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This work is dedicated to the topological analysis of complex transitional networks for dynamic8

state detection. Transitional networks are formed from time series data and they leverage graph9

theory tools to reveal information about the underlying dynamic system. However, traditional tools10

can fail to summarize the complex topology present in such graphs. In this work, we leverage11

persistent homology from topological data analysis to study the structure of these networks. We12

contrast dynamic state detection from time series using CGSSN and TDA to two state of the art13

approaches: Ordinal Partition Networks (OPNs) combined with TDA, and the standard application14

of persistent homology to the time-delay embedding of the signal. We show that the CGSSN captures15

rich information about the dynamic state of the underlying dynamical system as evidenced by a16

significant improvement in dynamic state detection and noise robustness in comparison to OPNs.17

We also show that because the computational time of CGSSN is not linearly dependent on the18

signal’s length, it is more computationally efficient than applying TDA to the time-delay embedding19

of the time series.20

Keywords: Topological Data Analysis, Complex Networks, Coarse Grained, Persistent Homology21

I. INTRODUCTION22

Signal processing has been successfully and widely utilized to extract meaningful information from time23

series of dynamical systems including dynamic state detection1–6, structural health monitoring for damage24

detection7–11, and biological health monitoring12–18. A promising direction for signal processing is through25

studying the shape of signals. This is done by implementing tools from Topological Data Analysis (TDA)19,2026

to study the shape of the attractor of the underlying dynamical system. This field of signal processing is27

known as Topological Signal Processing (TSP)21, which has had many successful applications, including bio-28

logical signal processing22,23, dynamic state detection24,25, manufacturing26–30, financial data analysis31–34,29

video processing35,36, bifurcation detection37, and weather analysis38,39.30

The standard pipeline for TSP constructs a filtration of simplicial complexes (called the Vietoris-Rips31

complex) based on point cloud data generated from the State Space Reconstruction (SSR) of an input32

time series29,40–42. Given a uniformly sampled signal x = [x1, x2, . . . , xL], the SSR (also called the delay33

embedding) consists of n-dimensional delayed vectors34

X = {vi = [xi, xi+τ , xi+2τ , . . . , xi+τ(n−1)] | i ∈ {1, · · · , L− τ(n− 1)}}. (1)35

A simplicial complex is formed by including simplices for all collections of points which are within distance r of36

each other. We can measure the shape of the simplicial complex by forming simplicial complexes at increasing37
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values of r, and tracking the changing homology through a linear mapping. This allows for quantifying when38

specific topologies form and disappear throughout the filtration giving a sense of shape. The persistence39

diagram encodes this information for various dimensions, e.g., connected components (dimension zero),40

loops (dimension one), voids (dimension two). For example, one can examine the one dimensional homology41

to track loop structures in the SSR that are related to the periodicity of the signal. A problem with this42

pipeline is its computational demand having complexity O(N3), where N =
(
n
d+1

)
is the size of the simplicial43

complex with n as the number of points in the simplical complex and d as the maximum dimension of the44

used homology. For long signals, this makes this standard pipeline computationally infeasible. A common45

solution is to subsample the point cloud, but it can be challenging to select an appropriate subsampling rate46

that preserves the topology of interest.47

An alternative, promising direction for signal processing is analyzing time series via representations as48

complex networks43–45. Network representations of time series generally fall within three categories: prox-49

imity networks, visibility graphs, and transitional networks. Proximity networks are formed from closeness50

conditions in the reconstructed state space. Examples include the k-Nearest Neighbors (k-NN)46 and recur-51

rence networks47, where the recurrence network is the network underlying the Vietoris-Rips complex of the52

point cloud data. For proximity networks, the graph representation includes all points in the state space53

reconstruction as part of the vertex set and does not reduce the computational complexity. Additionally,54

these networks require choosing a proximity parameter dependent on the signal, where careful consideration55

is needed in selecting the number of neighbors k or proximity distance ε to generate a graph that captures56

the correct topology. The visibility graphs48 are formed by adding vertices for each data point and adding57

connecting edges if a visibility line can be drawn between the two vertices which do not pass below any other58

data point between the two. As our focus in this work is on building upon the strong theory developed for59

the SSR embedding, we will not utilize the visibility graph constructions at this stage. Instead, in this work60

we focus on transitional networks.61

Transitional networks partition a time series x such that it has a vertex set of states {si} for each visited62

state and an edge for temporal transitions between states. The resulting transitional network constitutes63

a finite state space A as the alphabet of possible states. One interpretation of a topological system on a64

finite state space is as a finite graph where the edges describe the action of a function ϕ, i.e., if there is a65

directed edge from vertex a to vertex b, then ϕ(a) = b. Therefore, the transitional networks we obtain from66

a time series are topological systems, and they yield themselves to further analysis within the framework of67

topological dynamics. The two most common transitional networks for time series analysis are the Ordinal68

Partition Network (OPN)49 and the Coarse Grained State Space Network (CGSSN)50–53. In Fig. 1 we69

demonstrate the rich topological structure of the CGSSN for periodic and chaotic dynamics from the Rossler70

system. This example shows the periodic dynamics corresponding to an approximate cycle graph while the71

network of the chaotic signal is highly intertwined.7273

To date, the majority of evaluation of these complex network representations is through standard graph74

theory tools45,49,54,55, but the results can only provide local structural measurements based on the node75

degree distribution or shortest path measurements. In our previous work25, we studied the global shape of76

these networks using persistent homology for dynamic state detection using the ordinal partition network.77

However, we only used the shortest unweighted path to define distances between nodes, which discarded edge78

weight and direction information. In our recent work56 we investigate the use of weighted edge information79

based on the number of edge transitions. We found that this improved dynamic state detection performance.80

However, we show here that there is an issue with the OPN; namely, amplitude information is discarded81

because the ordinal partition network is built from permutations. Permutations can be thought of as par-82

titioning the state space via intersections of hyperplanes of the form xi ≤ xj . As such, the resulting OPN83

can have reduced dynamic state detection performance and extreme sensitivity to additive noise for some84

signals. This can be partially explained by noting that proximity of the trajectory to the hyperdiagonal can85

cause failures in network construction, particularly when there is noise in the signal (details of this issue are86
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FIG. 1. Example periodic and chaotic CGSSNs generated from the x(t) solution to the Rössler system.

