
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics of time-modulated, nonlinear phononic lattices
B. L. Kim, C. Chong, S. Hajarolasvadi, Y. Wang, and C. Daraio

Phys. Rev. E 107, 034211 — Published 23 March 2023
DOI: 10.1103/PhysRevE.107.034211

https://dx.doi.org/10.1103/PhysRevE.107.034211


Dynamics of Time-Modulated, Nonlinear Phononic Lattices

B. L. Kim and C. Daraio∗
Department of Mechanical and Civil Engineering,

California Institute of Technology, Pasadena, CA 91125, USA

C. Chong
Department of Mathematics, Bowdoin College, Brunswick, ME 04011, USA

S. Hajarolasvadi†
Department of Civil and Environmental Engineering,

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Y. Wang
School of Mechanical and Aerospace Engineering,

Nanyang Technological University, Singapore, Singapore 6397984
(Dated: January 6, 2023)

The propagation of acoustic and elastic waves in time-varying, spatially homogeneous me-
dia can exhibit different phenomena when compared to traditional spatially-varying, temporally-
homogeneous media. In the present work, the response of a one-dimensional phononic lattice with
time-periodic elastic properties is studied with experimental, numerical and theoretical approaches in
both linear and nonlinear regimes. The system consists of repelling magnetic masses with ground-
ing stiffness controlled by electrical coils driven with electrical signals that vary periodically in
time. For small amplitude excitation, in agreement with linear theoretical predictions, wavenumber
bandgaps emerge. The underlying instabilities associated to the wavenumber bandgaps are inves-
tigated with Floquet theory and the resulting parametric amplification is observed in both theory
and experiments. In contrast to genuinely linear systems, large amplitude responses are stabilized
via the nonlinear nature of the magnetic interactions of the system, and results in a family of non-
linear time-periodic states. The bifurcation structure of the periodic states is studied, where it is
found the linear theory predicts parameter values from which the time-periodic states bifurcate from
the zero state. In the presence of an external drive, the parametric amplification induced by the
wavenumber bandgap can lead to bounded and stable responses that are temporally quasi-periodic.
Controlling the propagation of acoustic and elastic waves by balancing nonlinearity and external
modulation offers a new dimension in the realization of advanced signal processing and telecommu-
nication devices. For example, it could enable time-varying, cross-frequency operation, mode- and
frequency-conversion, and signal-to-noise ratio enhancements.

I. INTRODUCTION

Acoustic metamaterials and phononic crystals often
achieve control of wave propagation by leveraging scatter-
ing effects induced by the presence of spatial periodicity
in the design of their micro-structure [1–5]. In active me-
chanical systems, the periodic variation of material prop-
erties in time provides an additional, less-explored strat-
egy to control acoustic and elastic waves. This strategy
draws inspiration from the study of parametric amplifiers
[6, 7] and the effects of traveling-wave-like harmonic mod-
ulations (i.e., periodic in both space and time) on elec-
tromagnetic waves [8, 9]. Indeed, spatio-temporally peri-
odic acoustic and elastic systems have been shown, both
theoretically and experimentally, to exhibit the charac-
teristic opening of bandgaps in their dispersion relations.
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Most studies have focused on the presence of nonrecipro-
cal frequency bandgaps in linear systems, such as beams
and metamaterials with spatially and temporally varying
resonators or continuous elastic structures with spatio-
temporally periodic properties [10–20].

Whereas frequency bandgaps are the hallmark of spa-
tially periodic systems, gaps in the wavenumber axis of a
linear medium’s dispersion relation have been shown to
arise in time-periodic and spatio-temporally periodic sys-
tems, in which the wave speed of the traveling-wave-like-
modulation is greater than the velocity of propagation of
the medium [9, 15, 21–25]. These so-called wavenumber
bandgaps are understood to be parametrically amplified
standing waves (i.e., non-propagating, hence the analo-
gous notion of a bandgap) [6, 21, 23]. For example, in a
phononic lattice with a supersonic traveling-wave mod-
ulation, incident signals within the induced wavenum-
ber bandgap excite unstable oscillations of the scattered
field. This results in apparent amplification of frequen-
cies corresponding to the bandgaps, which are different
for forward- and backward-propagating waves since this
form of spatio-temporal modulation breaks reciprocity

mailto:daraio@caltech.edu


2

[15]. In another example, an elastic waveguide is modu-
lated periodically only in time via an array of piezoelec-
tric patches controlling the stiffness. The reflection of a
broadband signal incident on the interface of the mod-
ulated region is observed to comprise narrowband con-
tent at half the modulation frequency, consistent with the
parametrically amplified standing wave solution present
within wavenumber bandgaps [23]. Generally, in a lossy
mechanical medium, the gain realized by time-periodic
modulation may compensate for or balance energy dis-
sipation [26]. Wavenumber bandgaps have been shown
to open experimentally in transmission lines and theo-
retically in proposed photonic systems [21, 24]. In a sys-
tem more analogous to the present study, instabilities in
a linear phononic lattice with time-modulated spatially
periodic modulations have been explored [27], but the
opening of wavenumber bandgaps in the dispersion rela-
tion of phononic systems has not been directly shown.

Aside from periodicity, the introduction of nonlinear-
ity provides an alternative strategy to control waves in
discrete chains. The role of nonlinearity in discrete
chains, for example, has been studied extensively since
the first analysis of the Fermi-Pasta–Ulam–Tsingou prob-
lem [28, 29]. Some examples include nonlinearity-induced
bandgaps [30–32], nonreciprocal transmission [33], dis-
crete breathers [34–36], solitary waves [37–39] frequency
conversion [40], and nonlinear dispersion [41–44]. A more
comprehensive review of the extensive work done on non-
linear lattices can be found in the review articles [45–47]
or books [48–51].

Nonlinear effects and their interplay with paramet-
ric amplification have indeed been studied in photonic
and transmission line systems, which serve as practically
implementable analogs to one-dimensional optical meta-
materials. Multistability has been shown in Kerr non-
linear photonic crystals [52–54] as well as transmission
lines with nonlinear capacitance [55]. Parametric am-
plification in nonlinear transmission lines has also been
demonstrated [56, 57]. Unidirectional soliton-like edge
states in nonlinear Floquet topological insulators, which
are modeled by a discrete Nonlinear Schrödinger equation
with time variable coefficients, were explored in [58]. The
interactions between extrinsic time-periodic modulation
and nonlinear effects in phononic systems, however, have
typically only been investigated in the limits of linearized
behavior of nonlinear systems [59].

In the present study, we investigate a time-modulated
phononic lattice in both linear and nonlinear regimes us-
ing a combination of experiments, theory and numerical
simulations. In addition to the experimental observation
of wavenumber bandgaps, we demonstrate how the linear
dynamics can partially explain the observed bifurcation
structure of time-periodic states that result due to the
presence of nonlinearity. The linearized theory is com-
plemented by a detailed nonlinear bifurcation analysis
that exploits a fixed point algorithm for the computation
of time-periodic orbits and a pseudo-arclength continua-
tion. This bifurcation structure provides a road map to

understand hysteretic behavior observed in the system
in the presence of an external drive, where both time-
periodic and temporally quasi-periodic states are found
to co-exist.

