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We study plastic strain during individual avalanches in overdamped particle-scale molecular dy-
namics (MD) and meso-scale elasto-plastic models (EPM) for amorphous solids sheared in the
athermal quasi-static limit. We show that the spatial correlations in plastic activity exhibit a short
lengthscale that grows as t3/4 in MD and ballistically in EPM, and is generated by mechanical
excitation of nearby sites not necessarily close to their stability thresholds, and a longer lengthscale
that grows diffusively for both models and is associated with remote marginally stable sites. These
similarities in spatial correlations explain why simple EPMs accurately capture the size distribution
of avalanches observed in MD, though the temporal profiles and dynamical critical exponents are
quite different.

I. INTRODUCTION

Many driven disordered solids, ranging from glasses to
granular matter to magnetic systems, respond via com-
plex avalanches that are difficult to predict [1–3]. A
better understanding of these dynamics, even in simple
model systems, would aid in avalanche detection and ma-
terial design.

We focus here on amorphous solids subject to slowly
imposed shear, which fail via a broad spectrum of
avalanches of plastic deformation caused by redistribu-
tion of stress after local yielding events [4–7]. The
highly anisotropic and long-ranged nature of the stress
redistribution leads to a characteristic structure of the
avalanches, where correlations are strongest along the di-
rections of maximum imposed shear. Most previous work
has focused on the distribution of avalanche sizes [7–13]
and the spatial correlations of plastic strain which de-
velop over the course of successive avalanches [14–18].
More recently, the dissipation rate as a function of time
during individual avalanches was studied in experiments
on bulk metallic glass (BMG) pillars [19], and in a com-
puter model [11]. The temporal response was observed
to be similar to that in previously explored dynamically
critical systems [4], and explained using a mean-field the-
ory [19]. However, surprisingly, no work, in either ex-
periment or simulation, has yet characterized how the
individual avalanches proceed in time and space.

To address this question we turn to computational
models, including particle-based simulations, such as
molecular dynamics (MD) and related energy minimiza-
tion techniques, which have been the workhorse for mod-
eling sheared amorphous solids for decades, as well as
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elasto-plastic models (EPMs). EPMs assume an amor-
phous solid is composed of meso-scale regions that will
yield when the local stress reaches a specified thresh-
old. There are many different versions of EPMs [20] that
differ in how they introduce disorder, evolve propogat-
ing stress fields, etc. In perhaps the simplest class of
EPM [7, 8, 21–23] the system is evolved quasi-statically,
and, after any instability, the stresses are fully equili-
brated over all space – effectively instantaneously – be-
fore allowing for any subsequent yielding. This is in con-
trast to MD simulations where, after a local rearrange-
ment, the stress change propagates continuously in time
and space – diffusively for overdamped systems [24] and
ballistically for underdamped systems – away from the
plastic instability.

Despite the fact that the quasi-static EPMs are com-
pletely devoid of any realistic description of the dy-
namics of stress redistribution, they capture the criti-
cal scaling exponents observed in overdamped MD sim-
ulations [9, 25, 26]. They are therefore, in some sense,
unreasonably good, and the reason for their fidelity de-
mands an explanation.

[Revision: As a first step to elucidate this issue, in
this paper we propose to compare avalanche dynamics in
two very different systems that, despite their differences,
share the same static exponents: i) a realistic particle
based simulation (falling into the overdamped universal-
ity class) ii) a simple deterministic EPM, with instan-
taneous stress redistribution devoid of any realistic tem-
poral stress redistribution or mechanical non-linearities
present in the particle model.] We show that while the
temporal profile of the avalanches is quite different in
the two models – the EPM agrees with previously known
mean field results while the MD does not – the spatial
structure of the correlations that develop is strikingly
similar.

