investigation beyond scaling laws. Notice however that such
a two-dimensional system can, to some extent, be realized ex-
perimentally using a thin elastic filament floating on a fluid
surface and wet by a droplet of another immiscible fluid [43].
In contrast to previous works on a related system [4, 8–10],
we pay close attention to the effect of tensile loads, T , ex-
erted on the solid sheet at its far edges, away from the liquid
drop and thus, we consider the effect of another dimensionless
parameter, T/γ, in addition to Γ. Numerically, we study the
system for both small and large Γ. Analytically, we treat the
high-bendability limit, Γ � 1 by singular perturbation the-
ory. Most of our results are derived in the wettable regime,
i.e. 0 < θY < π/2.

Our results are succinctly summarized in the schematic
state diagram, Fig. 2, on which we briefly elaborate below:

1. As T →∞ (i.e., T � γ), the sheet becomes asymptot-
ically flat and is only partially wet, with a contact angle
given by the classical value, Eq. (1). Such a partial wet-
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ting state persists for all tensions T > T− (θY ,Γ) and
is the unique wetting state when T > T+ (θY ,Γ).

2. In the range γ cos θY < T < T+ (θY ,Γ) the sheet can
be in self-contact and form a vesicle that wraps most
(but not all) of the liquid. The two curves T± (θY ,Γ)
merge at the point Γ = Γ+(θY ) and in the limit Γ →
∞, they asymptote to γ cos2 (θY /2).

3. T < γ cos θY is the range of existence of the com-
plete wetting state for a sufficiently bendable sheet (Γ >
Γ?(θY )), whereby the liquid completely wets one side
of the sheet. Recalling that in the classical YLD picture
complete wetting is obtained only if θY = 0, we see
that high bendability enables a complete wetting state
even if θY > 0, provided the tensile load is sufficiently
small.

4. While the vesicle and complete wetting state are mu-
tually exclusive, the light and dark green regions in
Fig. 2 indicate that the partial wetting state can coex-
ist with the former if Γ < Γ+(θY ) and with both if
Γ < Γ?(θY ), paving the way to hysteretic behavior.

5. Finally, it emerges from our analysis that an al-
ternative bendo-capillary length, defined as λBC =√
B/2(T − γ cos θY ), and which thus depend on T , is

more relevant than `BC to describe the vesicle state. In
particular, we show that the shape of the vesicle is en-
tirely determined by the value of the ratioA/λ2BC, rather
than Γ = A/`2BC, a result that is found to hold even for
Γ = O(1). This implies in particular that, at the tran-
sition between the vesicle and complete wetting states
(i.e. T = γ cos θY ), the vesicle shape is universal and
thus independent on Γ and θY . We then derive the curve
T+
a (θY ,Γ) that yields a very good approximation of the

numerical curve T+ (θY ,Γ).

Thus, for a given value of 0 < θY < π/2, the partial
wetting predicted by the classical YLD law for non-bendable
solids separates into three distinct states – complete wetting,
vesicle, and partial wetting – enabled by the floppiness of the
solid.

The paper is organized as follow. In Sec. II, we set the stage
by discussing the limit of zero bending stiffness (Γ =∞). For
a given θY , we identify the three asymptotic wetting states at
distinct intervals of T/γ: complete and partial wetting and
an intermediate wetting state where the sheet forms a circular
vesicle and wraps the entire liquid area (see Fig. 4).

The inclusion of bending stiffness starts in Sec. III, where
the governing equations of the system are presented. These
are studied numerically in Sec. IV where we show how the
three wetting states identified in Sec. II occupy distinct regions
in the parameter space spanned by T , Γ and θY . Furthermore,
we show that the shape of the vesicle can be completely al-
tered for any Γ < ∞ and that it is universal and necessarily
different from a circular shape near the transition between the
vesicle and the complete wetting states. Section V is devoted
to the asymptotic analysis of the “vesicle” state in the limit
Γ� 1. Finally, we conclude in Sec. VI.

(a)

(b)

FIG. 3. Schematics of a cross section of the system for an infinitely
bendable sheet (B = 0). (a) The radii of curvature, Rb, of the wet
part of the sheet and, Rd, of the liquid-vapor interface, and the re-
lations with the lengths of the respective circular segments, Lb =
2ϑRb and Ld = 2βRd. (b) The displacement, 2d = Lb−2xD , with
respect to a flat sheet prior to wetting, where xD = Rb sinϑ is the
projection of the liquid-vapor interface onto the x-axis. Ad and Ab

are the liquid areas enclosed between the chord of length 2xD and
the liquid-vapor and the wet part of the sheet, respectively.

II. INEXTENSIBLE, INFINITELY BENDABLE SHEET

In the 2D model considered here, the energy of the sheet is
given by:

U = Us +W + Uelas, (5)

and comprises a surface energy Us, a work W (done by
pulling the edges) and an elastic energy Uelas due to the defor-
mation of the sheet with respect to its strainless, planar shape.
The energetically costly stretch is eliminated by the inextensi-
bility constraint, whereas the bending cost is expected to be
small in comparison to the surface energy for thin enough
sheets. Hence, we start in this section by ignoring the bending
stiffness altogether.

As stated already in the introduction, we consider an in-
finitely long rectangular sheet in contact with a cylindrical
drop, whose cross-sectional area is A ≡ R2. Upon mak-
ing contact with the drop, the wet part of the sheet becomes
bulged, with a constant radius of curvature, Rb, due to the
Laplace pressure in the drop, p = γ/Rd, where Rd is the
constant radius of curvature of the liquid-vapor interface, see
Fig. 1(b) and Fig. 3.

In the absence of bending stiffness, the system energy is the
sum of the surface energy and the work done by tensile loads
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at the edges of the sheet. The surface energy reads as

Us = γ Ld + γsl Lb + (2L− Lb) γsv

= γLd −∆γ Lb + 2Lγsv, (6)

whereL is the total length of the sheet, whereasLb andLd are,
respectively, the length of the bulged part of the sheet and of
the liquid-vapour interface, see Fig. 3(a). The work performed
by T is

W = 2d T = (Lb − 2xD)T, (7)

where 2xD is the projected length of the liquid-vapour in-
terface along the horizontal x-axis. Since the liquid-vapour
and solid-liquid interfaces are necessarily circular, we have
the following geometrical relations

Ld = 2β Rd, Lb = 2ϑRb, (8a)
xD = Rd sinβ = Rb sinϑ, (8b)

where the last relation indicates that the two circular segments
share the same chord, see Fig. 3. The total energy Upw =
Us +W of the partial wetting state is then given by

Upw = 2γ β Rd−∆γ Lb+2Lγsv +(Lb−2Rd sinβ)T, (9)

where the quantities xD, Rb and Ld have been expressed in
terms of Rd, β and ϑ. To minimize the total energy un-
der the constraints of (i) fixed transverse area of the drop,
A(β, ϑ,Rd) = A [see Fig. 3(b)], with A given by

A = R2
d

(
β − 1

2
sin 2β

)
+R2

b

(
ϑ− 1

2
sin 2ϑ

)
, (10)

where Rb = Rd sinβ/ sinϑ, and (ii) the geometric relation
(8) for Lb, we introduce the functional

L(β, ϑ,Rd, Lb) = Upw+µ (A−A)−η
(
Lb −

2ϑRd sinβ

sinϑ

)
,

(11)
where µ and η are Lagrange multipliers, that correspond, re-
spectively, to the pressure p in the liquid drop and the parallel
traction n‖ in the wet part of the sheet (which for B = 0 iden-
tifies with the tension in the sheet). The equilibrium equations
are found by minimizing L with respect to β, ϑ, Rd, and Lb,
see Appendix A. We find µ ≡ p = γ/Rd and η ≡ n‖, with

n‖ = γ
sinβ

sinϑ
, T = γ cosβ + n‖ cosϑ, (12a)

n‖ = T −∆γ = T − γ cos θY . (12b)

Equations (12a) are simply the vertical and horizontal force
balance at the contact line (Fig. 3(b)) and generalize the Neu-
mann’s law since T 6= γsv and n‖ 6= γsl because of the applied
tension [19, 20]. Equation (12b) is the familiar YLD law for
the stress jump at the contact line. Solving these equations
leads to

cosβ = cos θY +
γ sin2 θY

2T
, (13a)

cosϑ = 1− γ2 sin2 θY
2T (T − γ cos θY )

, (13b)

We call the state given by Eqs. (13) the partial wetting state
because, in the limit T/γ → ∞, it tends to the classical so-
lution of a drop on a semi-infinite rigid substrate: ϑ → 0,
β → θY . Since −1 ≤ cosx ≤ 1, both Eqs. (13) imply that a
partial wetting state exists only if