The paper is structured as follows: The experimen-
tal platform and corresponding model equations are de-
tailed in Sections II and III, respectively. Results on
wavenumber bandgaps and their associated instabilities
in the small amplitude regime and a parametric inves-
tigation of stability are reported in Section IV. Nonlin-
ear effects leading to the formation of stable temporally
time-periodic and quasi-periodic orbits are explored in
V. Section VI concludes the paper.

II. EXPERIMENTAL PLATFORM

The experimental setup is adapted from the platform
developed by Wang et al. [15]. A one-dimensional (1D)
phononic lattice is realized as a mass-spring chain com-
posed of N ring magnets (K&J Magnetic, Inc., P/N
R848) lined with sleeve bearings (McMaster-Carr P/N
6377K2) comprising the uniform masses, arranged with
alternating polarity on a smooth rod (McMaster-Carr
P/N 8543K28). Electromagnetic coils (APW Company
SKU: FC-6489) are fixed concentrically around the equi-
librium positions of each of the innermost eight masses,
such that they may exert a restoring force on each mass
proportional to an applied current. The chain has fixed
boundary conditions, and the input mass (the first free
inward mass from one of the fixed ends) has a concentric
electromagnetic coil offset axially from its equilibrium po-
sition, which provides the driving force. Fig. 1(a) shows
the experimental setup. A lattice of size N = 12 (with
fixed boundaries n = 1 and n = 12) is selected, to cover
a sufficient range of wavelengths for the investigation of
transmission and dispersion of waves, while minimizing
the role of frictional losses.

The modulated magnetic lattice is modeled as a
monatomic, nonlinear mass-spring chain with dynami-
cally variable grounding springs and linear damping (see
Fig. 1(b)). The magnetic repulsive force between ad-
jacent masses provides the nonlinear coupling stiffness,
where the experimental force-distance relation is fit as
a dipole approximation, as shown in Fig. 1(c). For
small displacements, the coupling stiffness may be ap-
proximated as a linear spring, taking the slope of the
force-distance relation at the equilibrium mass spacing.
The modulating electromagnetic coils are modeled as
a grounding stiffness applied to each mass, which may
be positive or negative. A sinusoidal current applied
uniformly (and in phase) to every modulating coil pro-
vides time-periodic grounding stiffness modulation kg(t),
shown in Fig. 1(b). Experimentally measured values for
the force exerted on each mass by the magnetic field in-
duced by each concentric electrical coil are used in analyt-
ical and numerical models (data from [15]). Dissipative
forces, modeled as linear damping forces, are estimated
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FIG. 1. (Color online) (a) Photo of the experimental appa-
ratus, with electromagnetic coils corresponding to grounding
springs (modulating coils) and ring magnets inside each coil
(not fully visible) sliding freely on a low-friction rod. (b)
Schematic of the mass-spring lattice model with nonlinear
coupling stiffness kc, time-varying grounding stiffness kg(t),
and viscous damping c; right panel shows the harmonic modu-
lation form of the time-varying grounding stiffness. (c) Force-
distance measurement (blue line) [15] and fit (red dashed line)
of repulsive magnetic force between neighboring masses (d)
Measured (blue shaded region) and numerically simulated
(red dashed lines) nodal velocity envelope, used for viscous
damping parameter fitting by matching spatial decay.

as a fitting parameter (see Section III).

III. MODEL EQUATIONS

The lattice is modeled as a discrete mass-spring chain,
wherein the equation of motion for the nth mass (ring
magnet) with displacement un may be written as [15]

m
d2un
dt2

+ kg(t)un + Floss,n + Fmag,n = (1)

δ2,nAdr cos (2πfdrt) ,

for n = 1 to N , with fixed boundary conditions u1(t) =
uN (t) = 0. All ring magnets have uniform mass m. The
variable grounding stiffness, kg(t), acts uniformly on ev-
ery individual mass. The dissipative forces are repre-
sented by Floss,n, and Fmag,n is the coupling force acting

on the nth mass due to repulsive force between neighbor-
ing ring magnets. The driving input amplitude and fre-
quency are given by Adr([Adr] = N) and fdr([fdr] = Hz),
respectively. The Kronecker delta, δ2,n, acts so that the
input forcing applies only to mass n = 2.

An AC sinusoidal voltage (with zero DC offset) applied
to the electromagnetic coils induces a harmonic ground-
ing stiffness modulation of the form

kg(t) = δj,nAmod cos (2πfmodt) (2)

with amplitude Amod ([Amod] = N m−1) and frequency
fmod ([fmod] = Hz) (see Fig. 1 (b) inset). The Kronecker
delta index j = 3 to N − 2 so that the modulation acts
only on masses n = 3 to N − 2, labeled as in Fig. 1(a).
The amplitudes Adr and Amod are determined using em-
pirical relations between applied voltage and resultant
current in the coils and measurements of the reaction
force exerted by the coils on the concentric ring mag-
nets as a function of displacement from equilibrium posi-
tion for a given current [15]. The stiffness (in N m−1) of
each coil is approximately Amod ≈ 81AV for applied volt-
ages AV < 0.575 V, and Amod ≈ 39 + 14AV for voltages
AV ≥ 0.575 V. The driving is offset from the equilibrium
position of the driven mass by 7.5 mm, therefore the driv-
ing amplitude Adr (in N) is obtained by multiplying the
previous stiffness-voltage relations by the offset.

Dissipative forces are modeled phenomenologically
with a viscous damping term,

Floss,n = c
dun
dt

(3)

where the damping coefficient c ([c] = N s m−1) is de-
termined empirically. Because strong dissipation causes
rapid decay of free oscillations in time (on the order of
one period), it is better for this system to estimate the
damping constant by considering spatial decay. We mea-
sure and simulate monochromatic waves excited from the
driving coil traveling through the lattice for multiple fre-
quencies spanning the pass band of the lattice. We then
minimize the difference (in the least squares sense) be-
tween the simulated and experimental velocity amplitude
envelopes as a function of the damping constant. A rep-
resentative example of the matched measured and simu-
lated velocity envelopes is shown in Fig. 1(d). The value
of c that minimized the magnitude of the difference is
used in all analytical and numerical modeling.