[Revision: The spatial correlation functions of plas-
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tic strain within a single avalanche are anisotropic with
strong correlations along the directions of maximum
stress as previously seen in the plastic strain accumu-
lated over many successive avalanches [14, 15, 17]. The
structure of the correlation function and its evolution in
time is similar in both MD and EPM. During the course
of a single avalanche, the correlation function remains
strongest along the principal shear axes in a strip which
does not widen appreciably in time but does lengthen.
At any given time, the correlations along the strip ini-
tially decay with distance as e−r/ξexcite and cross through
zero at a finite distance, ξmarginal.] We show that ξexcite
grows ballistically in time for the EPM, and we argue
that the reason for this ballistic propagation is the “me-
chanical excitation” mechanism suggested by Idema and
Liu [27]: one event generates a stress redistribution that
causes nearby sites to exceed their threshold for stabil-
ity, triggering new events. If the timescale over which an
unstable site transforms is short compared to the propa-
gation of the stress, then the resulting dynamics are rem-
iniscent of toppling dominos, with a ballistic wavespeed
equal to the spacing of the dominos divided by the “top-
pling time” – the time it takes one, once destabilized, to
fall onto its neighbor. ξexcite grows less quickly in time
for the MD, but it is still strongly super-diffusive, sug-
gesting that a similar mechanism is at play and hinting
that the “toppling time” in MD is more complicated than
in EPM. In contrast, ξmarginal grows diffusively in time
for both models, and it has a pronounced system-size de-
pendence. At long distance the low positive and negative
contributions of the quadrupolar stress interactions add
up as a mechanical noise and are expected to drive lo-
cal zones close to marginality [28–32]. The observed size
dependence suggests that ξmarginal is the length scale at
which the weakest sites in the system are close enough to
the triggering event to be destabilized.

II. METHODS

A. Atomistic simulations

[Revision: Our MD glass former consists of a stan-
dard two dimensional 50:50 binary mixture of ‘large’ and
‘small’ particles of equal mass interacting via a short-
range non-additive potential [33]. Pairs of particles i, j
at distance rij from each other interact via a modifed
inverse-power law pairwise potential

ϕIPL(rij) =

 ε

[(
σij

rij

)β
+

q∑
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(
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0 ,
rij
σij
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,

(1)
where ε is a microscopic energy scale. Distances in this
model are measured in terms of the interaction length-
scale σ between two ‘small’ particles, and the rest are
chosen to be σij = 1.18σ for one ‘small’ and one ‘large’
particle, and σij =1.4σ for two ‘large’ particles. The co-

efficients c2l are determined by demanding that ϕIPL(rij)
vanishes continuously up to q derivatives [33]. In order
to create poorly annealed glasses without permanent lo-
calization, we minimize liquids that are equilibrated at a
high temperature T = 2, much higher than the computer
glass transition Tg ' 0.5. A detailed discussion on how
the parent temperature of the equilibrium liquid affects
the elastic heterogeneities and mechanical response of the
system can be found in Refs. [34, 35].]

We have considered different system sizes L =
80, 160, 320, and 640, respectively[Revision: , with num-
ber density ρ = N/V = 0.86]. Glasses are athermal and
quasistatically sheared (AQS) up to 50% of strain (with
strain step ∆γ = 10−4), and data reported here corre-
spond to strains ranging from 20 to 50 %. [Revision: Our
protocol is a simple shear deformation along the x-axis,
see SM for typical stress-strain curves.]

Variations in strain step are discussed in the SM. At
the onset of each instability, we trigger the avalanche by
affinely deforming the system and subsequently let the
system relax via gradient descent dynamics according to
ṙ = −D∇U , with coordinate positions r and potential
energy U . During the minimization process, we mon-
itor the plastic deformation (i.e. the incremental non-
affine displacement) in the standard way by computing
theD2

min field [36] between snapshots separated by 2τMD,
where the microscopic time is defined as τMD = σ2/D
with σ a typical particle diameter and D the bare trans-
lational diffusion coefficient. We have collected 20k and
1.2k avalanche dynamics for the smallest (L = 80) and
largest (L = 640) system, respectively. [Revision: The
avalanche size S is defined as the total energy drop. The
beginning of the avalanche at tstart is defined when the
energy dissipation rate −dU/dt > 0.1 and the end of
the avalanche at tend is located from the latest time at
which −dU/dt > 0.1. From this procedure we compute
the avalanche duration as T = tend − tstart. This proce-
dure, chosen for its simplicity, is different from the one
described in Ref. [32] which instead focused on the time
needed to destabilize the first site and time to reach the
final mechanically equilibrated state.]