T ≥ T+
nb = γ cos2 (θY /2) , (14)

where the subscript ‘nb’ stands for ‘no-bending limit’. Inter-
estingly, the symmetric situation β = ϑ is obtained exactly at
T = 2T+

nb .
The condition (14) does not have an analog in the classical

YLD theory of a drop on a thick (unbendable) solid body; it
defines a minimal tensile load that is necessary to maintain a
partial wetting contact even if 0 < θY < π/2. As T → T+

nb ,
β → 0 and ϑ → π such that the wet part of the sheet tends
to a closed circle and wraps the entirety of the fluid. Such
a circular shape satisfies the conditions of static equilibrium
at all tensions below that threshold. Henceforth, we call it
the vesicle state. Equations (13) implies also that the partial
wetting state emerges supercritically from the vesicle state at
T+

nb when the applied tension increases. However, Eqs. (13)
do not determine whether the circular vesicle is stable for all
T < T+

nb .
One way to address this issue is to introduce a finite, ar-

bitrarily small amount of bending stiffness as we do from
Sec. III onward. This rounds off the corner in the elastic sheet
near the triple line [see inset of Fig. 5(a)] and makes Eq. (12b)
appears as the true force balance at the triple line. From this
perspective, the force balance equations (12a) hold at a dis-
tance of a few bendo-capillary lengths away from the triple
line where the angles ϑ and β can be measured. Therefore,
the contact angle ϑ + β is only the “apparent” contact angle,
as measured in Ref. [12, 16], but the true contact angle as
measured at a distance smaller than `BC from the contact line
remains Young’s angle, θY , in agreement with recent experi-
ments performed on a related system [44].

A. The vesicle state

As we noted above, when T < T+
nb , the sheet wraps the

entirety of the liquid drop (β = 0, ϑ = π) so that the state
is characterized by Ld = 0, Lb = 2πRb, and A = π R2

b , see
Eqs. (8) and (10). The energy (9) becomes

Uves = 2γsvL+ 2
√
Aπ (T − γ cos θY ) . (15)

Let us compare this energy with the one of the partial wetting
state, in the vicinity of the threshold T+

nb . Expanding Eqs. (9)
and (13) above the threshold T = T+

nb , we find

Upw − Uves = − 32

3 sin θY

√
Aγε3/2 +O(ε5/2), (16)

where 0 < ε = T − T+
nb � 1. Hence the partial wetting state

has lower energy than the vesicle state when T > T+
nb . The

continuity of the angles β and ϑ, in the vicinity of the tran-
sition between the two states, reflects the continuity of both
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FIG. 4. The three wetting states in the infinite bendability limit (A: complete wetting; B: vesicle; C: partial wetting). (a) Dependence of the
angles, β and ϑ, on the rescaled applied tension, T/γ, for θY = π/3. (b) Reduced energy Ū = (U − 2γsvL)/(2γ

√
A) as a function of

T/γ for θY = π/3. The black curve shows Ūcw, Eq. (19), for L = 2πRb. The energy and its first derivative are both continuous at the
partial wetting-vesicle transition. By contrast, the transition between complete wetting (A) and vesicle (B) is discontinuous, characterized by
an energy gap at T = T ? = γ cos θY .

the energy, Upw = Uves, and its first derivative, dUpw/dT =

dUves/dT , at T = T+
nb . Hence, in the infinite bendability limit,

the transition is a continuous, second order transition. Specif-
ically, we have a pitchfork bifurcation whereby the angles β
and ϑ vary rapidly with a small increase of the applied force
past the bifurcation point. We will see in Sec. IV how adding
bending energy to the model affects the nature of the transi-
tion.

B. Complete wetting

We now revisit the assumption that the drop shape consists
of circular segments. If there is a finite liquid-vapor interface,
Laplace’s law implies that it is necessarily a circular arc as
well as the rest of the drop’s interface which makes a contact
with the sheet. However, for T < T+

nb , the liquid in the vesi-
cle state does not have a finite contact length with the vapor.
Hence, we must address the possibility that the drop, once
fully wrapped by the sheet, is no longer circular.

For this purpose, we consider the energy of a vesicle of
perimeter Lb whose shape is not necessarily circular:

U = 2γsvL+ (T − γ cos θY )Lb. (17)

For a circular vesicle, Lb = 2
√
Aπ but otherwise 2

√
Aπ <

Lb ≤ L. Therefore, if

T < T ? = γ cos θY , (18)

the energy is minimal for Lb = L, i.e. the liquid wets the
entire length of the sheet. As a consequence, for 0 < θY <

π/2, a tensile load T < γ cos θY is not sufficient to stabilize
the sheet against a complete wetting by the drop. The energy
of the complete wetting state is

Ucw = (γsl + γsv)L = 2γsvL− γ cos θY L. (19)

A comparison between Eqs. (19) and (15) shows that, at T ?,
the system undergoes a discontinuous transition, characterised
by a finite energy gap, see Fig. 4(b). This gap can be viewed
as a potential barrier to the formation of a vesicle from a com-
plete wetting state which can only be overcome by applying
a sufficiently large force on the sheet’s edges (T ≥ γ cos θY ).
Notice that, when π/2 < θY < π such a transition requires a
compressive force (T < γ cos θY < 0) and complete wetting
is therefore unobservable under any (or none) tensile load.

III. FINITE BENDABILITY: MODEL EQUATIONS

We now consider an elastic sheet with a bending modulus
B > 0 and set up the mathematical model to describe the par-
tial wetting and vesicle state that are schematically depicted in
Fig. 5. By symmetry, we may restrict our attention to x ≥ 0.
The model equations for the partially wet and vesicle states
are introduced in Secs. III A and III B respectively. Two al-
ternative formulations of the model equations are introduced
in Sec. III C and used in Sec. V to derive an analytical de-
scription of the vesicle state in the limit Γ � 1. Finally, an
analytical solution for the dry part of the sheet is obtained in
Sec. III D in the limit L�

√
A.
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A. Partially wet state

Denoting by κ, n⊥, and n‖ the curvature, perpendicular
and parallel tractions along the elastic sheet, respectively, the
local balance of forces and torques are, in the absence of self
contact (see, e.g., [45, 46] or [36, p. 189]),

B ∂sκ = −n⊥, ∂sn⊥ = p− κn‖, ∂sn‖ = κn⊥, (20)

where s is the distance along the sheet and ∂s denotes deriva-
tive with respect to that coordinate. The wet part of the sheet
is at s < D and is subjected to the Laplace pressure

p = γ/Rd. (21)

In the dry part, on the other hand, the pressure is atmospheric:
p = 0. Given κ, the local angle with respect to the horizontal
direction is found by

∂sθ = κ, (22)

and the Cartesian coordinates along the sheet satisfy

∂sx = cos θ, ∂sy = sin θ. (23)

Instead of n‖ and n⊥, one may use the Cartesian components
nx = n‖ cos θ− n⊥ sin θ and ny = n‖ sin θ+ n⊥ cos θ. This
yields the following system of equations

B ∂2sθ = nx sin θ − ny cos θ, (24a)
∂snx = −p sin θ, ∂sny = p cos θ. (24b)

One recognizes the equations of an elastica subjected to a
force whose components, nx and ny , vary along it. Note that
the above equations can also be derived through energy mini-
mization, as detailed in Ref. [8].

In the dry region (s > D), there is no capillary pressure
and the force is constant and equal to the external applied
force, i.e. (nx, ny) = (T, 0). Hence, multiplying Eq. (24a)
by ∂sθ and integrating, we obtain, for an infinite domain with
lims→∞(θ, κ) = (0, 0),

κD = −2 (T/B)
1/2

sin (θD/2) , (25)

where κD and θD respectively denote the curvature and angle
at s = D. On the wet side of this point, the force balance is

nx(D) = T − γ cosβ, ny(D) = γ sinβ. (26)

Assuming symmetric shapes and imposing YLD law at the
contact line, we have,

θ(0) = 0, θD + β = θY . (27)

Next, translation invariance allows us to fix the values

x(0) = 0, y(0) = 0. (28)

Finally, the geometrical constraints (10) and (8b) become

A = R2
d

(
β − sin 2β

2

)
+ 2

∫ D

0

x(s) sin θ(s) ds, (29a)

xD = Rd sinβ. (29b)

(a)

(b)

FIG. 5. Schematics of the system for (a) the partial wetting state and
(b) the vesicle state.