provided in Section IV D). Further, due to the hyperdiagonal intersection issue, we cannot guarantee the87

stability of the persistence diagram for all signals. Therefore, we turn our attention to the CGSSN to bypass88

the limitations in OPN.89

We investigate the applicability of the CGSSN for enhanced noise robustness and dynamic state detection90

compared to the OPN. The results presented are based on analyzing the complex networks using persistent91

homology and tools from information theory and machine learning. Our results show an improvement in92

dynamic state detection performance with 100% separation between periodic from chaotic dynamics for noise-93

free signals using a nonlinear support vector machine compared to at most 95% for the OPN. Additionally,94

we show an improved noise robustness with the CGSSN functioning down to a signal-to-noise ratio of 22 dB95

compared to 29 dB for the OPN.96

Organization97

In Section II we overview the necessary background information. We begin with an introduction to the98

two transitional networks we study—OPN and CGSSN—and an overview of how they are related to state99

space reconstruction. Next, we introduce four standard methods for measuring the distance between nodes100

in a weighted graph. We subsequently describe persistent homology and how it is applied to study the shape101

of the weighted complex networks. In Section III, we demonstrate how to apply our pipeline for studying102

the shape of complex transitional networks for a simple periodic example. In Section IV, we show results103

for studying the persistent homology of both the OPN and CGSSN. We begin with results for dynamic104

state detection for the Lorenz system with a periodic and chaotic response. We then apply the method105

to 23 continuous dynamical systems, and utilize machine learning to quantify the dynamic state detection106

performance over a broad range of signals. Lastly, we show results on the noise robustness of the CGSSN in107

comparison to the OPN. In Section V, we provide conclusions future work on applying persistent homology108

to study the structure of transitional networks.109

II. BACKGROUND110

A. Transitional Complex Networks111

A graph G = (V,E) is a collection of vertices V and edges E = (u, v) ⊆ V × V . We assume all graphs are112

simple (no self-loops or hypergraphs) and undirected. Additional stored information comes as a weighted113
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FIG. 2. Example formation of a weighted transitional network as a graph (middle figure) and adjacency matrix (right
figure) given a state sequence S (left figure).

graph, G = (V,E, ω) where ω : E → R≥0 gives a non-negative weight for each edge in the graph. Given114

an ordering of the vertices V = {v1, · · · , vn}, a graph can be stored in an adjacency matrix A where the115

weighting information is stored by setting Aij = w(vi,vj) if (vi, vj) ∈ E and 1 otherwise.116

Transitional networks are graphs formed from a chronologically ordered sequence of symbols or states117

derived from the time series data. In our construction, these states are mapped from the measurement118

signal by first creating an SSR X from Eq. (1) and then assigning a symbolic representation for each vector119

vi ∈ X. To form a symbolic sequence from the time series data, we implement a function to map the SSR to120

symbol in the alphabet A of possible states as f : vi → sj , where sj ∈ A is a symbol from the alphabet. In121

this work, we consider the symbols from the alphabet as integers such that si ∈ Z ∩ [1, N ], where N is the122

number of possible symbols. Applying this mapping over all embedding vectors we get a symbol sequence as123

S = [s1, s2, . . . , sL−τ(n−1)]. This work investigates two methods for mapping SSR vectors vi to symbols sj .124

The first is the OPN which is defined in Section II A 1 and is based on permutations. The second method is125

the CGSSN defined in section II A 2 which uses an equal-sized hypercube tessellation.126

The symbol sequence S forms a transitional network by considering a graph G = (V,E), where the vertices127

V are the collection of the used symbols, and the edges are added based on transitions between symbols128

in S. We represent the graph using the adjacency matrix A data structure of size N × N . We add edges129

to the adjacency matrix A via the symbolic transitions with an edge between row si and column si+1 for130

each i. This is represented in the adjacency matrix structure by incrementing the value of Asi,sj by one131

for each transition between si and ss+1, where A begins as a zero matrix. We set the total number of132133

transitions between two nodes as the edge weight w(si,sj). We ignore self-loops by setting the diagonal of A134

to zero. To better illustrate the transitional network formation process, consider the simple cycle shown in135

Fig. 2. In this example, we take the state sequence S on the left side of Fig. 2 with symbols in the alphabet136

A = [1, 2, 3, 4] and create the network shown network in the middle of the figure. This network is represented137

as a directed and weighted adjacency matrix, as shown on the right side of Fig. 2. In this paper, we discard138

the directionality information and make A symmetric by adding its transpose, A + AT .139

1. Ordinal Partition Network140

To form an OPN, the SSR X must first be constructed requiring the choice of two parameters: the delay141

τ and dimension n. We select the delay τ using the method of multi-scale permutation entropy57,58 and the142

dimension as n = 7 as suggested for permutation entropy58. For the OPN, the vector vi is assigned to a143

permutation π based on its ordinal partition. For dimension n there are n! permutations (e.g., 6 possible144

permutations for dimension n = 3 shown in Fig. 3) which can order arbitrarily π1, · · ·πn!. Then vi is assigned145

to a permutation πk following that πk satisfies vi(πk(0)) ≤ vi(πk(1)) ≤ . . . ≤ vi(πk(n − 1)). An example of146

this for the vector vi = [−0.08, 0.48,−0.34] is shown on the top Ordinal Partition (OP) route of Fig. 3 where147
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vi is mapped to permutation π5 and state si = 5.148

FIG. 3. Example state assignment using the Ordinal Partition (OP) method (top) and Coarse Graining (CG)
method (bottom). The state for the OP method is based on the assigned permutation number with si = 5 for the
example. The state assignment for the CG method is based on the number of bins where si = 1 +

∑n−1
j=0 ρi(j)b

j , ρi
is the digitization of vector vi based on binning into b equal-sized bins spanning [min(x),max(x)]. For this example,
si = 3(80) + 5(81) + 2(82) + 1 = 172 with b = 8 bins.

149

150

2. Coarse Grained State Space Network151

The CGSSN begins by constructing the SSR, where we select the delay τ using the multi-scale permutation152

entropy method57,58 and dimension n using the false nearest neighbors59 based on only needing a dimension153

great enough for periodic orbits to not self-intersect. For the CGSSN, the vector vi ∈ X is assigned to a154

state based on which partitioned region the vector vi lies within. We define the domain D of the SSR as the155

non-empty connected, open set that encloses all vectors of the SSR. Specifically, we use an n-dimensional156

hypercube domain bounded by the intervals [min(x),max(x)] for each dimension. In this work we cover157

this domain using a tessellation of N = bn hypercubes with side length (max(x) − min(x))/b, where b is158

the number of bins per dimension. We assign each n-dimensional hypercube in the tessellation a unique159

symbol by converting it to a decimal representation denoted as si. An introductory example formation of160

the entire CGSSN for a sinusoidal function is provided in Section III. Some generalizations exist to the161

described method where instead of assigning symbols to the individual hypercubes, we could assign words of162

length m which would allow for studying a sequence of coarse grained states of the system which reduces the163

information load in the process60. For the purpose of this paper, a symbolic representation was sufficient.164
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B. Vertex similarity and dissimilarity measures165

To study the structure of the complex network we define functions of the form V × V → R≥0 combining166

information about path lengths and weights from the graph in various ways. Some of these definitions are167

distances, but not all. Despite this, the framework can still be used to define a filtered simplicial complex in168

the spirit of the Vietoris Rips complex which will be required in the next section.169

The measures are encoded in a matrix D, where D(a, b) is the similarity or dissimilarity between vertices170

a and b. Note that D can optionally be normalized by dividing all entries by its maximum value to contain171

values between 0 and 1. We investigated the use of four choices of measures: the unweighted shortest path172

distance, the shortest weighted path dissimilarity, the weighted shortest path distance, and the diffusion173

distance.174

1. Shortest Path Distances and Dissimilarities175

Commonly used in graph theory, the shortest path distance is based on minimizing the cost of taking a176

path from node a to b. This assumes a path P = [n0, n1, . . . , ns] consisting of s nodes where a = n0 and177

b = ns exists, but we note that all graphs in this paper are connected by construction. The path P can178

alternatively be represented as the sequence of connected edges between a and b: P = [e0,1, e1,2, . . . , es−1,s].179