B. Persistent homology

[Revision: In order to break up large avalanche into a
sequence of individual plastic events, that can be com-
pared with EPM, we are inspired by a recently proposed
persistent homology method [37]. Throughout the pa-
per, we refer to the location of each individual event as
a ”site”. During each avalanche, we record the incre-
mental D2

min plastic field which generates a representa-
tion of the activity on a grid of space-time regions, see
Fig. 1(a). The spatial grid size is set to 2 particles di-
ameters and the temporal grid size is set to 2 MD time
units. The D2

min of a cell corresponds to the sum over all
D2
min particle values within the cell. Our goal is to ag-

nostically break-up high local maxima of this space-time
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field. Here, we first sort all D2
min values from the largest

to the lowest up to 10−3 (below which no actual plas-
tic rearrangements occur). We then prune this sorted
list and create a new cluster for each local maximum
that does not belong to an existing cluster, where the
clustering distance criterion is set to the first neighbors
on the space-time grid. When a new cluster is born we
record its D2

min value as its birth. Birth values are only
achieved when the maxima is not adjacent to any exist-
ing clusters. When two existing clusters merge we record
their D2

min value as their death. No additional cluster
is created after merging. Surviving clusters die when
reaching the lowest D2

min value. We can then place each
cluster in a birth-death diagram (Fig. 1(b)) and com-
pute their persistence p as the distance of the cluster to
the line y(death) = x(birth). Events that correspond
to short space-time fluctuation will be close to this line.
When looking at the probability distribution of persis-
tence P (p) averaged over many avalanches (Fig. 1(c)),
we observe a bimodal distribution that indicates two dif-
ferent populations of individual events. Selecting events
that have a large persistence p > 0.1 and superimposing
their birth time on the avalanche activity time profile
(energy dissipation −dU/dt), we find that the identified
persistent clusters perfectly match the time location of
large dissipation (Fig. 1(d)). For each persistent cluster,
we have access to its spatial position in addition to its

FIG. 1. Persistent homology clustering. [Revision: (a)
Space-time map of the plastic activity monitored by the D2

min

field for a typical avalanche in a glass with N = 160 × 160.
(b) Birth-death phase diagram of individual local maxima of
our D2

min grid. The persistent p of a given event is given as
the distance to the line y(death) = x(birth). (c) Probability
distribution of the persistent averaged over an ensemble of
avalanches. The red area indicates our threshold p > 0.1 for
persistent events. (d) Superposition of the actual dissipation
−dU/dt and birth time of individual events with p > 0.1.)]

birth time. This allows us to construct the same spatio-
temporal map of plastic activity as in our EPM, with
individual events occurring at ”sites” corresponding to
these persistent peaks.]

C. Mesoscale model

For the EPM, we use the same shear transformation
based model in [38] with the same initialization and evo-
lution rules but with different loading – forward shearing
instead of cyclic. The dynamical update rules under an
applied global shear strain are (i) for a given stress field,
synchronously allow all sites over threshold to yield and
recompute the stress field everywhere; (ii) repeat (i) until
all sites are below threshold; and (iii) advance the glob-
ally applied total strain until precisely one site is at its
stability threshold. The synchronous update of unstable
sites defined in step (i) sets the time unit of the model.