The coupling force term is defined using the repulsive
magnetic force P (x) between neighboring masses, where
P (x) is a function of the center-to-center distance x (m)
between masses. The measured force-distance relation
between neighboring masses is fit with a dipole-dipole
approximation given by

Pdipole(x) = kdipolex
−α + P0,dipole. (4)

The measured and dipole-dipole fit values are shown in
Fig. 1(c). If the displacement amplitude of the masses is
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small relative to the equilibrium distance between adja-
cent masses, it is useful to employ a linear approximation
using the Taylor expansion of the above expression about
the equilibrium displacement

Plinear(x) = klinearx, (5)

where klinear = P ′dipole(a), where a is the equilibrium dis-
tance between adjacent masses. Thus the total coupling
force on a given mass is calculated using its displacement
un, the displacement of the neighboring masses un±1 as
follows

Fmag,n = P (a− un + un+1)− P (a− un−1 + un) , (6)

where P can be given by either Pdipole or Plinear.
Table I summarizes the measured and fit parameters

used throughout the manuscript. For all simulations, we
use a variable step 4th order Runge-Kutta method as
implemented in MATLAB ode45. This has been shown
to be accurate in other related nonlinear lattice problems
[50].

IV. WAVENUMBER BANDGAPS

A. Theoretical Determination of Wavenumber
Bandgaps

In the small amplitude displacement regime, we
observe experimentally the existence of wavenumber
bandgaps. In this section, we summarize the linear the-
ory predicting parameter values that lead to the emer-
gence of wavenumber bandgaps in our system. In the
limit of small displacements, we employ the linear ap-
proximation of the magnetic inter-site-coupling discussed

previously. Ignoring damping (which we return to later)
and assuming that the chain is infinite in length results
in the following model

m
d2un
dt2

+Amod cos (2πfmodt)un

+klinear (2un − un−1 − un+1)= 0. (7)

One approximate solution of this equation will be the sum
of the incident wave and the scattered fields induced by
the time modulation [12],

un(t) =U−1e
i(q0n−2πf−1t) + U0e

i(q0n−2πf0t)

+U1e
i(q0n−2πf1t), (8)

where f0 is the ordinary frequency of the incident wave
with amplitude U0 and q0 = κ0a is the dimensionless
form of the wavenumber. Note, an analysis that includes
all harmonics is discussed in Sec. IVC. The amplitudes
of the scattered fields are U−1 and U1 which have fre-
quencies f±1 = f0 ± fmod. The coupling between the
incident and scattered fields is negligible except where
D (f0, q0) = D (f±1, q0) = 0 [12, 15], where

D (f, q) := m(2πf)2 − 4klinear sin2 (q/2) = 0 (9)

is the usual dispersion relationship in the unmodulated
lattice (i.e. Amod = 0). The intersections occur precisely
when f0(q) = fmod/2. Substituting Eq. (8) into Eq. (7)
and equating coefficients of the three harmonics leads to
a zero determinant condition [12], and is given by the
expression

D̂(f, q) = D (f − fmod, q)D (f, q)D (f + fmod, q)−A2
mod (D (f − fmod, q)−D (f + fmod, q)) = 0. (10)

This condition is a modified dispersion relation in the
neighborhood of the intersections of D (f±1, q0) = 0 and
D (f0, q0) = 0. Values of q that lead to solutions of
Eq. (10) with complex valued f makeup the so-called
wavenumber bandgaps in the band structure and corre-
spond to a parametrically amplified standing wave with
growth rate given by the imaginary part of f [23, 24].
The analytical dispersion relations for the unmodulated
(D(f, q) = 0) and modulated (D̂(f, q) = 0) lattices are
shown in Fig. 2(a) and (b), respectively, for parameters
fmod = 40 Hz and Amod = 37.5 N m−1. As predicted by
the intersection of the incident and scattered fields, the
wavenumber bandgap opens at f = fmod/2, as seen in
Fig. 2(c).

To verify the dispersion calculations, we simulate
Eq. (1) using the same modulation parameters for the

grounding stiffness kg(t) and mass m that were used
to compute the dispersion relationships, but we use the
nonlinear repulsive force (Pdipole instead of Plinear), and
we include viscous damping c (see Table I for the spe-
cific values used). The simulation is solved repeatedly
for monochromatic, six-cycle sine bursts from fdr = 1
to 40 Hz (in 1 Hz increments) with driving amplitude
Adr = 0.38 N. The numerical dispersion relationship
is obtained by computing the two-dimensional Fourier
transform (2DFFT) of the velocity components of the
numerical solutions. Color intensity corresponds to the
normalized spectral energy density (a composite of all
driving frequencies) of the unmodulated (Amod = 0 N
m−1) and modulated (Amod = 37.5 N m−1) lattices in
Fig. 2(a) and (b), respectively. This method is similar to
a spectral energy density method frequently employed in
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Table I. Lattice Model Parameters
Measured Fit

Parameter Value Parameter Value
m 0.0097 kg c 0.15 N s m−1

a 33.4 mm klinear 87.03 N m−1

fmod = ωmod/(2π) ∈ [1 70] Hz kdipole 9.044× 10−7 N m4

fdr = ωdr/(2π) ∈ [1 40] Hz P0,dipole 0.7047 N
Amod ∈ [0 100] N m−1

Adr ∈ [0.15 0.4] N

photonic and phononic systems [12, 15, 60]. The numer-
ical dispersion relation accounts for nonlinearity, gain,
losses, and finite effects but still agrees well with the lin-
ear theory based on the infinite losses lattice with only
three fields used to determine the dispersion relationship.

B. Experimental Observation of Wavenumber
Bandgaps

To reconstruct the dispersion relation of acoustic waves
propagating through the experimental lattice, we mea-
sure the velocity of each mass using a laser Doppler vi-
brometer (LDV, Polytec CLV-2534). We use these mea-
surements to construct a full space-time-resolved tran-
sient velocity response of the lattice. The leftmost free
mass n = 2 is driven by a monochromatic, six-cycle sine
wave burst from quiescent initial conditions, exciting a
right (forward) travelling wave. The finite-cycle burst
and termination time of each measurement are chosen so
that reflections off the right boundary n = 12 are not
captured. Using the velocity field measurements from
driving frequencies from from fdr = 1 to 35 Hz (in 1 Hz
increments), a composite of spectral energy densities of
the two-dimensional velocity fields yields a reconstruc-
tion of the dispersion relation (the same method used in
the numerical simulations). Fig. 2(a), (b), (d), and (e)
show the comparison of measured dispersion against the
numerical simulation overlaid with the analytical predic-
tions.

The measured dispersion reconstruction in Fig. 2(d)
for the lattice without external modulation exhibits the
expected behavior of a monatomic lattice, i.e., a single
acoustic branch terminating at the edge of the Brillouin
zone. The positive wavenumber branch corresponds to
forward (right) travelling waves, while the negligible in-
tensity negative wavenumber branch indicates the ab-
sence of backward (left) travelling waves in the unmodu-
lated lattice.