In the wet region 0 ≤ s < D, we have to solve Eqs. (20)-
(23) with the boundary conditions and global constraint in
Eqs. (25)-(29). Note that there are 9 conditions because there
are 6 differential equations and 3 unknown parameters, β, θD,
andRd. Notice that, integrating the last of Eqs. (24b) between
0 and D and using the first of Eqs. (23) and (28) together with
the second of Eqs. (26) and Eqs. (29b), we obtain

ny(0) = 0. (30)

Finally, by virtue of the geometrical constraint (29b) and
Eq. (21), the capillary pressure can also be expressed as

p = γ x−1D sinβ. (31)

B. Vesicle state

In the vesicle state, the sheet is in self-contact, see Fig. 5(b).
At the point of self-contact, s = `, there is a localised reaction
force, Fc, which modifies the second of Eqs. (20) and the first
of Eqs. (24b) as

∂sn⊥ = p− κn‖ + Fc δ(s− `), (32a)

∂snx = −p sin θ − Fc δ(s− `). (32b)

Equations (32) brings two new unknown parameters, Fc and
`, into the problem which are fixed by two new boundary con-
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ditions:

x` = 0, θ` = π/2, (33)

where subscript ` means evaluation at s = `. While the to-
tal area A of the fluid is still given by Eq. (29a), it is now
split in two parts, A1 and A2, respectively below and above
the contact point. If the contact is such that no fluid is allowed
through, bothA1 andA2 are in principle constrained to a fixed
value, instead of justA. In response to this new constraint, the
pressure p differs from the capillary pressure inside the vesi-
cle. A complete theory should therefore discuss the solution
not only as a function of A, but also of A1. However, there
is no general rule that governs how A should split between
A1 andA2 and, hence, what the vesicle pressure should be. In
the absence of a law dictating the ratioA1/A2, we will assume
that it is free to vary with only the constraint A1 + A2 = A
and p1 = p2.

C. First integrals and alternative independent variables

We start this section by deriving useful first integrals of
the problem. In the wet part of the elastic sheet, combining
Eqs. (23) with Eqs. (24) and the first and last of Eqs. (20), we
obtain

∂s (x− ny/p) = 0, ∂s (y + nx/p) = 0, (34a)

∂s
(
Bκ2/2 + n‖

)
= 0. (34b)

This allows us, on the one hand, to deduce the shape of the
wet part of the sheet once the tractions and p are known and,
on the other hand, to write

B

2
κ2 + n‖ = H, (35)

where H is constant. Evaluating Eq. (35) at s = D and us-
ing the boundary conditions (25) and (26) together with the
relation between n‖ and nx and ny , one finds

H = T − γ cos θY . (36)

In the case of self-contact, at s = ` < D, we have θ(`) = π/2,
so that n‖(`) = ny(`). Next, integrating the first of Eqs. (34a)
between 0 and ` and using x(0) = x(`) = ny(0) = 0, we get
n‖(`) = 0. Therefore, evaluating Eq. (35) at s = ` leads to

H = T − γ cos θY =
B

2
κ2` , (37)

so that the curvature at the contact point in the vesicle state
vanishes when T = T ? = γ cos θY . Since κ2` ≥ 0, the vesicle
state exists only for T ≥ T ? as in the infinite bendability limit
discussed in Sec. II.

Equation (37) has important consequences for the vesicle
state. It shows that the radius of curvature at the contact point,
κ−1` , does not scale as the bendo-capillary length `BC, as one
could expect, but instead it scales as

√
B/H . When T > T ?,

both `BC and κ−1` vanishes as B → 0 which is compati-
ble with the circular shape obtained in the infinite bendabil-
ity limit. In this case, κ−1` ∼

√
A is constant everywhere

along the vesicle except in boundary layer near the contact
point whose size scales as `BC. However, whatever the finite
value of B, Eq. (37) shows that the radius of curvature at the
contact point diverges as T → T ?. In this case, the shape
of the vesicle is necessarily different from a circular shape as
shown below in Secs. IV and V. Taking into account the bend-
ing stiffness of the sheet, however small, has thus a dramatic
consequence on the vesicle shape near T = T ?, i.e. near the
transition between the vesicle and the complete wetting states.

We also note that using Eq. (35) to eliminate n‖, the second
of Eqs. (20) becomes

∂sn⊥ = p−H κ+
B

2
κ3. (38)

We now rewrite the model equations in view of the an-
alytical treatment performed in Sec. V. While s appears as
the most natural variable to express all the physical quantities
along the sheet, using other quantities as independent variable
can be more advantageous. In particular, since the differential
system is autonomous in s, one can reduce its order by us-
ing one of the dynamical variables as the independent one and
seeking all the others quantities as functions of it. One useful
choice is θ. Let us introduce

κ2 = 2q(θ(s)). (39)

The variable q may be regarded as a measure of the density of
bending energy. By differentiating each side of Eq. (39) with
respect to s, one finds that ∂sκ = ∂θq. Hence, the first of
Eqs. (20) and Eq. (38) become

B ∂θq = −n⊥, ∂θn⊥ =
p

κ
−H +B q. (40)

Differentiating the first equation above with respect to θ, we
thus obtain

B
(
∂2θq + q

)
+
p

κ
= H. (41)

This last formulation leads to considerable simplification
when either p/κ or B(∂2θq + q) dominates the left hand side.

Another useful trick is to treat κ as the independent vari-
able. Indeed, using ∂sn⊥ = (∂κn⊥)∂sκ and the first of
Eqs. (20), Eq. (38) becomes

∂κn
2
⊥ = 2B

(
−p+H κ− B

2
κ3
)
, (42)

which is simple to integrate. Together with Eq. (35), this equa-
tion yields the tractions, and hence x and y, directly as func-
tions of κ.

Note that a rather complete treatment of Eqs. (20) in terms
of Jacobi functions and elliptic integrals of the first and third
kinds was developed in Ref. [45]. While the approach fol-
lowed in Sec. V is only asymptotically exact, as Γ → ∞, it
has the advantage of involving mostly elementary functions,
hence expressions that are easier to interpret (see also the com-
ment at the end of Sec. V D).
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FIG. 6. (a)-(c) Bifurcation diagrams showing the evolution of β as a function of T/γ for θY = π/3 and three values of Γ = γ A/B. Insets:
representative shapes of the system. Note that the simulated domain is much larger than shown here and that the sheet is actually horizontal
at its ends. (a) For Γ = 2, the system bifurcates at T = T− from partial wetting to complete wetting. (b) For Γ = 30, the transition between
partial wetting and vesicle is subcritical with region of bistability, T− < T < T+, where both states exist. (c) For Γ = 200, the bifurcation
between partial wetting and vesicle is supercritical with a continuous transition as the applied tension varies. For both (b) and (c), complete
wetting occurs when T < T ?. (d) Evolution of T− and T+ as a function of Γ for θY = π/3. At Γ = Γ0, Γ = Γ? and Γ = Γ+, the tension
T− is vanishing, equal to T ? = γ cos θY and equal to T+, respectively.

D. Solution in the dry region

We close this section by deriving an analytical solution for
the dry part of the sheet. In this region, where nx = T and
ny = 0, Eq. (24) reduces to

B∂2sθ − T sin θ = 0, (43)

with boundary conditions θ(D) = θD and θ(L) = 0. Letting
L→∞, the solution has the exact form

θ(s) = 4 arctan

[
tan

[
θD
4

]
exp

[
−
√
T

B
(s−D)

]]
, (44)

whose derivative at s = D is given by Eq. (25). On the other
hand, multiplying Eq. (43) by κ = ∂sθ and integrating we
have κ = −2 (T/B)

1/2
sin (θ/2). Parametrizing x and y with

θ and using this expression, Eqs. (23) become

∂θx = −
√
B

T

cos θ

2 sin (θ/2)
, ∂θy = −

√
B

T

sin θ

2 sin (θ/2)
.

(45)

This yields

x = cx − (B/T )
1/2

[2 cos (θ/2) + ln (tan (θ/4))] , (46a)

y = cy − 2 (B/T )
1/2

sin (θ/2) , (46b)

where cx,y are constants of integration. This illustrates how all
the variables can be expressed in terms of θ. If we substitute
θ by the right hand side of Eq. (44), we obtain their explicit
dependence on s.

Note from Eq. (44) that the assumption of infinitely long
sheet amounts to L

√
T/B � 1 so that the sheet is essentially

horizontal at the edges.