The shortest path is determined based on minimizing the path cost function180

C(P ) =
∑
e∈P

w(e). (2)181

In the case of an weighted graph, we then define D(a, b) = minP C(P ). Note that in the case of an unweighted182

graph, we have all weights equal to 1 and thus the cost of a path is simply the number of edges included in183

it.184

We next define two variations on this idea, although they are not quite distances but are useful for the185

kinds of input graph data we study. In particular, the weights on edges are higher for those that are more186

highly traversed with the transitional networks. We thus want these paths to be considered more important187

than those only traversed a few times. To that end, we will focus on paths whose length using the reciprocal188

of the weights is as small as possible.189

The first variation, called the weighted shortest path measure, is defined as follows. First, we find the path190

from a to b with the minimum total path weight in terms of the reciprocal weights. That is, P such that191

C ′(P ) =
∑
e∈P

1/w(e). (3)192

is minimized. We then define D(a, b) =
∑
e∈P w(e). For this definition, D encodes information about193

frequency of traversal of the edges.194

The second variation, called the shortest weighted path, still uses the path P for which C ′(P ) is minimized.195

However, in this case, we define D(a, b) to be the length of the path; i.e. the number of edges in P . For196

this variant, we are essentially giving higher priority to well traveled paths, but using a measurement of this197

path related to the number of regions of state space are traversed.198

2. Diffusion Distance199

The final vertex similarity measure we use is the diffusion distance for graphs61. The diffusion distance200

leverages the transition probability distribution matrix P of the graph, where P(a, b) is the probability of201
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transitioning to b when at a in a single step based on the random walk framework. Specifically, given the202

weighted, undirected adjacency matrix A with no self-loops (i.e., zero diagonal), the transitional probability203

matrix is204

P(i, j) =
A(i, j)∑|V |
k=1 A(i, k)

. (4)205

Equation (4) can be extended to calculate the transition probabilities for non-adjacent neighbors by raising206

them to higher powers. For example, transitioning to vertex b from vertex a in t random walk steps is207

Pt(a, b). A common modification of Eq. (4) is to include a probability that a random walk can stay at the208

current vertex, which is commonly referred to as the lazy transition probability matrix. This is given by209

P̃ =
1

2
[P(a, b) + I] , (5)210

where I is the identity matrix matching the size of P. The diffusion distance measures how similar two211

nodes are based on comparing their t-step random walk probability distributions. This is done by taking212

the degree-normalized `2 norm of the probability distributions between nodes and is calculated as213

dt(a, b) =

√∑
c∈V

1

d(c)

[
P̃t(a, c)− P̃t(b, c)

]2
(6)214

where d is the degree vector of the graph with d(i) as the degree of node i. Applying the diffusion distance215

to all node pairs results in the distance matrix Dt.216

C. Persistent Homology of Complex Networks217

A simplicial complex is a generalization of a graph to higher dimensions, which are collections of simplices218

at various dimensions (e.g., points are zero-dimensional, edges are one-dimensional, and faces are two-219

dimensional simplices). These simplices are subsets of a vertex set σ ⊂ V , and we require for the complex220

that if σ ∈ K and τ ⊆ σ, then τ is also in K. Using a distance matrix to describe similarity between nodes,221

or indeed any function of the form d : V × V → R where d(v, v) = 0 although we still call this a distance222

matrix for simplicity, we can construct simplicial complex representations from graphs at a distance level223

r. This idea is related to the Vietoris Rips complex, where we build a simplicial complex Kr for any fixed224

parameter r ≥ 0 by including all simplices with pairwise relationships at most r; i.e. Kr = {σ ⊆ V | d(u, v) ≤225

r for all u, v ∈ σ}. Zero-dimensional simplices, the vertices of the complex, are all added at r = 0. An edge226

uv, which is a 1-dimensional simplex, is present in Kr for any r value above d(u, v). Higher dimensional227

simplices such as triangles are included when all subedges are present; equivalently this means a simplex is228

added for every clique in the complex. For example, consider Fig. 4 which shows a graph with four nodes,229

and the associated distance matrix D. For each r ∈ [0.0, 0.5, 1.0, 1.5, 2.0] the associated simplicial complex230

is shown as Kr in the bottom row.231

We can use homology62,63 to measure the shape of any such simplicial complex K which is denoted232

Hd(K). This mathematical object is a vector space, where elements are representative of d-dimensional233

features (i.e., connected components (zero-dimensional structure), loops (one-dimensional structure), voids234

(two-dimensional structure), and higher dimensional analogues) in K. In this work we will only utilize the235

0-dimensional and 1-dimensional features to measure the connected components and holes in the simplicial236

complex. For example, consider the simplicial complex Kr at r = 1.0 in Fig. 4, which has one H0 classes237

with a single connected component and one H1 class with a single loop or hole in the simplicial complex.238
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D

K0.0 K0.5 K1.0 K1.5 K2.0

FIG. 4. Example demonstrating persistent homology of a graph using the matrix D with resulting persistence diagram
shown top right. The filtration of simplicial complexes are shown in the bottom row.

An issue with just using homology to measure the shape of a simplicial complex to understand the shape
of a graph is that the correct distance value r needs to be selected. Additionally, it does not provide any
information on the geometry or size of the underlying graph. To alleviate these issue we use persistent
homology64, which studies the changing homology of a sequence of simplicial complexes. We will again use
Fig. 4 as an example for demonstrating how the persistent homology is calculated. To calculate the persistent
homology we begin with a collection of nested simplicial complexes

Kr1 ⊆ Kr2 ⊆ · · · ⊆ KrN .

The bottom row of Fig. 4 shows an example of this filtration over the distance parameter r with Kr=1.0 ⊆
Kr=0.5 ⊆ · · · ⊆ Kr=2.0. We then calculate the homology of each simplicial complex and create linear maps
between each homology class for each dimension d as

Hd(Kr1)→ Hd(Kr1)→ · · · → Hd(KrN ).

By studying the formation and disappearance of homology classes we can understand the shape of the239

underlying graph. Specifically, class [α] ∈ Hd(Kri) is said to be born at ri if it is not in the image of the240

map Hd(Kri−1
) → Hd(Kri). The same class dies at rj if [α] 6= 0 in Hd(Krj−1

) but [α] = 0 in Hd(Krj ). In241

the case of 0-dimensional persistence, this feature is encoding the appearance of a new connected component242

at Kri that was not there previously, and which merges with an older component entering Krj . For 1-243

dimensional homology, this is the formation (birth) and disappearance (death) of a loop structure. We store244

this information in what is known as the persistence diagram using the persistence pair xi = (bi, di) ∈ Dd,245

where Dd is the persistence diagram of dimension d with a homology class of dimension d being born246

at filtration value bi and dying at di. We also define the lifetime or persistence of a persistence pair as247

`i = pers(xi) = di − bi. The set of lifetimes for dimension d is defined as Ld. For a more detailed roadmap248

for the calculation of persistent homology we direct the reader to the work of Otter et al65.249
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FIG. 5. Pipeline for studying transitional networks using persistent homology. From left to right, we begin with
a signal or time series and represent it as a state sequence which is summarized using a transitional network as
described in Section II A. A distance between nodes is then used to create a distance matrix (see Section II B for
graph distances) which can be directly analyzed using persistent homology shown in Section II C.