The measurements are then repeated with an extrin-
sic temporal grounding stiffness modulation applied to
the lattice via the electromagnetic coils. The effective
grounding stiffness of the masses are modulated harmon-
ically at fmod = 40 Hz. Dissipation in the experimental
apparatus makes detection of small wavenumber signals
difficult; therefore, the modulation frequency is selected
so that the salient features of the wavenumber bandgap,

which occur at fmod/2, lie on a clear section of the dis-
persion branch. The numerical and experimental disper-
sion reconstructions shown in Fig. 2(b) and (e), respec-
tively, exhibit a strong peak (i.e. darker regions in the
spectral energy density), at fmod/2 = 20 Hz on the dis-
persion branch. In the numerical simulation, this peak
aligns with the analytical prediction of the wavenum-
ber bandgap, and the experimental peak is highlighted
by an arrow and seen to align with fmod/2 = 20 Hz.
This increased amplitude response is consistent with the
expected parametric amplification, associated with the
complex frequency inside the wavenumber bandgap, and
is in line with previous results in the literature [23, 24].
Compared to the unmodulated lattice, the dispersion
branch of the modulated lattice is largely unchanged, ex-
cept for the small neighborhood of frequencies around
fmod/2 = 20 Hz.

Both the experimental and numerical results show
good agreement in the presence of time modulation, and
the location of the wavenumber bandgap is predicted ac-
curately by the analytical model. Moreover, an addi-
tional amplitude peak is observed at fmod/2 and the neg-
ative of the wavenumber corresponding to the bandgap,
where the negative wavenumber may be interpreted as
backward propagating waves (Fig. 2(b), (d)). Such be-
havior is consistent both with the predicted parametri-
cally amplified standing wave solution that occurs within
the wavenumber bandgap and with previous experimen-
tal work that has shown evidence of the same effect via
the conversion of broadband signals into narrowband re-
flections [23].

In addition to exploring dispersion of travelling waves,
we examine the transmission spectrum of the harmoni-
cally driven lattice. The lattice is driven harmonically at
the input mass n = 2 by the reference signal of a lock-in
amplifier (LIA, Stanford Research SR860). The refer-
ence signal is a continuous sine sweep from fdr = 1 to
40 Hz, which is sufficiently slow for the lattice to exhibit
effectively steady state behavior. The output velocity at
mass n = 11 is measured using the LDV, and the out-
put is multiplied by the reference signal and integrated
over a moving time window by the LIA. This gives a
spectrum of the amplitude of the lattice response versus
frequency, relative the constant input amplitude of the
LIA reference signal. Experimental parameters are iden-
tical to the dispersion reconstruction, with fmod = 40
Hz, Amod = 37.5 N m−1, and Adr = 0.38 N. This is
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FIG. 2. (Color online) Dispersion relation and transmission
response in unmodulated and modulated lattice at fmod = 40
Hz. (a) Numerical dispersion reconstruction for the unmod-
ulated lattice. The analytical predication is shown by the red
curve. (b) Numerical dispersion reconstruction with modu-
lation frequency fmod = 40 Hz. The real part (red curve)
and imaginary part (blue curve) of the analytical approxima-
tion is also shown. (c) Expanded view of the bandgap from
the gray dashed window in panel (b). (d) Experimentally
measured dispersion reconstruction for the unmodulated lat-
tice. (e) Experimentally measured dispersion reconstruction
with modulation frequency fmod = 40 Hz. The frequency
fmod/2 = 20 Hz is indicated by the gray dash-dotted line.
The arrow highlights amplitude peak in dispersion branch.
(f) Numerically simulated frequency transmission spectra for
the unmodulated lattice (black dashed curve) and modu-
lated lattice (red curve) with fmod = 40 Hz. The frequency
fmod/2 = 20 Hz is indicated by the gray dash-dotted line.
(g) Same as panel (f), but for the experimentally measured
frequency transmission spectra.

also reproduced in numerical simulation. The resulting
frequency spectrum demonstrates clearly that the extrin-
sic time-periodic modulation induces amplification of sig-
nals at half the modulation frequency, in both experiment
and simulation, see Fig. 2(f) and (g), respectively. The
relatively narrowband amplification provides further ev-
idence that the dispersion reconstruction accurately de-
picts the localized nature of the wavenumber bandgap
and its amplifying effect on incident signals.

C. Parametric Investigation of Stability

A more complete analysis of stability can be achieved
by considering more than the three modes included in
Eq. (8) that result in a complex-valued f . Moreover,
the inclusion of damping also has a non-trivial effect on
the stability properties. Therefore, we conduct a stabil-
ity analysis on the linearized equations of motion of an
infinite mass-spring chain with damping,

m
d2un
dt2

+ c
dun
dt

+Amod cos (2πfmodt)un

+klinear (2un − un−1 − un+1)= 0. (11)

In particular, we make use of discrete Fourier transform,

û(q, t) =
∑
n∈Z

un(t)eiqn, (12)

to cast Eq. (11) in Fourier space,

∂2t û(q, t) +
c

m
∂tû(q, t)

+

[
(2πf(q))2 +

Amod
m

cos(2πfmodt)

]
û(q, t)= 0, (13)

where D(f(q), q) = 0, that is f(q) satisfies the disper-
sion relation in the unmodulated lattice. Equation (13)
is a Mathieu equation, which includes a linear viscous
damping term [61–65].

The stability regions of the Mathieu equation can be
approximated analytically. The standard form of the
Mathieu equation is ẍ(t) + γẋ(t) + (δ + ε cos(t))x(t) = 0

where γ = c
m2πfmod

, δ =
(
f(q)
fmod

)2
, and ε = Amod

(2πfmod)2m
.

In the absence of damping, regions of instability in the
[δ, ε] parameter plane emerge at the values δj = j2

4 ,
where j is an integer [66]. If one considers the paramet-
ric plot s(q) = (δ(f(q)), ε(f(q))) in the stability diagram
of the Mathieu equation, one sees that s(q) must cross
the first instability tounge since f(q) is continuous and
increases monotonically from zero, assuming an infinite
lattice. Thus, a condition for stability in the limit of
small modulation amplitude can be obtained by consid-
ering the instability tongue associated to j = 1, namely

that
(
f(q)
fmod

)2
< 1/4. This recovers the result that insta-

bility is induced by the intersection of dispersion curves
when f(q) = fmod/2, as discussed in Section IVA.
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In a finite sized lattice with zero boundary conditions,
the set of wavenumbers is discrete, and are given by qr =
πr/N . Thus, to derive a condition for stability in the
finite lattice case, each frequency must be inspected, since
it is possible that the parametric set of points given by
s(qr) may never fall in the first instability region due to
the discrete nature of qr in the finite lattice.