IV. NUMERICAL STUDY

As shown in Sec. III D, the shape of the sheet in the dry
region, D < s ≤ L, is known explicitly in the limit of a long
sheet, L �

√
A. To solve the problem in the wet region,

0 ≤ s ≤ D, for the partial wetting state, we need to inte-
grate numerically Eqs. (24) with the associated boundary con-
ditions (25)-(27) and geometric constraints (29). For the vesi-
cle state, the first of Eqs. (24b) is replaced by Eq. (32b) and
we must consider two additional boundary conditions given
by Eqs. (33). For this purpose, a shooting method is used
where the boundary value problem is transformed into an ini-
tial value problem and the unknown initial conditions are var-
ied until the boundary conditions are satisfied. In this way, we
may simulate the system for values of Γ = γ A/B ≡ A/`2BC
ranging from 0 to about 300.
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Whatever the values of Γ and 0 < θY ≤ π/2, the system
is always in a partial wetting state when the applied tension
T is large enough. Indeed, in the limit T → ∞, the sheet is
flat and behaves as an undeformable substrate. In this case,
complete wetting is possible only if θY = 0.

When the applied tension decreases, transitions towards
the vesicle state and complete wetting occur. Figure 6(a)-(c)
shows bifurcation diagrams for θY = π/3 and three repre-
sentative values of Γ where β is used as an order parameter
and the applied tension as the bifurcation parameter. These
plots highlight the existence of three distinctive values of the
applied tension.

Similarly to the infinite bendability limit discussed in
Sec. II, there are T ? = γ cos θY and T+(θY ,Γ) delimiting the
domain of existence of the vesicle state. At T = T ?, the cur-
vature at the contact point, s = `, vanishes (see Eq. (37) and
Fig. 10(c)). This value of the tension is thus the smallest one
for which a vesicle state exists. At T = T+(θY ,Γ), the self-
contact occurs with a vanishing contact force, i.e. Fc = 0 (see
Fig. 10(b)). Beyond this applied tension, there is no longer
self-contact.

In addition, for Γ < Γ+(θY ), we find that a new special
value of the tension, T−(θY ,Γ), shows up for a finite bending
modulus. This is the smallest tension for which partial wetting
states exist. As T → T−(θY ,Γ), the curve β(T ) develops
a vertical slope [Figs. 6(a,b)] but there is no self-contact in
contrast to the case of an infinitely bendable sheet. In addition
to Γ+(θY ), the bifurcation diagrams highlight the existence
of two other special values of the parameter Γ, that we denote
Γ0(θY ) and Γ?(θY ). These three values are marked by the
three vertical dashed lines in Fig. 6(d).

When Γ < Γ0(θY ), T−(θY ,Γ) is negative, such that when
the tensile load T is reduced, the system remains in a partial
wetting state down to T = 0.

When Γ0(θY ) < Γ < Γ?(θY ), as in Fig. 6(a), the system
bifurcates from partial wetting to complete wetting as the de-
creased applied tension reaches T−(θY ,Γ). In this case, the
vesicle branch is not reached by decreasing the applied ten-
sion from T � γ.

When Γ?(θY ) < Γ < Γ+(θY ), as in Fig. 6(b), the tran-
sition between vesicle and partial wetting is subcritical and
there is a region of applied tension where both states coexist.
There are thus discontinuous transitions between both states at
T = T−(θY ,Γ) and T = T+(θY ,Γ). In this case, the partial
wetting branch that bifurcates subcritically from the vesicle
branch at T+ [blue dashed line in Fig. 6(b)] is unstable; it
only becomes stable at the limit point T−. For tensions in the
range T− < T < T+, three values of β are possible, each
corresponding to a distinct equilibrium state. The middle one,
belonging to the blue dashed branch in Fig. 6(b) yields a local
maximum of the energy and is therefore unstable.

When Γ > Γ+(θY ), as in Fig. 6(c), the bifurcation is super-
critical with a continuous transition between both states. The
transition occurs at T = T+(θY ,Γ), at which value the partial
wetting state is stable and there is self-contact with Fc = 0.

This complex state diagram is summarized in Fig. 6(d),
which shows that, as Γ increases, the difference between T+

and T− decreases. When Γ0(θY ) < Γ < Γ?(θY ), T− is

T
  - < 0

partial wetting ↔ complete wetting

p. wet. ↔ vesicle

p. wet. ↔ vesicle
Supercritical

Subcritical

G
 + = 140.79 qY

 -2

G
 ⋆ = 11.84 qY

 -2

G
 0 = 6p qY

T
  - = T  +

T
  - = T  ⋆

T
  - = 0

G

100

101

102

103

104

qY/p
0.1 0.15 0.2 0.3 0.4 0.5

FIG. 7. Evolution of Γ0, Γ? and Γ+ as a function of θY delimit-
ing the possible types of bifurcation in the (θY ,Γ) space. The grey,
green, and pink regions correspond to bifurcation diagrams depicted
in Fig. 6 (a), (b), and (c), respectively.

smaller than T ? and the bifurcation diagram is similar to the
one shown in Fig. 6(a) in this region. When Γ?(θY ) < Γ <
Γ+(θY ), T− is larger than T ? while still smaller than T+.
The bifurcation diagram in this region is similar to the one
shown in Fig. 6(b). When Γ = Γ+(θY ), we have the equality
T− = T+. Finally, when Γ > Γ+(θY ), partial wetting states,
i.e. solutions of Eqs. (24), display self-crossing for T < T+

and must therefore be discarded. Hence, the system is in a
vesicle state when T ? < T < T+. This corresponds to the
bifurcation diagram shown in Fig. 6(c).

The algorithm to compute Γ+(θY ) is described in Ap-
pendix C. The result of this computation shows that when θY
is small enough, Γ+(θY ) ∼ θ−2Y (see Fig. 7). Therefore, what-
ever the value of θY is, there always exist values of Γ such
that the transition is supercritical. However, this shows that
the limit Γ→∞ together with θY → 0 is subtle and will not
be considered in the asymptotic theory presented in Sec. V.
Specifically, we will assume Γ� Γ+(θY ) with θY = O(1).

It is also possible to compute Γ0(θY ) for which T− = 0 and
Γ?(θY ) for which T− = T ?. For this purpose, T− is obtained
for given θY and Γ and the latter is varied by small increments.
For each value of Γ, T− is computed until it reaches 0 or T ?.
The result of this computation is shown in Fig. 7. When θY is
small enough, Γ0 ∼ θY and Γ? ∼ θ−2Y .

More details on the various T-dependent quantities are de-
scribed in Appendix B.

The theory shows that the vesicle state exists only when the
tension is larger than T ?, see Eq. (37). The numerical results
show that this state exists only when the tension is smaller
than T+(θY ,Γ), which tends to γ cos2(θY /2) as Γ → ∞, in
agreement with the limit of vanishing bending modulus dis-
cussed in Sec. II, see Eq. (14). For Γ = ∞, the shape of the
vesicle is predicted to be circular with radius (A/π)1/2 inde-
pendently of tension. Numerical results, on the other hand,
show that the vesicle shape can significantly depart from a
circle, as can be seen in Fig. 6(b) for Γ = 30. In partic-
ular, in the vicinity of T = T ?, the vesicle adopts a uni-
versal teardrop shape independent on Γ and θY as shown in
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Fig. 10(d). The vesicle shape is also universal when β = 0 as
seen in Fig. 10(e). The range of tensions for which the vesicle
is markedly non-circular shrinks as Γ → ∞ but nevertheless
remains significant even for Γ = 200. All these observations
about the vesicle shape are explained by the asymptotic theory
of Sec. V.

A non-vanishing bending modulus has thus a significant
impact on the vesicle shape, and not merely a boundary layer
near the point of self-contact. The vesicle shape is controlled
by two length scales. The radius of curvature of the sheet
away from the contact point scales like the size of the drop,√
A. However, the radius of curvature at the contact point

does not scale like `BC as one could expect. Instead, it scales
as

λBC ≡
√

B

2H
=

`BC√
2 (T/γ − cos θY )

, (47)

as follows from Eq. (37). For a fixed value of T > T ∗ =
γ cos θY , it tends to zero as `BC → 0 or, equivalently, as
Γ ≡ A/`2BC → ∞. The shape adopted by the vesicle is thus
essentially controlled by the length

√
A and tends to a circle,

except in a boundary layer near the contact point. By contrast,
when T → T ? but `BC, or Γ, is kept constant, λBC diverges. In
that limit, the vesicle shape necessarily departs from a circle
and this is what we investigate in the next section.

V. ASYMPTOTICS OF THE VESICLE SOLUTION

We now analyse the solution depicted in Fig. 5 (b). We
make the assumption that self-contact at s = ` takes place in
the wet part of the sheet, i.e. ` ≤ D. This is numerically ver-
ified for θY < π/2. The solution for the dry part of the sheet
is already known, see Sec. III D. The asymptotic solution for
the wet part of the sheet is derived in Secs. V A (` < s < D)
and V B (s < `).