In our elasto-plastic model [38], the 2D plane is dis-
cretized into sites. Each site has an elastic strain εe and
a plastic strain εp, with the total strain defined as the
sum of the two: εt = εe + εp. The stress σ, is propor-
tional to εe : σ = 2µεe, where σ is defined in terms of the
Cartesian components of the stress: σ = (σxx − σyy)/2
and, similarly, εe = (εxxe − εyye )/2. We set µ = 1 through-
out this study, so σ and εe are numerically equal. When
the magnitude of the stress at a site exceeds the plastic
threshold, set to 1 here, we increment the plastic strain
at the site by in the same direction as σ ( +2 for σ ≥ 1,
-2 for σ ≤ −1), and update the stress at the remaining
sites according to the rules of linear elasticity analogous
to Eshelbys classical solution for a plastic inclusion in
an elastic matrix. [Revision: Throughout this paper, we
use the terms yield stress and threshold interchangeably.]
The increment value 2 is chosen to ensure a single-valued
strain energy function. The total number of avalanches
collected is 36.8K; obtained from shearing 50 different
systems (L=256). [Revision: The avalanche size S is de-
fined as the total stress drop which is proportional to
the total number of plastic transformations. The dura-
tion, T , is defined as the total number of sweeps in the
avalanche. As time in the EPM is discrete and defined
by the number of sweeps accumulated during the course
of the event, the energy dissipation rate is simply defined
as the total energy drop in a given sweep.]

III. RESULTS

A. Spatio-temporal plastic evolution

We first qualitatively describe a typical avalanche in
both models. Fig. 2 highlights individual sites that have
yielded, colored according to the time at which the site
yielded. The pattern which emerges is a set of clus-
ters, where all sites within a cluster are nearly the same
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color, extend along a direction of maximum shear, and
almost continuously fill space, [Revision: additional MD
avalanches are shown in the SM].

In contrast, these larger clusters are typically separated
from one another by gaps of material. Nearby clusters are
not necessarily triggered sequentially in time, suggesting
that gaps between clusters correspond to regions of mate-
rial that are stable enough to survive the increased local
stresses at the edges of the growing cluster. The same in-
termittent activity is found in depinning avalanches with
long-ranged interactions [39, 40].

B. Plastic activity profile

Given this qualitative similarity in the spatio-temporal
structure, and the utility of mean-field models in pre-
dicting temporal dynamics in depinning and other dis-
ordered critical phenomena, we next quantitatively ana-
lyze the temporal activity profiles in MD and EPM. In
Fig.3(a) and (e), we plot the dissipation rate −dU/dt
as a function of the normalized duration t/T for a few
typical avalanches. [Revision: In MD, we find intermit-
tent bursts of activity followed by long quiescent peri-
ods, so that the energy dissipation magnitude spans six
decades. Waiting times are associated with marginally
unstable sites with ∆σ+ = σi − σth

i > 0, with σi and
σth
i the local stress and local yield stress of the unstable

site i. For a typical saddle node bifurcation, we expect
that the waiting time ∆tw before departure will scale as

∆tw ∼ ∆σ
−1/2
+ [41].] In contrast, unstable sites in our

EPM transform instantaneously regardless how far they
are over threshold, termed a uniform activation rate. As
a consequence, activity fluctuations in EPM (Fig.3(e))
vary by less than an order of magnitude.

Another difference between the MD and EPM can be

FIG. 2. Spatio-temporal plastic evolution. Typical
spatio-temporal map of an avalanche in Molecular Dynamics
(MD) with gradient descent dynamics (left) and in the Elasto-
plastic Model (EPM) with synchronous dynamics (right).
Each plastic event is colored according to its normalized birth
time t/T , with T the avalanche duration. Insets show the
particle resolved plastic field (left) and EPM local stress re-
distribution (right). [Revision: System sizes are L = 320 and
L = 256 for MD and EPM, respectively. For visibility only a
subset of the system is shown for the EPM.]

seen by plotting the avalanche size S versus duration T ,
Fig.3(b) for MD and (f) for EPM. We find that MD data
scatter much more than our EPM. This is similar to pre-
vious results comparing an EPM with a uniform activa-
tion rate to one with a so-called progressive rate model,
where the activation rate is a function of the overshoot
σi−σth

i [32, 42]. In both MD and EPM, the average size
for a fixed duration show a power law 〈S〉 ∝ T δ, where
the dynamical exponent δ = df/z with df and z the static
and dynamical fractal exponent, respectively. Indepen-
dent estimation of df and z are reported in the Supple-
mental Material (SM) [43] and consistent with previous
works [11, 13]. The EPM gives a larger δ than MD as the
dynamical exponent z ' 0.6 is lower than MD (z ' 1.55),
although it is consistent with previous EPM-type mod-
els [11], which used continuous-in-time dynamics rather
than the automaton rules we apply here.