We now derive the stability condition in a finite lattice
in the presence of damping. The transition curves of
the the stability regions of the Mathieu equation with

damping and small but finite modulation amplitude can
be found via perturbation analysis [64, 66],

δ =
1

4
±
√
ε2 − γ2

2
, (14)

which is valid for small ε. In terms of the original sys-
tem parameters fmod and Amod, Eq. (14) implies the fol-
lowing condition for stability, which considers all N − 1
wavenumbers of the finite system given by qr = πr/N ,

max
1≤r≤N−1

∣∣∣∣∣∣
(
f(qr)

fmod

)2

± 1

2

√(
Amod

(2πfmod)2m

)2

−
(

c

m2πfmod

)2
∣∣∣∣∣∣ < 1

4
. (15)

The black line of Fig. 3(a) shows the transition curves of
the regions of instability based on the analytical approx-
imation Eq. (15).

While the application of the Mathieu equation in
Eq. (15) accounts for the finite length and boundary con-
ditions of the experimental lattice, it does not account
for the fact that the experimental lattice is only partially
modulated. In particular, the first and last free masses
are not modulated in order to allow more accurate mea-
surements of their velocities. In this case, one must com-
pute Floquet multiplers to determine stability. If all Flo-
quet multiplers have modulus not exceeding unity, then
the solution (the zero solution in this case) is stable. Oth-
erwise it is unstable (at least one Floquet multipler ex-
ceeds unity). See Appendix A for details. The results
of this analysis are shown in Fig. 3(a), where the gray
shaded region indicates modulation parameters that yield
an unstable solution. The qualitative structure of the in-
stability region agrees with the analytical prediction of
Eq. (15), but the boundary is shifted to higher modula-
tion amplitudes for some frequencies, which is consistent
with the fact that fewer masses in the lattice are gaining
energy from modulation.

In order to explore the validity of the linear theoreti-
cal stability predictions, we study both the numerically
simulated and experimentally measured response of the
lattice. The existence of unstable, exponentially growing
solutions from the linear model implies large-amplitude
displacements, and indeed large-amplitude displacements
(relative to the equilibrium spacing a) are experimentally
observed. To illustrate the difference between the re-
sponses, we simulate the response of the lattice both with
the linearized and the nonlinear repulsive force (Plinear
and Pdipole respectively) using the measured and fit pa-
rameters matching the experimental setup (see Table I).
An unstable set of modulation parameters, as predicted
by the linear theory (in particular, fmod = 41.6 Hz,
Amod = 78 N m−1, see black star in Fig. 3(a)), is ap-
plied to the lattice with no input drive (Adr = 0). The
simulation is initiated with quiescent conditions except

for an initial velocity at the driving mass (n = 2). It is
observed that while the response of the linear simulation
grows exponentially, the nonlinear simulation reaches an
oscillatory steady state, sustained by the grounding stiff-
ness modulation. This is illustrated by the velocity re-
sponses of the output mass (n = 11) in Fig. 3(b), with
the linear simulation in gray and nonlinear simulation in
black. Conversely, for parameter values where the lin-
ear theory predicts stability, the responses of both the
linear and nonlinear simulations decay with time due to
damping. Thus, as a proxy for the theoretical linear in-
stability, we search the full modulation parameter space
for any response that does not decay with time, what we
will refer to as non-decaying responses, from the nonlin-
ear simulation or experimental lattice.

The modulation parameters that lead to a non-
decaying response for the numerical simulation are de-
noted in Fig. 3(a) by white markers. The region of mod-
ulation parameters that lead to a non-decaying response
in the numerical simulation with nonlinear interaction in-
cluded exhibits good quantitative agreement with the un-
stable region predicted through both the Floquet theory
and damped Mathieu (Eq. (15)) stability conditions. We
perform the same procedure for the experimental setup
over a subset of the modulation parameter space, excit-
ing the input mass (n = 2) with an impulse and observ-
ing decaying or non-decaying responses. The experimen-
tal non-decaying region (Fig. 3 (c)) shows similarly good
agreement with the linear theoretical predictions.

Despite linearization and, in the case of the Mathieu
condition, a perturbation method approximate solution,
both the Floquet and Mathieu stability conditions ac-
curately predict the ranges of modulation parameters
for which a modulation-driven response is observed in
the experiment. This suggests that the onset of such
modulation-driven response can be predicted, to a de-
gree, by the approximate linear dynamics of the lattice.
On the other hand, the nonlinearity is clearly playing an
important role in the observed dynamics. As illustrated
by Fig. 3(b), the nonlinearity has a stabilizing effect,
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(a)

(b)

(c)

FIG. 3. Stability of modulation parameters. (a) The black curve shows the analytical prediction of the stability boundary
based on condition Eq. (15). Shaded region indicates unstable solutions for modulation parameter combinations as determined
by the Floquet analysis. The white circles indicate parameter combinations for which the fully nonlinear simulation exhibits a
non-decaying, modulation-driven response to an initial impulse. The black star indicates the parameters shown in panel (b).
(b) Numerically simulated velocity output time series for the parameters indicated by the black star in panel (a). The fully
nonlinear simulation (black line) has a bounded response, while the linearized simulation (gray line) exhibits exponential growth.
(c) Experimental non-decaying parameter combinations (white squares). The black curve shows the analytical prediction of
the stability boundary based on condition Eq. (15). Shaded region indicates unstable solutions for modulation parameter
combinations as determined by the Floquet analysis.

leading to bounded steady-states rather than unbounded
growth as the linear theory predicts. We explore this,
and other aspects of nonlinearity, in the next section.

V. NONLINEAR LATTICE DYNAMICS

A. Nonlinear states with no external drive

We now further investigate the interplay of the non-
linearity of the system with the extrinsic time modula-
tion. As a particular case example, we fix the modu-
lation frequency to fmod = 41.6 Hz, which corresponds
to the frequency of the star point in Fig. 3(a). At this
modulation frequency, the linear theory predicts that the
zero state becomes unstable at a modulation amplitude
of Amod ≈ 75.2 N m−1 (in the fully modulated lattice
the prediction is Amod ≈ 50.1 N m−1). For modulation
amplitudes above the threshold, the response initially
grows, but eventually settles to a stable, time periodic
state (as suggested by Fig. 3(b)). The period of oscilla-
tion is twice the period of the modulation period, which
corresponds to the frequency of the unstable modes lying
in the wavenumber bandgap. In order to better under-
stand these nonlinear time-periodic states, we employ a
Newton-type procedure to identify them with high preci-
sion. See Appendix A for details on the algorithm. Using
a Newton method to find time-periodic solutions allows
us to identify solutions that are unstable and to compute

bifurcation diagrams, which is not possible through di-
rect dynamic simulations, which can only identify stable
solutions. To investigate the dynamical stability of the
obtained states, a Floquet analysis is used to compute the
Floquet multipliers associated with the solutions. This
is done following the procedure detailed in Appendix A.
Fig. 4 shows example solutions obtained with the New-
ton method with the parameters fmod = 41.6 Hz and
Amod = 70 Nm−1. There are two time-periodic solu-
tions found at this parameter set. The panels in the left
coloumn correspond to a stable solution and the panels
in the right coloumn correspond to an unstable solution.
Panel (a) shows the profile of the solution at t = 0. The
inset shows a plot of the Floquet multipliers in the com-
plex plane. All multipliers lie within the unit circle (blue
solid line in the inset shown) indicating the solution is
stable. Panel (c) shows a spatio-temporal intensity plot
of the solution over one period of motion, where the os-
cillating character can been seen. Panel (b) shows the
profile of the unstable solution, whose instability is indi-
cated by a Floquet multipler lying outside of the unit cir-
cle. Panel (d) shows the corresponding spatio-temporal
intensity plot.