A. Above the contact point

In the range ` < s < D, one has κ = O(x−1D ) and numer-
ical solutions indicate that β is small, so that p = γ/Rd =
γ sinβ/xD ' γβ/xD (see Eq. (31)). Using Eq. (39), we thus
have

p/κ

Bq
= O

(
γ β x2D
B

)
� 1 if β � A

Γx2D
≡ `2BC

x2D
. (48)

Under this hypothesis, we may neglect p/κ in Eq. (41) which
becomes linear in q and can be easily integrated to give

B

2
κ2 ≡ Bq ' H [1 + d cos (θ + ψ)] , (49)

where d and ψ are constants of integration and where we have
used the relation (39) between q and κ. Evaluating Eq. (49) at
the contact point s = `, where θ = π/2, and comparing with
Eq. (37), we find ψ = 0. Next, using the boundary condition

(25) and the relation (36) between H and T , the evaluation of
Eq. (49) at s = D leads to

d =
γ cos θY (1− cos θD)

H cos θD
− 1. (50)

Knowing that sgn(κ) < 0 in the region ` < s < D, the
curvature is readily obtained from Eq. (49):

κ(θ) ' −λ−1BC

√
1 + d cos θ, (51)

where λBC is given by Eq. (47). Hence, with ∂θx = cos θ/κ,
we obtain

xD = λBC

∫ π/2

θD

cos θ dθ√
1 + d cos θ

. (52)

From this expression, the asymptotic limit (48) under which
the present derivation holds is simply β � 1. Hence θD ∼ θY
[see Eq. (27)] and Eq. (50) yields d ' (γ/H) (1− cos θY )−
1. We thus eventually obtain the following expression for the
position of the triple line

xD '
`BC√

2

∫ π/2

θY

cos θ dθ√
H/γ + (1− T/γ) cos θ

. (53)

For cos θY ≤ T/γ ≤ cos2(θY /2), i.e. the largest interval of
tension for which the vesicle exists, the integral in Eq. (53) is
of order 1 if θY does not tends to 0. Therefore, xD is of order
`BC which confirms that Eq. (48) is equivalent to β � 1.

On the other hand, the equation ∂θy = sin θ/κ yields, with
Eq. (49),

y(θ) ' yD +
B

Hd
[κD − κ(θ)]. (54)

The area A2 [see Fig. 5(b)] is given by

A2 = R2
d

(
β − 1

2
sin 2β

)
+ 2xDyD − 2

∫ xD

0

y dx. (55)

Using dx = ∂θxdθ = cos θ dθ/κ and Eq. (54), the integral
can be computed to obtain

A2 = x2D

(
2β − sin 2β

2 sin2 β

)
+

2B

Hd
(sin θD − 1− κDxD) .

(56)
It follows that A2/A = O(Γ−1) and thus vanishes in the limit
Γ→∞ in agreement with the zero-bending case discussed in
Sec. II.

For future reference, let us finally note that, using Eq. (40),
we have

lim
s→`+

n⊥ = lim
θ→π/2

(−B∂θq) = γ

(
cos θY
cos θD

− T
)
. (57)
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FIG. 8. (a) Evolution of the functions |P| and φ, defined by Eqs. (63)
and (68), as a function of K together with the two approximations
(64) and (69). P vanishes at K = 0 and at K = K0 ' 1.77842
where φ(K0) ' 5.84946. It has the asymptotic behaviors P ' K
and P ' −3K3/14 when K → 0 and K → ∞, respectively. As
K → 0, the vesicle becomes a circle, so that φ(0) = π. (b) Evolu-
tion of (half) the length of the vesicle, `, as a function of K. Some
representative vesicle shapes are shown along the curve. As K → 0,
the vesicle shape approaches a circular shape of radius (A/π)1/2

whereas, as K →∞, the vesicle shape tends to a teardrop.

B. Below the contact point

In this section, we show that the vesicle shape below the
contact point, i.e. 0 ≤ s < `, depends on a single form fac-
tor, namely K, which is the ratio of curvatures of the sheet
at s = 0 and s = `. In this region, our numerical solutions
indicate that all terms in Eq. (41) are generally of the same
order. In this case, the alternative Eq. (42) is more convenient
to analyze. The curvature decreases from a value

κ0 > 0 at s = 0, (58a)

to κ` = −λ−1BC < 0 at s = `, (58b)

where we used Eqs. (37) and (47). From Eq. (42), we directly
get

n2⊥ = 2Bp [κ0 − κ]−BH
[
κ20 − κ2

]
+
B2

4

[
κ40 − κ4

]
, (59)

where we used the fact that n⊥ = ∂sκ = 0 at s = 0 [see
Eqs. (30), (24a), and (20)]. Let us rescale κ, p, and introduce
the parameter K as follows

k =
κ

κ0
, (60a)

K = κ0

√
B

2H
= κ0λBC =

κ0
|κ`|

, (60b)

P =

√
B

2H3
p =

p

H |κ`|
. (60c)

The parameter K is a geometrical parameter that is the ra-
tio of the curvatures at the bottom and at the contact point of
the vesicle and we will find that it alone determines its shape.
Note that from Eq. (58b), the parameter K is simply equal to
κ0/|κ`|. With these new notations, we may rewrite Eq. (59)
as

n⊥ = Bκ20 N⊥ (k;P,K) , (61a)

N⊥ =
√

1− k
[
P
K3

+
1 + k

4

(
1 + k2 − 2

K2

)]1/2
. (61b)

Next, using the first of Eqs. (20), we have κ = ∂sθ =

∂sκ ∂κθ = − (Bκ0)
−1
n⊥∂kθ. Hence, using this last relation

and Eq. (61a), we obtain

θ(k;K) =

∫ 1

k

k′

N⊥ (k′;P,K)
dk′, (62)

where we used the fact that θ vanishes when k = 1, i.e. when
s = 0. Evaluating this expression at the contact point, where
k = −1/K, yields an equation for P:∫ 1

−1/K

k

N⊥ (k;P,K)
dk =

π

2
. (63)

The solution of this equation is universal and denoted by
P = P(K), see Fig. 8(a). Note in particular that it doesn’t de-
pend on Γ. Equation (63) assumes thatN⊥ does not vanish in
the domain of integration. This is only true up toK ' 3.9207.
We ignore this issue in this section and give details in Ap-
pendix D. A good numerical fit of P(K), valid for all K, is
given by

P(K) ≈ (K0 −K)

(
K

K0
+

3

14

K3

K + 0.846

)
, (64)

where K0 = 1.77842 [Fig. 8(a)]. The value K0 is such that
P , and hence β, vanishes.

Substituting the function P(K) in Eq. (62), the function
θ(k;K) is known and the equation for x can be rewritten as

cos θ = ∂sx = ∂sκ ∂κx = − (Bκ0)
−1
n⊥∂kx, (65)

and similarly for y. Knowing that x = y = 0 at k = 1, i.e. at
s = 0, and using Eqs. (65) and (61a), the shape of the vesicle



12

is thus given by the double quadrature

κ0 x(k;K) =

∫ 1

k

cos θ(k′;K)

N⊥ (k′;P,K)
dk′, (66a)

κ0 y(k;K) =

∫ 1

k

sin θ(k′;K)

N⊥ (k′;P,K)
dk′. (66b)

It turns out that, once Eq. (63) is satisfied, x automatically
vanishes at the contact point, so that no new constraint results
from that condition. Finally, the area of the vesicle is com-
puted as

A1 = 2

∫ y`

0

xdy = −2

∫ 1

−1/K
x (∂ky) dk

=
2

κ20

∫ 1

−1/K

κ0 x(k;K) sin θ(k;K)

N⊥ (k;P,K)
dk. (67)

Having determined previously thatA2/A = O(Γ−1), we have
A1 ' A and we obtain

κ20A ' φ (K) , (68a)

φ (K) = 2

∫ 1

−1/K

κ0 x(k;K) sin θ(k;K)

N⊥ (k;P,K)
dk, (68b)

as long as K <∼ 3.9207 (otherwise, N⊥ (k;P,K) vanishes
somewhere in the integration interval and the integral must
be split, see Appendix D). Like P(K), the function φ(K) is
universal and independent of Γ, see Fig. 8(a). Using the result
of Appendix D, it is well fitted over all K by

φ(K) ≈ π
[

1 + 3.373K2 + 0.606K4

1 + 1.819K2 + 0.276K4

]
. (69)

We are now able to simultaneously parametrize β and T
with K. Indeed, using Eqs. (60b) and (68a), we obtain H as a
function of K and Eq. (36) then gives T as a function of K