Returning to our example, the persistence diagram is shown in Fig. 4 for both D0 and D1. For D0 all250

four persistence pairs were born at r = 0.0 with one dying at r = 0.5 and two dying at r = 1.0. The251

fourth persistence pair in D0, not drawn, is an infinite-class dying at ∞ since there is a single component252

for r ≥ 1.0. In this work we do not utilize infinite-class persistence pairs and will not include them in the253

persistence diagrams. For D1 there is a single persistence pair born at r = 1.0 with the formation of the254

loop in K1 and filling in at K2.255

III. METHOD256

This section describes the method for studying complex transitional networks using persistent homology.257

The pipeline for doing this is outlined in Fig. 5. We begin with a signal or time series and represent it as a258

state sequence described in Section II A. The state sequence can be summarized using a weighted transitional259

network as described in Sec. II A. A distance between nodes (see Section II B) is then used to create a distance260

matrix which can be directly analyzed using persistent homology as described in Section II C.261

To further describe the method we develop here, we use a simple periodic signal example shown in Fig. 6.262

The signal is defined as x(t) = sin(πt) sampled at a uniform rate of fs = 50 Hz. The SSR was constructed263

using n = 2 and τ = 26. For this example, we create the CGSSN by partitioning the SSR domain into 100264

rectangular regions as states, each with a unique symbol. The states visited through the SSR trajectory265

are highlighted in red. The temporal tracking of the states used creates the state sequence, which is then266

represented as the cycle graph. This example demonstrates how the periodic nature of the signal is captured267

by the cycle structure of the corresponding CGSSN.268

We define a distance between nodes using the unweighted shortest path distance for this example due to its269

simplicity. The corresponding distance matrix and resulting persistence diagram are shown. The resulting270

persistence diagram shows that the periodic structure of the underlying time series and corresponding CGSSN271

is captured by the single point in the persistence diagram D1 at coordinate (1, 12) with the loop structure272

being born at a filtration distance of 1 and filling in 12.273

IV. RESULTS274

This section shows that the CGSSN outperforms the previously used OPN for both noise robustness and275

dynamic state detection performance. We first begin in Section IV A where we provide a simple example276

highlighting improved dynamic state detection performance of the CGSSN over the OPN for a periodic and277

chaotic Rossler system simulation. We show these results using the persistent entropy summary statistic.278

The second result in Section IV B quantifies the dynamic state detection, of the OPN and CGSSN using279
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(a) (b)

FIG. 6. Example demonstrating CGSSN formation procedure (b = 10) with the signal x(t) = sin(t) embedded into
R2 space using an SSR and analysis using persistent homology with the unweighted shortest path distance. (a)
Formation of the CGSSN from a time series signal and its delayed signal, (b) The distance matrix and associated
persistence diagram using the unweighted shortest path distance.

lower dimensional embedding on 23 continuous dynamical systems with periodic and chaotic simulations.280

Lastly, in Section IV D, we empirically investigate the noise robustness of the CGSSN compared to the OPN.281

A. Dynamic State Detection for Rossler System282

Our first result is from a study of the complex network topology of OPNs compared to CGSSNs. To283

demonstrate the difference and motivate why the CGSSN outperforms the OPN in terms of dynamic state284

detection, we use an x(t) simulation of the Rossler system defined as285

dx

dt
= −y − z, dy

dt
= x+ ay,

dz

dt
= b+ z(x− c). (7)286

We simulated Eq. (7) using the scipy odeint solver for t ∈ [0, 1000] with only the last 230 seconds used to287

avoid transients. The signal was sampled at a rate of fs = 22 Hz. For periodic dynamics we use system288

parameters of [a, b, c] = [0.1, 0.2, 14] and for chaotic we set a = 0.15. These simulated signals are shown289

in Fig. 7. To create the OPNs for both signals, we used an embedding delay τ = 43 selected using the290

multi-scale permutation entropy method and dimension n = 7. The corresponding networks are shown in291

the second column of Fig. 7. To form the CGSSNs we similarly chose τ = 43, but used dimension n = 4 and292

b = 12 for partitioning the SSR with resulting networks shown in the third column.293294

The resulting OPN and CGSSN from the Rossler system simulations of periodic and chaotic dynamics295

both capture the increasing complexity of the signal with the dynamic state change. For the periodic signal,296

the OPN show overarching large loops relating to the periodic nature of the SSR. However, the CGSSN297

better captures the periodic nature of the trajectory with only a single loop forming. This characteristic of298

the CGSSN is due to periodic flows never intersecting in the SSR if the signal is sampled at a high enough299

frequency, there is no or little additive noise, and an appropriately sized delay and dimension are selected.300

While correctly choosing the delay and dimension is not a trivial task, there is a broad literature on their301

selection for the SSR task. This work relies on the multi-scale permutation entropy method for selecting302

the delay and the false-nearest-neighbors algorithm59 for selecting an appropriate SSR dimension. However,303

we found that increasing the dimension one higher than that suggested using false-nearest-neighbors more304

reliably formed a single loop structure in the CGSSN. Additionally, in Appendix A we demonstrate that305

for 23 dynamical systems, setting b ≥ 12 resulted in only a single loop structure for periodic signals while306

minimizing the computational demand when using the CGSSN. As such, we set b = 12 unless otherwise307

stated.308
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Transitional complex network topology comparison between OPN and CGSSN for the x(t) simulation of the
Rossler system described in Eq. (7). (a) Periodic Rossler Simulation x(t), (b) Periodic OPN (n = 7) E′(D1) = 0.503.,
(c) Periodic CGSSN (n = 4 and b = 12). E′(D1) = 0.026, (d) Chaotic Rossler Simulation x(t), (e) Chaotic OPN
(n = 7). E′(D1) = 0.893, (f) Chaotic CGSSN (n = 4 and b = 12). E′(D1) = 0.905.