We conduct a bifurcation analysis of the nonlinear
time-periodic solutions using a pseudo-arclength con-
tinuation [67] with the modulation frequency fixed to
fmod = 41.6 Hz and the modulaiton amplitude Amod as
the continuation parameter. The bifurcation diagram is
shown in Fig. 5(a). The norm of the initial sate of the
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(c) (d)

(a) (b)

FIG. 4. (Color online) Time-periodic solutions of Eq. (1) with fmod = 41.6 Hz and Amod = 70 N m−1. (a) Spatial profile of a
stable solution. The inset shows the Floquet multiplers. (b) Spatial profile of an unstable stable solution. (c) Intensity plot
of the spatio-temporal evolution of the solution shown in panel (a) for one period of motion (color intensity corresponds to
displacement). (d) Intensity plot of the spatio-temporal evolution of the solution shown in panel (b) .

solution ‖u(0)‖ =
√∑

n un(0)2 is shown on the verti-
cal axis, and the modulaiton amplitude is shown on the
horizontal axis. Solid blue lines correspond to stable so-
lutions (all Floquet multiplers have modulus not exceed-
ing unity) and red dashed lines correspond to unstable
solutions (at least one Floquet multipler exceeds unity).
In the diagram, the zero state corresponds to the hor-
izontal line at ‖u(0)‖ = 0 m. The zero state is stable
until Amod ≈ 75.2 N m−1 (the black circle on panel (a)
shows the bifurcation point). This coincides with the
prediction based on the linear stability analysis detailed
in Sec. IVC. An unstable nonlinear time-periodic state
bifurcates from the zero state at the critical modulation
amplitude Amod ≈ 75.2 N m−1. This unstable nonlinear
time-periodic state remains unstable until it undergoes
a saddle-node bifurcation at Amod ≈ 64.44 N m−1 and
‖u(0)‖ = .009 m. The two solutions shown in Fig. 4
correspond to the labels (a) and (b), respectively. This
bifurcation implies classic hysteretic behavior is possible.
For small modulation amplitudes (Amod < 75.2 N m−1),
the zero state will be approached. Once the threshold
Amod ≈ 75.2 N m−1 is exceeded, the zero state is no
longer stable, and a small perturbation to the system
(like the impulse studied in the previous section) will
result in an initial increase in amplitude. However, in
the presence of nonlinearity, there exists a stable, time-
periodic state, which the dynamics approach asymptot-
ically. For example, with Amod = 78 N m−1 (which
corresponds to the star in Fig. 3(a)) the zero state is

unstable, and the thus the stable time-periodic state is
approached upon perturbation, see the star in Fig. 5(a).
Once the time-periodic state is excited, one can gradually
decrease the modulation amplitude until the saddle-node
bifurcation point. Below this point, the dynamics will
once again approach the zero state. The bifurcation di-
agram also implies a region of bi-stability. Namely, the
zero state and a time-periodic orbit is stable in the range
64.44 / Amod / 75.2. The bifurcation diagram in the
fully modulated lattice is qualitatively similar, but solu-
tion curves are shifted, see Appendix B.

B. Nonlinear states in presence of external drive

In the classic paradigm of oscillators with time-
independent stiffness, it is well known that presence of
damping and external drive can lead to periodic or-
bits, period-doubling, quasi-periodicity and chaos [66].
The study of spatially extended lattices (with time-
independent stiffness) with damping and external drive
is an active research area. Some examples include the
study of granular crystals [50, 51] and micromechanical
oscillator arrays [68]. In such systems, the primary struc-
ture is the periodic orbit. Other structures, such as those
with higher period, or quasi-periodic ones, typically bi-
furcate from branches in parameter space consisting of
periodic orbits. In this section, we add an external (har-
monic) drive to our system with time-dependent stiffness
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(a)

fdr
fmod/2

(b)

FIG. 5. (Color online) (a) Bifurcation diagram with fmod =
41.6 Hz fixed showing how time-periodic states bifurcate from
the zero state. (b) The frequency response of the experimen-
tal lattice for fixed amplitude harmonic driving and increas-
ing harmonic modulation. At a critical amplitude, the lattice
transitions from a driving-dominated response to a high am-
plitude, modulation-dominated response.

and explore the bifurcations as an underlying parameter
is varied. We will demonstrate that the primary struc-
tures in the system are quasi-periodic ones, which is in
contrast to the periodic ones found in lattices with time-
independent stiffness.

When the lattice is driven harmonically, and the mod-
ulation amplitude is incrementally increased, we observe
a transition from a driving-dominated to a modulation-
dominated response, as shown in Fig. 5(b) for the mea-
sured steady state output (mass n = 2) velocity. The
frequency response shows a sharp transition in dominant
frequency component (from driving frequency to half the
modulation frequency) and large increase in amplitude.
To better understand this, we start by conducting a para-
metric sweep of the modulation amplitude Amod, both
experimentally and numerically. This is a natural pa-
rameter to consider for bifurcation studies, since it is ex-
pected that larger values of Amod will lead to nonlinear
effects. For each value of Amod, the lattice is driven by
a harmonic input at one end (n = 2), and the output
signal is measured at the opposite end (n = 11). The ve-
locity response is allowed to reach steady-state and the
amplitude of the response is recorded. In particular, the
magnitude of the temporal Fourier coefficient associated
to the drive frequency fdr and half the modulation fre-

quency fmod/2 are recorded. This will indicate if the ob-
served dynamics is due primarily to the drive (i.e. larger
Fourier amplitude at f = fdr) or the time modulation
(i.e. larger Fourier amplitude at f = fmod/2). The mod-
ulation amplitude is increased by increment ∆Amod, and
the response is again allowed to reach steady-state and is
recorded. These steps are repeated until the maximum
modulation amplitude is reached. We call this procedure
the “forward sweep”. The “backward sweep” procedure is
similar, where Amod is decreased rather than increased.
This process is carried out numerically and experimen-
tally. In particular, for the numerical results, Eq. (1) is
simulated with the parameters specified in Table I and
with drive frequency fdr = 25 Hz and drive amplitude
Adr = 0.15 N. Similar to Section VA, we fix the the
modulation frequency fmod = 41.6 Hz. Notice that the
drive frequency is not a rational multiple of the modula-
tion frequency, which represents a generic choice of these
frequencies. The case where one is a rational multiple of
the other is briefly discussed in Appendix C. The range
of modulation amplitudes considered is Amod ∈ [0, 100] N
m−1 where increments of ∆Amod = 2 N m−1 are used in
the sweeps. Experimental forward and backward sweep
measurements are repeated 4 times with identical driving
and modulation parameters, with the exception that the
step size is ∆Amod ≈ 3.75.