More surprisingly, in MD we find a discrepancy be-
tween average avalanche size for a fixed duration 〈S〉T
and the average duration for a fixed size 〈T 〉S . We find
that the average duration 〈T 〉S is system-size dependent
and grows with L as Lν , see Fig.3(d). [Revision: We can
understand this size effect as follows. During avalanches,
the system visits configurations with unstable sites with
∆σ+ > 0. We expect the average stability of the least un-
stable site to decrease with system size as 〈∆σ+〉 ∼ L−η.
This scaling of the characteristic overshoot for unstable
sites is different from the previously reported scaling for
thresholds associated with marginally stable sites [26, 44–
46]. In our EPM model, the marginally unstable sites
immediately yield and generate new stress fields. The
situation is different in our MD under gradient descent
dynamics. As discussed above, a waiting time ∆tw as-
sociated with the departure from a saddle-node emerges.
The average waiting time caused by this marginal trigger-
ing will thus be size dependent and follow 〈∆tw〉 ∼ Lν .
We find a good collapse of MD data for ν ' 0.8. A similar
finite-size effect, though with a different exponent, was
previously noticed in progressive rate EPMs [32, 42].]

In Fig.3(c) and (g), we show the normalized average
activity profile 〈A〉/〈A〉max (with A = −dU/dt) plotted
against the reduced time t/T in the MD and EPM respec-
tively. For the EPM and avalanches within the scaling
regime, we find that profiles are symmetrical and well
modelled by f(u) = (u(1− u))δ−1, with u = t/T , consis-
tent with previous works and mean field theories [11, 47].
For large avalanches in EPM, with long duration beyond
the scaling regime where system size effects become rele-
vant, one finds a profile which departs from that scaling
and is skewed with more activity at early times. A similar
transition to skewed profiles for large evens was recently
observed in granular flows [48]. In MD, the profile devi-
ates strongly from the f(u) = (u(1 − u))δ−1 form. This
is due to inactive periods with almost zero dissipation.
The average activity at the mid-point of the avalanche
is systematically lower than at its beginning, the latter
being by definition always active. We speculate that one
would recover a symmetrical activity profile by introduc-
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ing inertia in the dynamics, which would facilitate barrier
crossing in weakly unstable regions.

C. Spatio-temporal plastic correlation

We next analyze the spatial correlations that build up
during the avalanche. To do this, we define a 2-points
2-times correlation function C(~r0, ~r0 + ~r, t0, t0 + ∆t) =

〈∆P (~r0, t0)∆P (~r0 + ~r, t0 + ∆t)〉, with ∆P = P − P and

FIG. 3. Plastic activity profile. (a) Typical dissipation
rate −dU/dt in MD plotted as a function of the reduced time
t/T for duration 1500 < T < 3000 and L = 320. (b) Scatter
plot of avalanche size versus duration. The Blue and black
empty symbols are running means 〈S〉 ∼ T and 〈T 〉 ∼ S,
respectively. Solid and dashed lines indicate the scaling 〈S〉 ∼
T δ, with exponent δ = 0.65 and δ = 4/3, respectively. (c)
Average normalized activity for 400 < T < 600 (orange region
in (b)). (d) Average duration 〈T 〉 at a fixed avalanche size S
for different system size. Insets show the same data collapsed
using 〈T 〉L−ν , with ν ' 0.8. Panels (e), (f), (g) and (h)
show the same results as in (a), (b), (c), and (d) but for the
EPM where −dU/dt is measured as the energy dissipation per
sweep and L = 256.

where ... and 〈...〉 represent a spatial and ensemble aver-
age, respectively. Here, P (~r, t) corresponds to the incre-
mental plastic field measured at a given time t. [Revision:
For both MD and EPM avalanches, P (~r, t) corresponds
to a binary field of 0 and 1 for inactive or active sites,
respectively.]