T (K) = γ cos θY +H(K), H(K) = γ
φ (K)

2ΓK2
. (70)

Finally, with β ' sinβ in Eq. (31), and having determined
P(K), H(K), and T (K), we obtain

β(K) ∼ P
[
H

γ

] 3
2
∫ π/2

θY

cos θ dθ√
H/γ + [1− T/γ] cos θ

. (71)

Equations (70) and (71) imply that β = O(Γ−3/2) if K =
O(1) and that β = O(Γ−1/2) if H/γ = O(1), that is if
K = O(Γ−1/2). Hence, the assumption β � 1 made in
deriving the solution above the contact point is verified in the
large-Γ limit. On the other hand, the radius of the liquid-vapor
interface is obtained by using Eqs. (60c) and (70) in Eq. (21)

Rd√
A

=
2ΓK3

φ(K)3/2 P(K)
. (72)

It is also interesting to compute the length `(K) that makes
half the perimeter of the vesicle. To this end, recall that

∂sk = −n⊥/κ0B. Hence ∂ks = −κ0B/n⊥. From this,
and assuming again thatK is less than 3.9207 so that n⊥ does
not vanish, we obtain

`(K) =

√
A

φ(K)

∫ 1

−1/K

dk

N⊥ (k;P,K)
. (73)

The evolution of ` as a function of K is shown in Fig. 8(b)
together with some representative vesicle shapes.

Finally, the shape of the vesicle is obtained by combining
Eqs. (66a) with Eq. (68a)

Z(k;K) =

√
A

φ(K)

∫ 1

k

eiθ(k
′;K)

N⊥(k′;P,K)
dk′, (74)

where −1/K < k < 1 and Z = x + iy. For a given value
of K, the above expression yields the shape of the vesicle, see
Fig. 9(a) and comparison to the numerics in Fig. 9(c). Strik-
ingly, this family of curves does not depend explicitly on Γ
and is therefore valid for arbitrary bending stiffness, provided
that β � 1. Nor does it depend on θY , which is understand-
able if there is no triple line within the vesicle. Additionally,
the second of Eqs. (70) indicates that a given vesicle shape,
identified by the single number K, is achieved over the locus
of a constant product

2HΓ

γ
≡ A

λ2BC
=

2A

`2BC

(
T

γ
− cos θY

)
, (75)

where the product in question is φ(K)/K2, see Fig. 9(b). For
a given experimental setup, the quantity A/`2BC is a constant
whereas the ratio A/λ2BC in Eq. (75) varies as the applied ten-
sion changes. Therefore, each T corresponds to a distinct
shape of the vesicle as in Figs. 6 and 9. However, the same
vesicle shape can be obtained at two distinct applied tensions
in two different systems characterized by two distinct values
of A/`2BC provided the ratio A/λ2BC is equal to the same con-
stant.

Two particular vesicle shapes stand out in Fig. 9(b). One
is at K = K0, where the capillary pressure vanishes. This
implies that the liquid-vapour interface is flat, i.e. that β =
0. This corresponds to the unique curve Z(k,K0), with
−1/K0 < k < 1, in agreement with the numerical curves
of Fig. 10(e). Interestingly, when the capillary pressure van-
ishes, the shape of the vesicle is the same as in the absence
of the fluid. Hence, we expect the curve Z(k,K0) to de-
scribe the ‘self-encapsulation’ state of the ‘dripping’ elastic
rod described in Ref. [47]. The second corresponds to the
limit K → ∞, where H → 0 so that T → γ cos θY and
κ` → 0, see Eqs. (37) and (70). For lower tensions, i.e.
T < T ? ≡ γ cos θY , the vesicle does not exist.

The fact that the curvature at the contact point tends to zero
when T → T ? suggests that the transition from a vesicle to a
complete wetting state occurs through a lengthening and thin-
ning of the region of contact as schematically shown in Fig. 2.
In this scenario, the contact region is made of straight seg-
ments of the sheet without any bending cost whose length can
be arbitrarily large. In this lengthening process of the con-
tact region, parts of the solid-vapor interface are progressively



13

0.0684

1.85

20

80

320

H
/�

 =
 T
/�

 -
 c

os
 �

Y

0

0.1

0.2

0.3

0.4

0.5

�
100 101 102 103

K = 0.1
K = 0.2

K = 0.44

� = 0

K = 10

� = 200, �Y = �/6

T = T ⋆

T = T �
num

K = 100
K = K �

y/
A

1/
2

0

0.5

1

1.5

2

2.5

3

x/A1/2

−1 0 1

K = 100
K = K0

K = 1

K = 0.5
K = 0.1
K → 0

y/
A

1/
2

0

0.5

1

1.5

2

2.5

3

x/A1/2

−1 0 1

(a) (b) (c)

FIG. 9. (a) Family of vesicle shapes (s ≤ `) given by Eqs. (74) as a function of K. The applied tension increases as K decreases and
K0 ' 1.77842 is the value for which β = 0. The vesicle shape approaches a circle of radius (A/π)1/2 as K → 0 and it barely changes
when K >∼ 10. (b) Hyperbolas 2H Γ/γ = c in the plane (H/γ,Γ) along which the vesicle shape does not vary. The value of c = φ(K)/K2

is indicated on the hyperbolas. (c) Comparison between vesicle shapes and those obtained numerically with Γ = 200 and θY = π/6
for the extreme values of T . T ?/γ ' cos θY is the numerical value of the tension below which the vesicle solution no longer exists and
T+

num/γ ' 0.9114 is the numerical value of the tension at which Fc = 0. K+ ' 0.447 is obtained by solving Fc = 0 using Eq. (76a) together
with the expressions (71) of β with Γ = 200 and θY = π/6.

replaced by a solid-liquid interface which is energetically fa-
vorable when ∆γ > 0, i.e. 0 ≤ θY < π/2.

C. Contact force

The existence of the vesicle state requires that Fc > 0. The
tension T+ for which Fc vanishes is also the bifurcation point
with the partial wetting solution. From Eqs. (32), we have
Fc(K) = limε→0 [n⊥(`+ ε)− n⊥(`− ε)]. The expression
of n⊥ at s = `+ is obtained from Eq. (57) with θD = θY −β.
The expression of n⊥ at s = `− is obtained by using Eqs. (61)
with k = −1/K, Eq. (68a) and the first of Eqs. (70). The
expression of the contact force as a function of K reads then

Fc(K)

γ
=

cos θY
cos (θY − β)

− cos θY −
F(K)

Γ
, (76a)

F(K) =
φ(K)

2K2

[
1 +

√
4 (1 +K)P + (K2 − 1)

2

]
.

(76b)

Numerically solving Fc(K) = 0 yields the root K+ and
therefore, from Eqs. (70), T+ as a function of θY and Γ, in
very good agreement with the numerical simulations (see the
curve T+

a in Fig. 2). In the large-Γ limit, we have β � 1 and
K+ = O(Γ−1/2). It is easy to find, with the aid of Eqs. (64)
and (69), that

K+ '
(

π/Γ

1− cos θY

)1/2

, (77)

corresponding to T+ ' cos2(θY /2). A more detailed calcu-
lation yields

T+ ' cos2(θY /2)− C+ (θY ) Γ−1/2, (78)

whereC+ (θY ) is a complicated function that is approximated
in the range 0 < θY < π/2 by

C+ ≈
√
π/8 θY

1− 0.296 θY + 0.235 θ2Y
. (79)

D. Limiting shape at T = T ?

We close this section by noting that, as T → T ?, the
boundary conditions of Eqs. (20) in the range |s| < ` are
κ = n‖ = 0 at s = `, so that the problem is mathematically
equivalent to the one studied by Mora et al. in Ref. [48] using
the method of Ref. [45] (with corrected boundary conditions).
The study in Ref. [48] addressed the shape of a fishing line de-
formed by the surface tension of a soap film. At the particular
point T = T ?, corresponding to K → ∞ in our theory, the
vesicle shape is thus given, up to a scale factor, by the solution
explicitly given in Ref. [48]. A similar shape is also found in
portions of solutions reported in Refs. [4, 45]. In Appendix E,
we provide an alternative formulation of the solution reported
in Ref. [48] based on the present theory.
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VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a comprehensive picture of
the bending of a thin elastic sheet under the opposite actions
of capillary forces and an external tension T . In order to elu-
cidate the essential mechanisms, we have focused on a sheet
that is much larger than the drop size, so that it can be mod-
eled as being infinitely long. This has the conceptual advan-
tage that a pure tension is automatically applied at the edges,
independently of the state of deformation in the wet part of the
sheet. In practice, we expect the limit of an “infinitely long”
sheet as soon as the dry part of the sheet is much larger than
the bendo-capillary length `BC. When T = 0, the system has
been used as a 2D model for “capillary origamis” and config-
urations of complete wetting had already be reported in this
context [4]. However, applying an external tension signifi-
cantly modifies the folding dynamics. Now, the conformation
of the system depends on T and upon varying this parameter,
we found the possibility of wrapping most of the liquid inside
a vesicle, which corresponds to the “budding transition” de-
scribed by Kusumaatmaja and Lipowsky [42]. In this regard,
one of the most dramatic results of our study is that, at the
vicinity of the transition from the wrapped vesicle state to the
complete wetting, the vesicle shape is universal – being inde-
pendent on the explicit value of the bending rigidity B, but
nevertheless distinct from a the circular shape that is obtained
for B = 0. This is surprising for one may expect a small B
to manifest itself only in boundary layers whose size is com-
parable to the bendo-capillary length `BC =

√
B/γ. One in-

tuitive explanation for this, which is motivated by the asymp-
totic analysis of Sec. V, is that the effective bendo-capillary
length is not `BC but rather the tension-dependent length scale
λBC =

√
B/2(T − γ cos θY ) . As the denominator of this

expression tends to zero, the balance of bending and capillary
forces is pronounced in the whole vesicle.