For the chaotic x(t), the OPN and CGSSN both summarize the topology of the attractor with both309

networks having a high degree of entanglement with nodes being highly intertwined. This is a typical310

characteristic of complex transitional networks formed from chaotic signals. Furthermore, it should be noted311

that the CGSSN tends to be more entangled than its OPN counterpart, suggesting that the CGSSN better312

captures the increase in complexity of the chaotic signal.313

To quantify how well the OPN and CGSSN capture the complexity of the signals, we rely on persistent314

entropy66, which was previously adapted25 to study the resulting persistence diagram using the unweighted315

shortest path distance of complex networks. The normalized persistent entropy67,68 is defined as316

E′(D) =
−
∑
x∈D

pers(x)
L (D) log2

(
pers(x)
L (D)

)
log2

(
L (D))

, (8)317

where L (D) =
∑
x∈D pers(x) with pers(x) = |b − d| as the lifetime or persistence of point x = (b, d) in318

a persistence diagram D. For studying the complexity of transitional network we apply this score to the319

one-dimensional persistent diagram D1, which measures the loop structures in the network. This score yields320

a value close to zero for networks with a single loop structure corresponding to periodic dynamics and a value321

close to one for chaotic dynamics with highly intertwined networks. For our example OPN and CGSSNs322
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in Fig. 7 we get normalized persistent entropy scores of 0.503 and 0.893 for periodic and chaotic OPNs,323

respectively, and 0.026 and 0.905 for CGSSNs. These statistics show that the CGSSN outperforms the OPN324

with a significantly larger difference in the entropy values. This is mainly due to the CGSSN having a score325

near zero for periodic dynamics due to its general loop structure compared to the periodic OPN having326

several loops. This result comparing the OPN and CGSSN suggests that the CGSSN will outperform the327

OPN for the dynamic state detection task. With this single case under our belt, we turn our attention to328

an empirical study of this characteristic over more dynamical systems.329

B. Empirical Testing of Dynamic State Detection for 23 Continuous Dynamical Systems330

The previous example in Section IV A showed the improved dynamic state detection performance of331

the CGSSN over the OPN for a single example (Rössler System). However, we want to show that this332

improvement is present over various systems. To do this, we use 23 continuous dynamical systems listed in333

the Appendix B with details on the simulation method–each system was simulated for both periodic and334

chaotic dynamics.335

For each periodic and chaotic signal, we calculate the resulting persistence diagram of the OPN and CGSSN336

using each of the distance methods (unweighted shortest path, shortest weighted path, weighted shortest337

path, and diffusion distance). We then compare the collection of persistence diagrams for a specific network338

type (OPN or CGSSN) and distance measure by calculating the bottleneck distance matrix between each339

persistence diagram. The bottleneck distance dBN (D,F ) is a similarity measure between two persistence340

diagrams (D and F ). It is calculated as the sup norm distance between the persistence diagrams, where341

the persistence diagrams are optimally matched with the distance between matched persistence points being342

at most dBN . The bottleneck distance matrix DBN is calculated by finding dBN between all persistence343

diagrams.344

The question we are trying to answer is if periodic and chaotic dynamics result in similar persistence345

diagrams across multiple systems. To answer this, we first use a lower-dimensional projection of DBN by346

implementing the Multi-Dimensional Scaling (MDS) projection to two dimensions. To measure how well the347

dynamics delineate on the MDS projection, we use a Support Vector Machine (SVM) with a Radial Basis348

Function (RBF). Note that because the MDS does not allow for the mapping of previously unseen points, we349

cannot use this procedure for a proper classification test as we cannot approximate training error. However,350

we can use this procedure to see if the the persistence diagrams of different classes are separated with respect351

to the bottleneck distance.352

We fit the SVM using the default SKLearn SVM parameters package. The resulting separations for periodic353

and chaotic dynamics using the OPN (left) and CGSSN (right) are shown in Appendix C. These separations354

are for the diffusion distance calculation as it provided the best results for both the OPN and CGSSN.355

However, we also include similar figures for other choices of distances in Appendix C.356

Figure 8 demonstrates the significant improvement in dynamic state detection of the CGSSN over the357

OPN. This is shown with the periodic and chaotic networks being clustered for the CGSSN (right of Fig. 8)358

with no overlap compared to the OPN (left of Fig. 8) having some overlap between periodic and chaotic359

dynamics. This is further shown with the SVM kernel being able to separate the periodic and chaotic360

regions for the CGSSN easily. To better compare all distance measures and complex network combinations,361

we quantify the performance of each SVM kernel using the accuracy of the separation. We repeated this362

accuracy calculation 100 times for each combination using 100 random seeds to generate the SVM kernels.363

The resulting average accuracies with standard deviation uncertainties are reported in Table I.364365

Based on the results in Table I, the CGSSN outperforms the OPN for all distance measures. Additionally,366

we found 100% separation accuracy for both the shortest weighted path and diffusion distances when com-367

bined with the CGSSN. We believe this performance improvement is due to the coarse-graining procedure368



13

Diffusion distance of OPN Diffusion distance of CGSSN

FIG. 8. Two-dimensional MDS projection of the bottleneck distances between persistence diagrams of the chaotic
and periodic dynamics with an SVM radial bias function kernel separation. This separation analysis was repeated
for the OPNs and CGSSNs using the diffusion distance.

TABLE I. Accuracies for SVM seperation of MDS projections for dynamic state detection. Uncertainties are recorded
as one standard deviation for random seeds 1-100.

Network Distance Average Separation Accuracy Uncertainty
OPN Shortest Unweighted Path Distance 80.7% 1.5%
OPN Shortest Weighted Path Distance 88.9% 0.0%
OPN Weighted Shortest Path Distance 88.9% 0.0%
OPN Lazy Diffusion Distance 95.0% 0.9%

CGSSN Shortest Unweighted Path Distance 98.1% 0.9%
CGSSN Shortest Weighted Path Distance 100.0% 0.0%
CGSSN Weighted Shortest Path Distance 98.1% 0.9%
CGSSN Lazy Diffusion Distance 100.0% 0.0%

capturing the SSR vector’s amplitude information which is discarded when identifying permutations in the369

OPN.370

1. n-Periodic Systems371

Based on the state space embedding structure of a system, one may expect that for a 2 or 3-periodic372

system that the CGSSN may result in 2 and 3 loops respectively, but this is not the case. In general, for an373

n-periodic system, we expect the CGSSN to contain only a single loop, and so we caution the user that this374

method will likely not be able to differentiate differences in the periodicity. We demonstrate this nuance by375

showing CGSSN results on the Lorenz system for multi-periodic responses. Fig. 9 shows the corresponding376

CGSSNs for the Lorenz system varying the ρ parameter to obtain multi-periodic responses. The networks377

are labeled with a sequence of A’s and B’s where each letter corresponds to a loop in the trajectory around378

one of the attractors. For example AAB trajectory would be two loops around A and one around B before379
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FIG. 9. CGSSN results for four multi-periodic cases of the Lorenz system. The sequence of A’s and B’s below
each image indicates the oribital sequence around the attractors A and B in the system. (a) AB ρ = 350, (b) AAB
ρ = 100.5, (c) AABB ρ = 160, (d) ABBABB ρ = 99.65. As expected, all four cases result in a single loop CGSSN.
These networks were generated using n = 4 and b = 12.

repeating the cycle. For all four cases shown, a single loop is obtained in the CGSSN even though the system380

exhibits multi-periodicity.381

C. A Remark on Discrete Maps382

As we demonstrated in Section. IV B, the CGSSN method allows for efficient and accurate dynamic state383

detection over a range of continuous dynamical systems. Discrete maps are another subset of dynamical384

systems where it would be useful to apply these tools; however, care must be taken for this type of system385

to ensure that the CGSSN is a suitable approach. This is because in discrete systems, there are typically far386

fewer states that the system can exhibit so in some cases the CGSSN may not contain any loops, but the387

response is still periodic leading to an incorrect classification in the model. To demonstrate, we show the388