Fig. 4(a) shows the MD normalized correlation
C(x, y)/Cmax for delay times ∆t = 4 (left) and 40 (right).
There are positive correlations along the directions of im-
posed shear (the x and y axes). The spatial extent of the
region of positive correlation grows with ∆t [49]. The
same data are shown for the EPM in Fig. 4(e) for ∆t = 2
and 6 where we observe the same qualitative behavior.

In Fig. 4 (b) and (f), we plot C(x) along the x-axis
at various ∆t. C(x) decays exponentially at small x,
and we use the exponential decay rate to define a short-
range lengthscale ξexcite. [Revision: In practice, fits only
include data with C(x)/Cmax > 0.05.] Despite the ini-
tial exponential decay, C(x) stops behaving exponentially
and crosses through zero at a finite x, which corresponds
to the lengthscale at which the plasticity starts to become
anti-correlated, [Revision: see Fig. 4 (c) and (g). We use
this zero crossing to define a second, larger lengthscale,
ξmarginal. Note that for large system sizes and large ∆t
where our statistics is poor, several negative grossing can
occur. In such a case, we evaluate an estimate of the er-
ror on ξmarginal as the spread between the first negative
crossing and the median over all negative crossings. Im-
portantly, we observe that ξmarginal is size dependent and
grow with L.] We also look at correlation in the trans-
verse direction, C(y) at a small, fixed x (xMD = 50 and
xEPM = 40). [Revision: Results are shown for various
∆t in Fig. 4 (d) and (h). We find that C(y) is well mod-

eled by a Gaussian, C(y) ∼ e−(y/w)2/2, which allows us
to quantify the width w associated with plastic propaga-
tion.]

In order to improve the statistics of the particle-based
correlations, we assume time-translational invariance and
average over t0. [Revision: Data examining the validity
of this assumption is shown for both MD and EPM in
Fig. 5(a) and (b). Here, we plot the correlation along the
principal shear axis (x-axis) and check to what extent
C(t0 = 0, x) = C(t0 > 0, x) is valid. We find that time
translation invariance holds relatively well in the early
decay. We find a slightly larger likelihood to find more
plasticity further in space for t0 > 0 than for t0 = 0. This
trend can be explained by the progressive accumulation
of stress redistribution across the system, which makes
it more likely for marginal sites with ∆σ− < 0 to yield
away from the original source. We fix t0 = 0 to extract
the negative crossing below in Fig. 6, but we average over
t0 to study the initial decay of C(x).]
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FIG. 4. Spatio-temporal plastic propagation. [Revision:
(a) particle-based (MD) 2-points 2-times normalized correla-
tion function C(x, y)/Cmax in log10 for ∆t = 4 and 40. White
regions correspond to a negative correlation. The system size
is L = 320. (b) Correlation function along the main stress
redistribution for different delay time ∆t = 4, 10, 20, 40, 60,
and 100. Inset shows the correlation in semi-log scale. Solid
lines are fits of the form C(x)/Cmax ∼ e−x/ξexcite , with ξexcite
a short length scale decay. (c) Change of C(x)/Cmax for dif-
ferent system size at a fixed ∆t = 6. Inset shows the negative
crossing in linear scale. (d) Transverse normalized correla-
tion function C(y)/Cmax at a fixed xMD = 50 for different

∆t. Solid lines are fits with C(y) ∼ e−(y/w)2/2, where w is
the width of the plastic localization. (e), (f), (g), and (h)
are the same results as in (a), (b), (c) and (d) but for our
mesoscale model (EPM) with ∆t = 1, 2, 4, 6, 8, and 12 and
L = 256. C(x)/Cmax in (g) is for ∆t = 3. C(y)/Cmax in (h)
is evaluated at xEPM = 40. The meaning of ξexcite, ξmarginal,
and w is illustrated in (a) and (e).]