One of the questions that motivated the introduction of a
finite B in the model was whether this would induce a snap-
ping transition between the partial wetting and vesicle states,
i.e. would the former emerge subcritically from the latter. The
answer is yes, but not in the asymptotic limit Γ � 1 (i.e.
`2BC � A, where A is the drop area): numerically, there is a
finite value Γ+(θY ) below which the transition becomes sub-
critical. For small θY , we find that Γ+(θY ) scales as θ−2Y .
This observation suggests that the limit of a small θY is sin-
gular. While we have not studied the double limit Γ � 1 and
θY � 1, analyzing this asymptotic regime may enable one
to analytically capture the subcritical vesicle-partial wetting
transition.

Numerical simulations with lower values of Γ unexpect-
edly revealed that the partial wetting state can exist at applied
tensions T significantly smaller than the threshold for com-
plete wetting T ? = γ cos θY , see Fig. 6 (a). In that scenario,
the partial wetting state disappears upon decreasing T with-
out exhibiting the vesicle state. It gives way, at a limit point
T− close to T = 0, to the complete wetting state. If, subse-
quently, T is increased, one expects the vesicle state to emerge
from the complete wetting state at T ?. Further, at T+, the
vesicle state opens and the system jumps discontinuously to

the partial wetting state.
For an infinitely long sheet, the complete wetting state can

be realized only after infinitely long time. That is, if T < T ?,
the vesicle state disappears and the tension is not sufficient to
counteract capillary forces. Hence, an infinitely long stretch
of sheet is entrained by capillarity, in a never-ending process.
Consistently with this, T ? is precisely the value at which the
curvature at self-contact vanishes in the vesicle state. Geomet-
rically, this allows the self-contact point to become a segment
of line of arbitrary length. Interestingly, the corresponding
limiting shape coincides with that of a fishing line or hair that
collapses onto itself when dipped in a soapy solution [48].
This is a particular case in our theory and we thus provide
an alternative formula for what these authors call a “tennis
racket” loop, see Appendix E.

We have not studied Young’s angles in the range π/2 <
θY < π. The threshold for complete wetting, T ? = γ cos θY
suggests that in that case a complete wetting state may be re-
alized only if the sheet is under compression. This amounts
to completely modify the mechanics of the problem: for one
thing, an infinitely long sheet would buckle at arbitrarily small
compressive stresses. Thus, considering this range of Young’s
angle would require us to abandon our simplifying hypothesis
and include the sheet length, L, as a key parameter. These two
aspects, π/2 < θY < π and finite L, open interesting research
perspectives on this basic physical setting.

The experimental validation of the theory developed here
presents, at least, two difficulties. First of all, the theory ap-
plies to bi-dimensional systems and a cylindrical drop is un-
stable when its length exceeds few times its diameter. Sec-
ondly, for thin elastic objects, the applied force is quite small
and difficult to measure. These two issues have been ad-
dressed to some extend in Ref. [43] where a thin elastic fil-
ament floating at air-water interface is placed in contact with
a floating oil droplet which is flattened by gravity and behaves
essentially as bi-dimensional object. One extremity of the fil-
ament is attached to a translation stage and the other end to a
soft beam whose deflection yields the applied force (' µN).
Such a system offers the possibility to vary Γ between roughly
1 and 103 and to reproduce the bifurcation and state diagrams
shown in Fig. 6 as well as to study the vesicle shapes as the ap-
plied load varies. However, the Young’s contact angle is larger
than π/2 in the experimental setup considered in Ref. [43].
As a consequence, only the partial wetting state was studied.
Changing the materials used or chemically treating the fila-
ment surface to decrease θY would allow to test the present
theory.

To close this conclusion, we must mention the work by
Kusumaatmaja and Lipowski [42], who numerically studied a
(3D) axisymmetric bud forming in a membrane under tension
and in contact with two distinct fluids. This budding solution
is analogous to the vesicle solution described in the present
paper (the authors studied it as a function of the nondimen-
sionalised drop volume, i.e. in the present notation, as a func-
tion of Γ3/2). However, the presence of hoop stress prevented
them from obtaining analytical results for B > 0 and, in this
sense, the present work provides some analytical support to
Ref. [42].
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Appendix A: Minimization of the Lagrangian (11)

We give here details about the minimization of the La-
grangian (11) leading to the Eqs. (12). Requiring that the
derivatives of L with respect to β, ϑ, Rd and Lb vanishes,
leads to respectively

2γ Rd − 2Rd T cosβ − µ∂A
∂β

+ 2η Rd
ϑ cosβ

sinϑ
= 0, (A1a)

−µ∂A
∂ϑ

+ 2η Rd
sinβ

sinϑ

(
1− ϑ cosϑ

sinϑ

)
= 0, (A1b)

2γ β − 2T sinβ − µ ∂A
∂Rd

+ 2η
ϑ sinβ

sinϑ
= 0, (A1c)

−∆γ + T − η = 0. (A1d)

Equation (A1d) gives immediately

η ≡ n‖ = T −∆γ, (A2)

which is just Eq. (12b). Using the expression (10) of
A(β, ϑ,Rd), we find that

∂A
∂ϑ

=
2R2

d sin2 β

sin2 ϑ

(
1− ϑ cosϑ

sinϑ

)
. (A3)

Therefore, Eqs. (A1b) gives a relation between the two La-
grange multipliers µ and η

η = µRd
sinβ

sinϑ
. (A4)

Multiplying Eq. (A1a) by sinβ and Eq. (A1c) byRd cosβ and
subtracting the resulting equations, we have

2γ Rd(sinβ − β cosβ)− µ
[
∂A
∂β

sinβ

− Rd
∂A
∂Rd

cosβ

]
= 0. (A5)

Using Eq. (10) we find that

∂A
∂β

sinβ −Rd
∂A
∂Rd

cosβ = 2R2
d (sinβ − β cosβ). (A6)

Substituting Eq. (A6) into Eq. (A5) leads to the expression of
the Lagrange multiplier µ

µ ≡ p =
γ

Rd
, η ≡ n‖ = γ

sinβ

sinϑ
= γ

Rb
Rd

, (A7)

where we used Eqs. (A4) and (8) in the second equation. We
thus recover the first of Eqs. (12a). Eqs. (A7) reveal the La-
grange multipliers η and µ as the tension n‖ in the wet part
of the sheet and the pressure p in liquid volume, respectively.
Substituting Eqs. (A7) into Eqs. (A1c) (or Eq. (A1a)), we have

2γ β − 2T sinβ − 2γ
A
R2
d

+ 2γ
ϑ sin2 β

sin2 ϑ
= 0, (A8)

where we used ∂A/∂Rd = 2A/Rd. Finally, using Eq. (10),
we obtain

T = γ cosβ + γ
sinβ cosϑ

sinϑ
= γ cosβ + n‖ cosϑ, (A9)

which coincide with the second of Eqs. (12a).

Appendix B: Additional numerical results

Figure 10(a)-(c) shows the evolution of various quantities
characterizing the system shape as a function of T for two
values of Γ and θY = π/3. When Γ increases, the position
of the contact point along the x-axis, xD, tends to zero at the
transition between partial wetting and the vesicle state, i.e. at
T = T+, and stays small in the vesicle state, see Fig. 10(a).
This is consistent with the observation that the length of the
sheet forming the vesicle, `, is close to D. Therefore, es-
sentially all the liquid is encapsulated in the vesicle as Γ in-
creases. The contact force, Fc, vanishes at T = T+ and
increases almost linearly when the applied tension decreases
and reaches a value γ − γ cos θY at T = T ? when Γ → ∞,
as shown by the asymptotic theory presented in Sec. V (see
Fig. 10(b)).