CGSSNs for the periodic and chaotic logistic map in Fig. 10 where the unweighted shortest path distance was389

used to compute persistence. We see that the CGSSNs show vastly different structures where the periodic390

network contains a single loop and the chaotic network is tangled. However, the persistence diagrams for391

these networks appear to be equivalent because the networks were unweighted and all of the loops in the392

chaotic network are exactly the same size as the periodic case. Due to only having 4 possible states in393

the periodic logistic map here, the network loop does not provide enough of a difference to automatically394

classify it as either dynamic state. We note that the chaotic persistence diagram contains more loops than395

the periodic case here, but all are the same persistence lifetime. In the case of a continuous system where396

many more states are possible, these loops will be larger in size and the persistence diagram will reflect those397

differences allowing for classification of the dynamic state. In this case, when other distances are used such398

as the shortest weighted path, the resulting persistence diagrams have the forms that we expect for periodic399

and chaotic behaviors due to the weighting of the edges influencing the persistence lifetime of that loop.400

In the case where the system being studied can exhibit many possible states in its periodic response,401

a single loop will form the CGSSN and the persistence diagram will show a persistence pair with a long402
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FIG. 10. CGSSN results for the periodic (top row) and chaotic (bottom row) logistic map using the unweighted
shortest path. The system responses are shown on the left along with the permutation sequence. The network
representations are in the middle with the persistence diagrams on the right. Both networks exhibit the same
persistence diagram due to the limited possible system states for the periodic case.

lifetime. For example, we demonstrate this behavior on the 3 periodic linear congruential generator map403

in Fig. 11. The results in Figs. 10 and 11 demonstrate that this method should be used with caution on404

discrete systems and for systems with enough states that approach the behavior of a continuous system, the405

CGSSN persistence diagrams can provide a correct dynamic state detection.406

D. Noise Sensitivity407

One issue with ordinal partition networks is they are not exceptionally resilient to noise. Indeed, one can408

think of the ordinal partition network as being the 1-skeleton of the nerve of a particular closed cover of the409

state space, delineated by the hyperplanes xi ≤ xj . Consequently, when noise is injected into the system,410

there are superfluous transitions when nearing one of these boundaries. For example, consider the signal and411

its embedding into R3 in Fig. 12.412

This effect becomes even more prominent near an intersection of multiple hyperplanes. As the distance413

to the hyperdiagonal dH becomes small, we see a significant increase in seemingly superfluous transitions414

between permutations π (highlighted in orange in Fig. 12). This issue is even more exaggerated when the415

embedded signal is consistently close to the hyperdiagonal, which results in network representations whose416

shape carries no information on the underlying dynamical system (e.g., see the signal and far-right OPN in417

Fig. 13). This is particularly detrimental when we attempt to include the weighting information, as the flips418

can skew the count for the number of times a boundary is crossed.419

Certain network representations of time series are naturally more noise-robust than others. For example,420

Fig. 13 shows the OPN and CGSSN for the signal with and without noise. This example demonstrates that421

the CGSSN is the best choice for this signal with only minor changes in its shape, while the OPN loses all422

resemblance to the noise-free network.423424
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FIG. 11. CGSSN results for the periodic (top row) and chaotic (bottom row) linear congruential generator map using
the unweighted shortest path. The system responses are shown on the left along with the permutation sequence.
The network representations are in the middle with the persistence diagrams on the right. Both networks exhibit the
distinct persistence diagram structures due to the larger loop in the periodic network.

FIG. 12. The three-dimensional state space reconstruction (d) from the signal x(t) with and without additive noise
(a) shows as the distance to the hyperdiagonal dH (c) becomes small, undesired permutation transitions (b)—with
zoomed-in section shown in (e)—occur as shown in the orange highlighted regions.

Outside of this sensitivity to the hyperdiagonal, we also found that the CGSSN is more noise robust than425

the OPN for other signals. For example, in Fig. 14 we show the normalized persistent entropy statistic from426

Eq. (8) calculated for the periodic and chaotic simulations of the Rössler system defined in Eq. (7) when427

additive noise is present in the signal. We incremented the additive noise using the Signal-to-Noise Ratio428

(SNR). The SNR (units of decibels) is defined as SNR = 20 log10(Asignal/Anoise), where Asignal and Anoise429
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FIG. 13. Example demonstrating the importance of choosing an appropriate network formation method when there
is additive noise in the signal. The CGSSN retains the graph structure even with additive noise; in contrast, the OPN
network loses all resemblance to the noise-free topological structure even with a small amount of additive noise. x(t)
is the signal, N is additive noise, and G(x) is the graph representation of x.

OPN CGSSN

FIG. 14. Noise robustness analysis of dynamic state detection using the summary statistic persistent entropy (see
Eq. (8)) for OPN and CGSSN with increasing SNR on a periodic Rossler simulation from Eq. (7).

are the root-mean-square amplitudes of the signal and additive noise, respectively. This result shows that430431

for this signal the OPN network is only robust down to an SNR of approximately 32 dB of additive Gaussian432

noise, while the CGSSN is able to separate periodic from chaotic dynamics down to approximately 23 dB.433

We found similar results for the other 22 dynamical systems investigated in this work.434

E. Experimental Results435

To validate these tools, we apply them to experimental data collected from a base excited magnetic436

pendulum69. This system was shown to exhibit periodic and chaotic behavior under different parameters437

and the CGSSN persistence diagrams were generated for each case using all 4 distance measures presented in438

this paper. Figure 15 shows the corresponding time series, permutation sequence, CGSSN, and persistence439

diagrams for the periodic response. We see that for all of the distance metrics, there is a clear singular cycle440

that forms with a significant persistence lifetime. Conversely, the same results are presented for the chaotic441

response in Fig. 16 where we see a drastically different distribution of persistence pairs corresponding to the442

high number of cycles present in the chaotic CGSSN. The results presented here are in agreement with our443

work in69.444
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FIG. 15. CGSSN results for the forced single magnetic pendulum under conditions that yield a periodic response.
The top left images show the time series and permutation sequence and the top right shows the coarse grained state
space network. The bottom row shows the corresponding persistence diagrams for the network under the distance
metric in the title of each diagram.