FIG. 5. Time translational invariance. [Revision:
(a) Comparison of the MD incremental correlation C =

〈∆f(~r0, t0)∆f(~r0 + ~r, t0 + ∆t)〉 for t0 = 0 (green) and t0 ≥ 0
(black). (b) Same data as in (a) for our EPM but with t0 = 0
(green) and t0/T = 1/5 (black). System sizes are L = 320
and L = 256 for MD and EPM, respectively.]

D. Spatio-temporal plastic propagation

We now discuss how the short correlation decay ξexcite,
the long range marginal length ξmarginal, and the plastic
width w vary with ∆t as well as with the system size L.
[Revision: We remind the reader that the length asso-
ciated with an EPM site corresponds to a few particle
diameters in MD.] In Fig. 6 (a) and (c), we show that
these three lengths exhibit a power-law evolution with
∆t. The trends are similar in both MD and EPM. ξexcite
has the strongest ∆t dependence: it is scales like ∆t3/4 in
the MD and is nearly ballistic in the EPM. ξmarginal scales

diffusively as ∆t1/2 in both the MD and EPM. w has a
very weak dependence on ∆t which indicates that for any
given avalanche, the correlations get more an more con-
strained to lie along the axes of shear as time goes dur-
ing the course of the avalanche. [Revision: We speculate
that the weak growth in time of plastic width is due to
the negative interference of the stress redistribution that
promotes unidirectional plastic propagation.] Finally, in
Fig. 6 (b) and (d) we show how ξmarginal and ξexcite
depend on system size for a fixed, small ∆t. In both
MD and EPM, ξexcite has relatively little dependence on
system size, while ξmarginal has a more pronounced sys-

tem size dependence, scaling approximately like L1/3 and
L2/3 in the MD and EPM respectively. [Revision: The
present size effect can be explained by the presence of
marginally stable sites with ∆σ− = σi − σth

i < 0 (to be
contrasted with the marginally unstable sites discussed
above), and the long-ranged nature of the stress gener-
ated from the initial source. We know from previous
works that 〈∆σ−〉 ∼ L−1.21 [46] and 〈∆σ−〉 ∼ L−1.35 [26]
for MD and EPM, respectively. Moreover the Eshelby
stress kernel decays as ∼ r−d. Thus, we expect a char-
acteristic scale, ξmarginal, to emerge where the Eshelby
kernel will decay to the level of ∆σ− for a given system



7

FIG. 6. Plastic length scales. [Revision: (a) MD data for
ξexcite (orange) and ξmarginal (purple) plotted against ∆t with
L = 320. The purple line corresponds to the diffusive response
associated with the stress field generated by a single event at
∆t = 0. The orange line indicates a superdiffusive regime with
∼ t3/4. Gray data are the plastic width w extracted from
fitting C(y). The gray line indicates a subdiffusive regime

with ∼ t1/10. (b) ξexcite and ξmarginal for ∆t = tSTZ = 6
plotted as a function of the system size L. ξmarginal(L) scales

as ∼ L1/3. (c) and (d) are the same results as in (a), (b),
but for our mesoscale model (EPM) with L = 256. The solid
orange line in (g) indicates v0t, with v0 = 3. Results in (d) are

for ∆t = 1 where ξmarginal(L) scales as ∼ L2/3. ξexcite(L) is
fairly constant for both MD and EPM. The mean and errorbar
for ξmarginal are estimated as the arithmetic mean and the
spread between the first negative crossing and the median
over all negative crossings (if any), respectively.]

size. Beyond that length scale no marginal triggering
will be possible. From the scaling of ∆σ−, we expect
ξmarginal ∼ L0.6 (for MD) and ξmarginal ∼ L0.725 (for
EPM). Our data for ξmarginal show less sensitive system
size dependence than this for both the MD and EPM.]