Figure 10(c) shows that κ` is independent of Γ at T = T ?.
It also shows that the tension at which β = 0 depends on Γ
in agreement with the results reported in Fig. 6. However,
the values of κ` at β = 0 is again independent on Γ. This
suggests that the vesicle shape does not depend on Γ for some
particular values of the tension as confirmed by Fig. 10(d)-
(e). However, as shown in Fig. 10(f), the vesicle shape at
T = T+ does depend on Γ and approaches a circular shape
of radius (A/π)1/2 as Γ→∞ (see also Fig. 9). This striking
observation is fully explained by the asymptotic theory, see
Sec. V, which shows that the vesicle has a given shape when
(T − γ cos θY )Γ is constant. This is obviously the case when
T = T ? ≡ cos θY and the asymptotic theory shows that this
is also the case when β = 0. However, the product (T −
γ cos θY )Γ and, hence, the vesicle shape, does change with Γ
at T = T+(θY ,Γ).

Appendix C: Algorithm to find Γ+
c

By definition, Γ+(θY ) is the value of Γ at which the self-
contact state with a vanishing contact force (Fc = 0) switches
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FIG. 10. (a)-(c) Evolution of various quantities characterising the system shape as a function of T/γ for θY = π/3 and Γ = 30 and 200. As
in Fig. 6, the blue solid and dashed curves correspond respectively to the stable and unstable branches of the partial wetting state whereas the
red curves refer to the vesicle state. Panel (c) shows that κ(`) is independent on Γ when T = T ? = cos θY and β = 0. (d)-(f) Influence of Γ
and θY on the vesicle shapes at three different values of T . The shape of the vesicle is independent on Γ and θY when T → T ? and β = 0
whereas it does depend on these parameters at T = T+ where the shape approaches a circular shape of radius R = (A/π)1/2 as Γ increases,
see panel (f).

from the unstable to the stable branch of the partial wetting
state at a given θY . Self-contact solutions of Eqs. (24) can
be computed by adding two additional shooting parameters,
T and `, which are fixed thanks to two additional boundary
conditions, θ(`) = 0 and x(`) = 0. The particular value of
the tension at which such a state is found is, by definition, T+.
This procedure allows the self-contact state with a vanishing
contact force to be computed for given values of Γ and θY .

To determine Γ+ numerically, Γ is increased by small steps
for a given value of θY . When Γ < Γ+, the self-contact state
belongs to the unstable branch of the partial wetting state and
the transition is subcritical and, when Γ > Γ+, it belongs to
the stable branch and the transition is supercritical.

To determine at which branch the self-contact state be-
longs to, the self-contact solution is perturbed at each value
of Γ by slightly increasing T , i.e. T = T+ + ∆T with
0 < ∆T/T+ � 1. If the self-contact solution belongs to
the unstable branch, then the perturbed solution will feature
some self-crossing, i.e. mins x(s) of the perturbed solution
near s = ` is negative. If mins x(s) > 0, then the self-contact
solution belongs to the stable branch. At a given θY , Γ+ cor-
responds thus to the value of Γ at which mins x(s) changes
its sign.

Appendix D: Vesicle with K >∼ 3.9207

In Sec. V B, we assumed that κ decreases monotonously
from κ0 > 0 to κ` < 0. This assumption ceases to hold
for the range 3.9207 <∼ K < ∞. In that range of values,
n⊥ necessarily vanishes somewhere along the curve and the
formulas of Sec. V B must be revised. The change of sign of
∂sκ happens when N⊥ vanishes, that is at k = kmin, solution
of

P
K3

+
1 + kmin

4

(
1 + k2min −

2

K2

)
= 0. (D1)

Since the above equation is of third order, a closed form ex-
pression can be written for kmin in terms of P and K:

kmin = −1

3
+
W 1/3

3
− 2

W 1/3

(
1

3
− 1

K2

)
, (D2)

where

WK3

2
= 9K − 5K3 − 27P +

√
27
[
−2 + 5K2 (D3)

− 4K4 +K6 − 18KP + 10K3P + 27P2
]1/2

.

Starting from the lowermost point of the vesicle, i.e. x =
y = s = 0, k first decreases from 1 to kmin < 0, before
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z1 = Interpolation[Table[{kt, NIntegrate[Exp[I theta1[s]]/n, {s, kt, 1}]}, {t, 0, 1, .025}], 
InterpolationOrder -> 1];
z2[k_] := z1[kmin] + Exp[2 I theta1[kmin]] Conjugate[z1[kmin] - z1[k]];
Show[ParametricPlot[{Re[z1[k]], Im[z1[k]]}, {k, kmin, 1}], 
ParametricPlot[{Re[z2[k]], Im[z2[k]]}, {k, kmin, 0}], 
ParametricPlot[{-Re[z1[k]], Im[z1[k]]}, {k, kmin, 1}], 
ParametricPlot[{-Re[z2[k]], Im[z2[k]]}, {k, kmin, 0}], PlotRange -> All]

FIG. 11. Limiting vesicle shape at the verge of complete wetting,
and the Mathematica code used to draw it. This is the same shape as
the “tennis racket” solution in Ref. [48].

increasing again from kmin to−1/K. Starting from k = 1 and
as long as n⊥ > 0, the function θ(k;K) has the expression
[see Eq. (62)]

θ1(k) =

∫ 1

k

k′ dk′

N⊥ (k′;P,K)
, kmin < k < 1 (D4)

Once kmin is reached, n⊥ changes sign and, subsequently,

θ(k;K) = θ2(k) = θ1(kmin) +

∫ k

kmin

k′ dk′

N⊥ (k′;P,K)
, (D5)

where kmin < k < −1/K andN⊥ is still the positive function
defined in Eq. (61b). Note that θ2(k) = 2θ1(kmin;K)−θ1(k),
so that only θ1(k) needs to be evaluated in practice. The equa-
tion that yields P(K) is now∫ 1

kmin

k dk

N⊥ (k;P,K)
+

∫ −1/K
kmin

k dk

N⊥ (k;P,K)
=
π

2
. (D6)

Once P(K) is determined, we may compute the complex
coordinates

η1(k) =

∫ 1

k

eiθ1(k
′) dk′

N⊥ (k′;P,K)
, kmin < k < 1, (D7)

of which κ0x1(k) and κ0y1(k) are the real and imaginary
parts, respectively [see Eq. (66a)]. Similarly,

η2(k) = η1(kmin) +

∫ k

kmin

eiθ2(k
′) dk′

N⊥ (k′;P,K)
, (D8)

where kmin < k < −1/K. Only the function η1(k) needs to
be evaluated, for we have

η2(k) = η1(kmin) + e2iθ1(kmin) [η∗1(kmin)− η∗1(k)] , (D9)
where η∗1 is the complex conjugate of η1. Combining the ex-
pressions just obtained, one may derive

φ(K) = Aκ20 = −2

∫ 1

kmin

<[η1(k)]=[η′1(k)]dk

+ 2

∫ −1/K
kmin

<[η2(k)]=[e2iθ1(kmin)η′∗1 (k)]dk, (D10)

where <[·] and =[·] denote real part and imaginary part, re-
spectively, and η′1(k) is the derivative of η1 with respect to k.
To close this section, let us compute the length of the curve
that makes up the vesicle. One has ∂sk = −n⊥/κ0B. Hence
∂ks = −κ0B/n⊥. From this, and bearing in mind the change
of sign of n⊥, one obtains

`(K) =

√
A

φ(K)

(∫ 1

kmin

dk

N⊥ (k;P,K)

+

∫ −1/K
kmin

dk

N⊥ (k;P,K)

)
. (D11)

Appendix E: The “tennis racket” shape

We conclude by giving the solution as K →∞ (T → T ?),
which is an alternative formulation of the solution of Ref. [48].
In that limit, P ∼ −3K3/14 and

N⊥ →
√

1− k
√

1 + 7k + 7k2 + 7k3/
√

28, (E1a)

W →
(

11 + 3
√

57
)
/7, kmin → −0.165785 . . . (E1b)

The profile shown in Fig. 11 is obtained by evaluating
Eq. (D4) together with the real and imaginary parts of the
functions (D7) and (D9) and using φm = φ(K → ∞) '
6.89495. Note that, contrary to Ref. [48], no root-finding is
necessary to obtain the solution.
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