FIG. 16. CGSSN results for the forced single magnetic pendulum under conditions that yield a chaotic response.
The top left images show the time series and permutation sequence and the top right shows the coarse grained state
space network. The bottom row shows the corresponding persistence diagrams for the network under the distance
metric in the title of each diagram.
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V. CONCLUSION445

In this work, we developed a novel framework for studying CGSSNs using persistent homology. We showed446

that the CGSSN outperformed the standard ordinal partition network in both noise robustness and dynamic447

state detection performance, with the CGSSN reaching 100% separation accuracy for dynamic state detection448

for 23 continuous dynamical systems. This is in comparison to the OPN, which could at most reach 95%449

accuracy. This approach was validated using data from a magnetic pendulum experiment to show that the450

topological structure for periodic and chaotic timseries are captured in the resulting persistence diagrams.451

In this work, we only investigated the most straightforward construction of the CGSSN. Namely, the452

equal-sized hyper-cube tessellation cover of the SSR domain. Possible improvements to the CGSSN could be453

through a data-dependent adaptive cover algorithm. We also suspect that other choices of distances could454

provide improvements for the given pipeline.455

Another future direction would be to prove a stability theorem for the CGSSN. That is, can we show that456

for a noisy version of a signal, the resulting CGSSN, and subsequently the computed persistence diagram,457

is similar to the ground truth. It would also be interesting to study how the CGSSN could serve to detect458

quasiperiodicity. We believe that the torus shape associated to the SSR of quasiperiodic signals could be459

captured using the CGSSN as it accounts for the signal amplitude.460
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5C. Froeschlé, R. Gonczi, and E. Lega, “The fast lyapunov indicator: a simple tool to detect weak chaos. application to the473

structure of the main asteroidal belt,” Planetary and Space Science, vol. 45, pp. 881–886, jul 1997.474

6J. Sprott, “Chaos and time-series analysis,” Choice Reviews Online, vol. 41, pp. 41–3492–41–3492, feb 2004.475

7S. B. B. Aval, V. Ahmadian, M. Maldar, and E. Darvishan, “Damage detection of structures using signal processing and476

artificial neural networks,” Advances in Structural Engineering, vol. 23, pp. 884–897, nov 2019.477

8N. M. Nejad, S. B. B. Aval, M. Maldar, and B. Asgarian, “A damage detection procedure using two major signal processing478

techniques with the artificial neural network on a scaled jacket offshore platform,” Advances in Structural Engineering, vol. 24,479

pp. 1655–1667, dec 2020.480

9Z. Guo and Z. Sun, “Multiple cracked beam modeling and damage detection using frequency response function,” Structural481

Longevity, vol. 5, no. 2, pp. 97–106, 2011.482

10H. Sohn and C. R. Farrar, “Damage diagnosis using time series analysis of vibration signals,” Smart Materials and Structures,483

vol. 10, pp. 446–451, 2001.484

11M. S. Cao, G. G. Sha, Y. F. Gao, and W. Ostachowicz, “Structural damage identification using damping: a compendium of485

uses and features,” Smart Materials and Structures, vol. 26, p. 043001, mar 2017.486



20

12S.-H. Lee, J. S. Lim, J.-K. Kim, J. Yang, and Y. Lee, “Classification of normal and epileptic seizure EEG signals using wavelet487

transform, phase-space reconstruction, and euclidean distance,” Computer Methods and Programs in Biomedicine, vol. 116,488

pp. 10–25, aug 2014.489

13F. M. Roberts, R. J. Povinelli, and K. M. Ropella, “Identification of ECG arrhythmias using phase space reconstruction,” in490

Principles of Data Mining and Knowledge Discovery, pp. 411–423, Springer Berlin Heidelberg, 2001.491

14T. Liu, W. Yao, M. Wu, Z. Shi, J. Wang, and X. Ning, “Multiscale permutation entropy analysis of electrocardiogram,”492

Physica A: Statistical Mechanics and its Applications, vol. 471, pp. 492–498, 2017.493

15B. Frank, B. Pompe, U. Schneider, and D. Hoyer, “Permutation entropy improves fetal behavioural state classification based494

on heart rate analysis from biomagnetic recordings in near term fetuses,” Medical and Biological Engineering and Computing,495

vol. 44, no. 3, p. 179, 2006.496

16A. A. S. Khan, U. Mumtahina, and N. Yeasmin, “Heart rate variability analysis using approximate entropy and detrended fluc-497

tuation for monitoring heart condition,” in 2013 International Conference on Informatics, Electronics and Vision (ICIEV),498

IEEE, may 2013.499

17V. Millette and N. Baddour, “Signal processing of heart signals for the quantification of non-deterministic events,” BioMedical500

Engineering OnLine, vol. 10, no. 1, p. 10, 2011.501

18M. Omidvar, A. Zahedi, and H. Bakhshi, “EEG signal processing for epilepsy seizure detection using 5-level db4 discrete502

wavelet transform, GA-based feature selection and ANN/SVM classifiers,” Journal of Ambient Intelligence and Humanized503

Computing, vol. 12, pp. 10395–10403, jan 2021.504

19T. K. Dey and Y. Wang, Computational Topology for Data Analysis. Cambridge University Press, 2021.505

20E. Munch, “A user’s guide to topological data analysis,” Journal of Learning Analytics, vol. 4, pp. 47–61, jul 2017.506

21M. Robinson, Topological Signal Processing. Springer Berlin Heidelberg, 2014.507

22C. M. Topaz, L. Ziegelmeier, and T. Halverson, “Topological data analysis of biological aggregation models,” PLOS ONE,508

vol. 10, p. e0126383, may 2015.509

23M. R. McGuirl, A. Volkening, and B. Sandstede, “Topological data analysis of zebrafish patterns,” Proceedings of the National510

Academy of Sciences, vol. 117, pp. 5113–5124, feb 2020.511

24A. Myers and F. A. Khasawneh, “Dynamic state analysis of a driven magnetic pendulum using ordinal partition networks512

and topological data analysis,” in Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB), American Society513

of Mechanical Engineers, aug 2020.514

25A. Myers, E. Munch, and F. A. Khasawneh, “Persistent homology of complex networks for dynamic state detection,” Physical515

Review E, vol. 100, aug 2019.516

26M. C. Yesilli, F. A. Khasawneh, and A. Otto, “On transfer learning for chatter detection in turning using wavelet packet517

transform and ensemble empirical mode decomposition,” CIRP Journal of Manufacturing Science and Technology, vol. 28,518

pp. 118–135, jan 2020.519

27M. C. Yesilli and F. A. Khasawneh, “On transfer learning of traditional frequency and time domain features in turning,” in520

Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability,521

American Society of Mechanical Engineers, sep 2020.522

28M. C. Yesilli and F. A. Khasawneh, “Data-driven and automatic surface texture analysis using persistent homology,” in 2021523

20th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, dec 2021.524

29M. C. Yesilli, F. A. Khasawneh, and A. Otto, “Topological feature vectors for chatter detection in turning processes,” The525

International Journal of Advanced Manufacturing Technology, vol. 119, pp. 5687–5713, jan 2022.526

30M. C. Yesilli, F. A. Khasawneh, and A. Otto, “Chatter detection in turning using machine learning and similarity measures527

of time series via dynamic time warping,” Journal of Manufacturing Processes, vol. 77, pp. 190–206, 2022.528

31M. Gidea and Y. Katz, “Topological data analysis of financial time series: Landscapes of crashes,” Physica A: Statistical529

Mechanics and its Applications, vol. 491, pp. 820–834, feb 2018.530

32M. Gidea, D. Goldsmith, Y. Katz, P. Roldan, and Y. Shmalo, “Topological recognition of critical transitions in time series of531

cryptocurrencies,” Physica A: Statistical Mechanics and its Applications, vol. 548, p. 123843, jun 2020.532

33M. Gidea, “Topological data analysis of critical transitions in financial networks,” in 3rd International Winter School and533

Conference on Network Science NetSci-X 2017 (P. R. Shmueli E., Barzel B., ed.), Springer Proceedings in Complexity,534