Fig. 6 summarizes the results of the modulation am-
plitude sweeps. In Fig. 6(a), the response of the lattice
to a forward sweep of modulation amplitude is analyzed.
The relative Fourier amplitudes of the drive frequency
f = fdr are shown in blue (squares/line) and the Fourier
amplitudes of the half modulation frequency f = fmod/2
are shown in black (triangles/line). Error bars show stan-
dard deviation for experimental measurements. For small
modulation amplitudes, the response is completely domi-
nated by harmonic driving dynamics, and the amplitude
of oscillations at fmod/2 is negligible. Then, at a crit-
ical modulation amplitude, the output response transi-
tions sharply from the small displacement, driving signal-
dominated regime to a large displacement, modulation-
dominated regime, at the sharp jump in the relative am-
plitude of the fmod/2 (black) in Fig. 6(a). Fig. 6(b) ex-
amines the transition between the amplitude jumps in
more detail. Since only the modulation-dominated re-
sponse is necessary to track the transition of the lattice
between the two states, Fig. 6(b) shows a comparison of
the relative Fourier amplitude of f = fmod/2, this time
for both the forward (black) and backward sweep (gray)
of the modulation amplitude Amod near the transition
point. Significant hysteresis is observed both in the ex-
periment (markers) and simulation (dashed-lines). This
transition occurs at approximately Amod = 90 N m−1 in
the experiments and Amod = 73 N m−1 in simulation for
the forward sweep and Amod = 60 N m−1 and Amod = 63
N m−1 for the measured and simulated backward sweep,
respectively.

The structure of the solutions in the low amplitude,
drive dominated region are simple. They are time-
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FIG. 6. (Color online) Nonlinear lattice dynamics (a) Fourier amplitudes for fdr (blue/squares) and fmod/2 (black/triangles)
versus modulation amplitude for experimental (markers) and numerical simulation (lines). Note that error bars are also shown.
(b) Hysteresis of fmod/2 Fourier component around mode transition, with slowly increasing (black triangles) and decreasing
(gray upside down triangles) modulation amplitude. Numerical simulation shown in dashed lines. (c) Poincaré section of
the output response of the numerical simulation, with sampling period T = 1/fdr. Pre- and post- forward sweep transition
modulation amplitude responses are shown as blue squares and black triangles, respectively. (d) Same as panel (c) for the
experiment.

periodic with period given by the period of the drive.
The solution structure of the higher amplitude, modu-
lated dominated region is more subtle. To understand
this structure, we use Poincaré sections of the output
response. A Poincaré section effectively turns a contin-
uous signal into a discrete one by sampling the solution
at some fixed time increment, say T [66]. For example,
a single point in the Poincaré section would correspond
to a periodic orbit with period T of the original time se-
ries. Two points in the Poincaré section would correspond
to a solution with period 2T (period doubling), and a
closed loop in the Poincaré section would correspond to
a quasi-periodic orbit. To create the Poincaré section
the output position u (which is found experimentally by
integrating the velocity measured by the LDV) and ve-
locity v = du

dt are plotted in the (u, v) phase plane with
a sampling period of T = 1/fdr. Both numerical sim-
ulation and experimental Poincaré sections are sampled
at modulation amplitudes at least one ∆Amod smaller
and larger than their respective forward sweep transi-
tion points. Fig. 6(c) shows the numerically simulated
Poincaré section at Amod = 71 N m−1 (blue squares)
and Amod = 75 N m−1 (black triangles) and Fig. 6(d)
shows the experimentally measured Poincaré section at
Amod ≈ 80 N m−1 (blue squares) and Amod = 93 N m−1
(black triangles). Before the transition, the plot of the
Poincaré sections reveals a single point, indicating the so-
lution is time-periodic. After the transition, the Poincaré
sections form an invariant curve in the phase plane, in-

dicating the solution is temporally quasi-periodic. The
Poincaré sections confirm what is already suggested in
Fig. 6(a). Namely, there is a single dominant frequency
in the response before the transition (time-periodic re-
sponse) and there are two non-negligible incommensu-
rate frequencies after the transition (time-quasi-periodic
response).

The hysteretic behavior shown in Fig. 6 represents a
departure in the hysteretic behavior observed in classic
nonlinear systems [66]. Typically the main branch of
solutions consist of constant or time-periodic solutions.
While quasi-periodic orbits can exist in classic oscillator
systems, they are typically unstable (see the discussion
in [69]). Here we have demonstrated that in large re-
gions in parameter space, the quasi-periodic orbits are
stable. The hysteretic behavior, and the region of bi-
stability, of Fig. 6(b) can be understood in the frame-
work of the previous sections. The reason for this is as
follows: In the presence of the external drive, the ground
state is no longer the zero state, but rather it is a time-
periodic state with frequency identical to the external
drive frequency. The quasi-periodic orbit found in the
lattice with the external drive results from the combined
effect of the nonlinear time-periodic state of the undriven
system (discussed in VA ) with frequency fmod/2 and
the external drive with frequency fdr. The presence of
the two frequencies in the response is what leads to the
quasi-periodic motion. With this established, the bifur-
cation diagram shown in Fig. 5(a) will provide a roadmap
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for understanding bifurcations in the externally driven
system. In particular, the analytical approximation for
the jump in the forward sweep is Amod ≈ 51.1 N m−1,
which is based on the Mathieu equation stability analy-
sis of the fully modulated lattice detailed in Sec. IVC. In
the partially modulated lattice (where the first and final
node are not modulated), the loss of stability occurs at
Amod ≈ 75.2 N m−1. This theoretical prediction from the
linear analysis is very close to the observed jump shown
in Fig. 6(b), Amod = 73 N m−1. Likewise, based on the
analysis of Sec. VA the jump in the backward sweep is
predicted to occur at Amod ≈ 64.44 N m−1, which is
close to the observed value of Amod ≈ 63 N m−1. Thus,
the presence of the external drive did not significantly
alter the bifurcation structure (compare Figs. 5(a) and
6(b). The underlying solution structure does, however,
change significantly. The zero and time-periodic states
in the undriven lattice became time-periodic and quasi-
periodic ones in the driven one. The dynamics of a driven
lattice with drive frequency that is a rational multiple of
the modulation frequency is detailed in Appendix C.