IV. DISCUSSION AND OUTLOOK

In this paper, we demonstrate that the spatio-temporal
evolution of avalanches in particle-based simulations in
the overdamped limit share important similarities and
differences with an elasto-plastic model governed by syn-
chronous dynamics. We show that in both models,
avalanches are driven by localized clusters of activity, and
that the spatial correlation function of activity [Revision:
remains largely confined to a strip which does not appre-
ciably widen in time] and exhibits two lengthscales that
grow differently in time and with system size.

One lengthscale, ξexcite, [Revision: corresponds to high

likelihood nearby events] which are mechanically excited.
In the EPM models, this leads to standard ballistic prop-
agation as seen in other excitable media [27], while in MD
simulations we find the front propagates as t3/4. In both
cases, our data suggests this scale is independent of sys-
tem size. An interesting question for future work is what
generates this non-standard exponent in MD simulations.

A second, longer lengthscale, ξmarginal, [Revision: cor-
responding to low likelihood remote events], propagates
diffusively and scales with system size. This suggests that
it is governed by the weakest spots in the disordered solid,
as far-field stress fluctuations anywhere in the system are
sufficient to trigger events, and the stress magnitude re-
quired to trigger the weakest spot scales as a power law
with system size. [Revision: Given the low-probability of
these marginally triggered events, it is statistically more
demanding to quantify ξmarginal than ξexcite. Although
it is comforting that the size dependence we measure for
ξmarginal is consistent with the known size scaling of the
weakest site [26, 32, 45, 46], we nevertheless admit that
the dynamics is dominated by the excited toppling mech-
anism [27] and that ξmarginal may be less important for
the avalanche evolution.]

Another difference between the two types of simula-
tions is the statistics of their temporal dynamics. In MD
simulations, the stress overshoot – the difference between
the triggering stress field and the stress threshold of an
excitable site – governs how fast the system departs a
saddle and the waiting times between localized bursts of
deformation in an avalanche. These effects generate dy-
namical exponents that depart significantly with mean-
field predictions, and cause duration-size curves to vary
with system size. In contrast, our simple EPM has no
such mechanism; the dynamical exponent is much closer
to mean-field and the duration-size curves do not de-
pend on system size. Recent progressive rate EP mod-
els [32, 42] include a proxy for this waiting time, and
qualitatively reproduce this physics, but do not quanti-
tatively match the exponents we find in the MD. A nice
feature of EPMs is that it is possible to disambiguate
the consequences of various choices for the stress propa-
gation, waiting times, and disorder. Future work could
focus on adjusting properties of EPMs to improve quanti-
tative agreement with MD. Another important avenue is
understanding how these models behave in the presence
of inertia [9, 25, 50]. [Revision: In practice, one will have
to introduce in EPM realistic stress propagation such as
proposed in Refs. [51, 52] using finite element methods.]

[Revision: We speculate that our results should trans-
late well to 3D solids. In particular, the long-range elastic
kernel will give rise to the ”domino effect” and the cor-
responding fast growth in time of ξexcite. Moreover, as
the statistics of marginally stable sites have been shown
to follow a similar scaling as found in 2D, we also expect
a size dependent ξmarginal.]

We have focused here on MD and EPM simulations for
a relatively ductile material, where the stress required for
each site to be triggered is relatively small. It will be very
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interesting to revisit similarities and differences in brittle
systems that undergo shear banding instabilities, which
provide an even stricter test of models of the spatio-
temporal evolution of disordered solids. More broadly,
the tools developed here could be used to characterize
spatio-temporal dynamics of avalanches in materials with
complicated interactions (irregular shapes, friction, real-

istic molecular potentials) and boundary conditions.
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[3] K. J. Måløy, S. Santucci, J. Schmittbuhl, and R. Tous-
saint, Local waiting time fluctuations along a randomly
pinned crack front, Phys. Rev. Lett. 96, 045501 (2006).

[4] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Crackling
noise, Nature 410, 242 (2001).

[5] B. Sun, H. Yu, W. Jiao, H. Bai, D. Zhao, and W. Wang,
Plasticity of ductile metallic glasses: A self-organized
critical state, Phys. Rev. Lett. 105, 035501 (2010).
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