Springer, Cham, 2017.535

34P. T.-W. Yen and S. A. Cheong, “Using topological data analysis (TDA) and persistent homology to analyze the stock536

markets in singapore and taiwan,” Frontiers in Physics, vol. 9, mar 2021.537

35C.-S. Hu and M.-C. Yeh, “A topological data analysis approach to video summarization,” in 2019 IEEE International538

Conference on Image Processing (ICIP), IEEE, sep 2019.539

36C. J. Tralie and B. McFee, “Enhanced hierarchical music structure annotations via feature level similarity fusion,” IEEE540

International Conference on Acoustics, Speech, and Signal Processing, 2019, Feb. 2019.541

37S. Tymochko, E. Munch, and F. A. Khasawneh, “Using zigzag persistent homology to detect hopf bifurcations in dynamical542

systems,” Algorithms, vol. 13, p. 278, oct 2020.543



21

38S. Tymochko, E. Munch, and F. A. Khasawneh, “Adaptive partitioning for template functions on persistence diagrams,” in544

2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), IEEE, dec 2019.545

39G. Muszynski, K. Kashinath, V. Kurlin, and M. W. and, “Topological data analysis and machine learning for recognizing546

atmospheric river patterns in large climate datasets,” Geoscientific Model Development, vol. 12, pp. 613–628, feb 2019.547

40Y.-M. Chung, C.-S. Hu, Y.-L. Lo, and H.-T. Wu, “A persistent homology approach to heart rate variability analysis with an548

application to sleep-wake classification,” Frontiers in Physiology, vol. 12, mar 2021.549

41S. Emrani, T. Gentimis, and H. Krim, “Persistent homology of delay embeddings and its application to wheeze detection,”550

Signal Processing Letters, IEEE, vol. 21, pp. 459–463, April 2014.551
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FIG. 17. Normalized persistent entropy E′(D1), the maximum lifetime max(L1), and computation time tcomp for the
CGSSN formed with dimension n = 4 and b ∈ [2, 20] for the Rossler system in Eq. (7) with example CGSSNs shown
at b = 10 and b = 12.

Appendix A: Coarse Graining Size Analysis610

To determine the optimal binning size we we investigate how the structure of the resulting CGSSN changes611

as more states are used with b increasing. We considered b ∈ [2, 20] as more than 20 bins per dimension612

becomes computationally expensive without increasing the performance (see Fig. 17). To summarize the613

shape of the network we use the maximum lifetime of one-dimensional features (loops) as max(L1) and the614

normalized persistence entropy E′(D1) defined in Eq. (8) using the shortest unweighted path distance. The615

goal is to find a fine enough granularity (large enough b) that a periodic, noise-free signal will create a signal616

loop structure in the CGSSN. This loop structure should result with a persistent entropy of approximately617

zero. The idea behind this is based on a periodic attractor’s SSR never intersecting if a suitably high618

dimension is selected.619

We point the reader to our work in58 for a comprehensive analysis to choosing a suitable embedding620

dimension for the problem. It was found that dimensions of n = 4 or 5 are suitable for most continuous621

systems. For the 23 dynamical systems selected a dimension n = 4 is greater than the dimension of the622

attractor and will be used unless otherwise stated. Let us first investigate a suitable number of bins b for the623

Rossler system defined in Eq. (7) with the E′(D1), max(L1), and computation time tcomp calculated as b is624

increased from 2 to 20 shown in Fig. 17. This result show a sudden drop in E′(D1) and increase in max(L1)625626

from going from 10 to 11 bins. This is due the the granularity of the coarse-graining procedure being fine627

enough that the hypercubes do not capture multiple segments of the periodic flow. This is shown with the628

two CGSSNs at b = 10 and b = 12 where at b = 10 we have multiple intersections of the network while629

at b = 12 there are no intersections and we only have a single loop structure. Another characteristic is the630

exponentially increasing computation time tcomp as b increases. As such, we want to optimize the choice of631

b to capture the necessary complexity of the attractor while also minimizing the computation time. For this632
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FIG. 18. Binning size analysis using the normalized persistent entropy E′(D1) and maximum lifetime max(L1) for
23 dynamical systems listed in Table II with b ∈ [2, 20].

example a suitable b = 12 would be the best choice.633

The next question we want to ask is if b = 12 is a good option for other dynamical systems. To test634

this we again calculate the E′(D1) and max(L1) for b ∈ [2, 20] for the 23 dynamical systems listed in635

Table II. Figure 18 shows these statistics for all of the dynamical systems and it demonstrates that a choice636

of b ∈ [11, 13] does work well for all of the dynamical systems with a drop in E′(D1). Based on this seemingly637

universal choice of b in this work we use b = 12 unless otherwise stated.638

Appendix B: Data639

In this work we heavily rely on a 23 dynamical systems commonly used in dynamical systems analysis. All640

of these systems are continuous flow opposed to maps. The 23 systems are listed in Table II. The equations641

of motion for each systems can be found in the python topological signal processing package Teaspoon under642

the module MakeData https://lizliz.github.io/teaspoon/. Specifically, these systems are described in643

the dynamical systems function of the make data module70.644645

Each system was solved to have a time delay τ = 50, which was estimated from the multiscale permutation646

entropy method58. The signals were simulated for 750τ/fs seconds with only the last fifth of the signal used647

to avoid transients. It should be noted that we did not need to normalize the amplitude of the signal since648

the ordinal partition network is not dependent on the signal amplitude.649

Appendix C: Additional Results650

Here we provide the additional SVM projections to visualize the dynamic state detection performance of651

the shortest path distances: unweighted shortest path, shortest weighted path, and weighted shortest path.652

Table I provides the corresponding average accuracies.653
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TABLE II. Continuous dynamical systems used in this work.

Autonomous Flows Driven Dissiptive Flows
Lorenz Driven Van der Pol Oscillator
Rossler Shaw Van der Pol Oscillator
Double Pendulum Forced Brusselator
Diffusionless Lorenz Attractor Ueda Oscillator
Complex Butterfly Duffing Van der Pol Oscillator
Chen’s System Base Excited Magnetic Pendulum
ACT Attractor
Rabinovich Frabrikant Attractor
Linear Feedback Rigid Body Motion System
Moore Spiegel Oscillator
Thomas Cyclically Symmetric Attractor
Halvorsen’s Cyclically Symmetric Attractor
Burke Shaw Attractor
Rucklidge Attractor
WINDMI
Simplest Cubic Chaotic Flow



26

(a) (b) (c)

(d) (e) (f)

FIG. 19. Two dimensional MDS projection of the bottleneck distances between persistence diagrams of the chaotic
and periodic dynamics with an SVM radial bias function kernel separation. This separation analysis was repeated
for the OPNs and CGSSNs using the unweighted shortest path, shortest weighted path, and weighted shortest path
distances. (a) Unweighted shortest path distance of OPN, (b) Shortest weighted path distance of OPN, (c) Weighted
shortest path distance of OPN, (d) Unweighted shortest path distance of CGSSN, (e) Shortest weighted path distance
of CGSSN, (f) Weighted shortest path distance of CGSSN.