The stability analysis carried out in Sec. IVC can also
help explain the observed discrepancy between the ex-
perimental results and simulated results (e.g., the region
of bi-stability is slightly larger in the experiment). In
Fig. 3(a) one sees that the stability of the lattice with
respect to the modulation frequency is very sensitive. In
particular, for the modulation frequency fmod = 41.6 Hz
used in Fig. 6, the linear stability modulation amplitude
(Amod) threshold can change by more than 10 N m−1
for a change in fmod of ± 1 Hz (see boundary of gray
instability region in Fig. 3(a)). Therefore, even a small
mistuning between the experimental and theoretical fre-
quency could cause significant changes to the transition
modulation amplitude.

While additional tuning of the parameters could yield
better quantitative agreement, the primary features of
nonlinearity and time modulation are captured well by
our model with predetermined parameter values.

VI. SUMMARY AND CONCLUSIONS

We studied the response of a linear and nonlinear dis-
crete, phononic lattice, consisting of magnetic particles
controlled by electromagnetic coils. We excited the lat-
tice at one end and imparted external stiffness modula-
tion at each particle site. In the linear regime, we experi-
mentally reconstructed the dispersion relation of a chain
with modulated grounding stiffness, demonstrating the
opening of wavenumber bandgaps. For larger modula-
tion amplitudes, the nonlinearity of the coupling force be-
tween masses admits bounded solutions that would oth-
erwise not be present in a linear system, where the para-
metric amplification characteristic of this form of extrin-
sic modulation induces exponential growth. In particu-
lar, the nonlinearity of the system allows for the existence
of a family of time-periodic states which bifurcate from

the zero state when it losses stability. The combination
of external drive and time-modulation allows for the cre-
ation of stable, large-amplitude time-quasi-periodic solu-
tions that can co-exist with stable, small-amplitude time-
periodic ones. This was confirmed both numerically and
experimentally, with the experiments showing good qual-
itative agreement with the numerics.

Our analysis offers validation of the linear dynamics
that produce the unique emergent dispersive properties of
time-modulated systems, while demonstrating how non-
linearity provides additional flexibility in the design and
study of wave propagation time-modulated systems. The
findings offer insights on methods to control the prop-
agation of acoustic waves in nonlinear, active systems.
Implementing such solutions in small scale devices holds
promise for applications in sensing and signal processing,
offering frequency agile solutions for tunable filters, delay
lines and signal conversion. Such nonlinear phenomena
could also be used to compensate losses and dissipation,
thereby allowing the miniaturization of components and
the addition of on-chip functionalities.
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Appendix A: Calculation of Periodic orbits and
Floquet multipliers

1. Floquet multiplers corresponding to zero state

The stability analysis of the zero state in Section IVC
is based on a Fourier decomposition in space, which is
only valid assuming each node is modulated. If the lat-
tice is partially modulated (like in the experiment, where
the first and last node are not modulated) one must de-
termine stability based on the numerical computation the
Floquet multipliers.

To numerically compute the Floquet multiplers, we
solve the full system of equations given by Eq. (1) for the
linear case when Fmag,n = klinear (2un − un−1 − un+1).
The second order system is be reduced to a first order
system u′(t) = A(t)u(t), where the vector u(t) contains
the displacements and velocities of each mass, and the
coefficient matrix A(t) contains the stiffness, damping,
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and modulation of the lattice,

u(t) =



u1(t)
...

uN (t)
u′1(t)
...

u′N (t)



A(t) =

(
0 I

−M−1 (K + Kg(t)) −M−1C

)
with mass matrix M = mI, damping matrix C = cI,
stiffness matrix

K = klinear



2 −1 0 · · · 0

−1
. . . . . . . . .

...

0
. . . 0

...
. . . −1

0 · · · 0 −1 2


and modulation matrix

Kg(t) =


0 0 · · · 0

0 kg(t)
. . .

...
...

. . . . . .
kg(t) 0

0 · · · 0 0


Since the harmonic modulation kg(t) =

Amod cos (2πfmod) makes the time dependent coef-
ficient matrix periodic with period T = 1/fmod, we
apply Floquet theory to determine the stability the
linearized system. At each point (fmod, Amod) in the
modulation parameter space, we solve numerically for
the fundamental solution matrix U(t) at time t = T
from initial conditions U(t = 0) = I. The state is stable
if the eigenvalues of U(T ), the Floquet multipliers, have
moduli less than one. This corresponds to all multipliers
lying within the unit circle in the complex plane. Oth-
erwise, the state is unstable. Similar studies have shown
this type of Floquet analysis to be an effective method
for characterizing instability of propagating waves in
discrete systems [25].

2. Newton’s method for periodic orbits

Time periodic orbits are computed by finding roots
of the map F := u(2Tmod) − u(0), where 2Tmod is the
period of oscillation, x(2Tmod) is the solution of Eq. (1)
at time 2Tmod with initial condition u(0). Roots of this
map (and hence time-periodic solutions of Eq. (1)) are
found via Newton iterations. This requires the Jacobian

of F , which is of the form V (2Tmod) − I, where I is the
identity matrix, V is the solution to the N2 variational
equations V̇ = DF · V where DF is the Jacobian of the
equations of motion evaluated at the given state vector.
The stability is computed in the same way as detailed
above for the zero state, but with the coefficient matrix
given by A(t) being replaced by the Jacobian matrix DF .

Appendix B: Bifurcation diagram in fully modulated
lattice

FIG. 7. (Color online) Bifurcation diagram with fmod = 41.6
Hz fixed showing how time-periodic states bifurcate from the
zero state in the fully modulated lattice.

The bifurcation structure of the time-periodic states
in fully modulated lattice with no external drive, see
Fig. 7, is similar to the partially modulated lattice,
shown in Fig. 5(a). The black circle in the figure in-
dicates when the zero-state becomes unstable, according
to Eq. (15). This point coincides with the numerically
computed time-periodic state bifurcating from the zero
state.

Appendix C: Driving and modulation frequencies
which differ by a rational factor

We show a forward and backward sweep of the mod-
ulation amplitude for two cases, first, where the driving
frequency is a not rational multiple of the modulation
frequency (fdr = 25.77 Hz, fmod = 40 Hz), and second,
where the driving frequency is a rational multiple of the
modulation frequency (fdr = 25 Hz, fmod = 40 Hz). It is
observed that this does not have a significant impact on
the hysteresis behavior, as shown Fig. 8 in panels (a) and
(b) for the not rational and rational case, respectively.
The primary difference is observed in the Poincare sec-
tions for the same frequencies (where panel (c) and (d)
are correspond to the same frequencies as panels (a) and
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(c) (d)

(a) (b)

FIG. 8. (Color online) (a),(b) Forward and backward sweep
for driving and modulation frequency combinations that
aren’t (a) and are (b) rational multiples. (c),(d) Poincaré
sections for low (black triangles) and high (blue squares) am-
plitude regime with same frequency combinations as (a) and
(b), respectively.

(b), respectively. The outputs for low (black triangles)
and high amplitude (blue squares) modulation regimes,
exhibit a quasi-periodic orbit when the frequencies are
not rational multiples, while the rational multiple case is
periodic.
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