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A mechanism responsible for the generic features of the mean squared displacement and the decay of the 

orientational autocorrelator of a molecule in a glass forming liquid is poorly understood, where such a 

mechanism would be critical for creating the theory of glass transition. A discrete random walk model is 

proposed where, instead of a straight line, a walk is along a tortuous path consisting of blocks of switchback 

ramps. Sub-diffusive regime, short-term dynamic heterogeneity and existence of the α- and β-relaxation 

processes emerge naturally from the model. The model suggests that slowing of the rate of relaxation may 

be due to increase in the number of the switchback ramps per block rather than due to growth of an energy 

barrier as typically assumed. 

 

I. INTRODUCTION 

When studying the behavior of a molecule in a condensed matter, two quantities are typically considered: 

the mean squared displacement (MSD),      
22 0r t t    r r , and the orientational autocorrelator,

    1 cosC t t . Here  tr is the spatial location of a molecule at time t and  t is the angle between 

the orientations of a chosen molecular axis at time t and at a time zero. Average is over all molecules. 

Orientational relaxation can also be described by higher moments of the cosine function, for example

       2

2 cos 2 2cos 1C t t t    in two dimensions (2D); in three dimensions (3D),  2C t is an 

average of the second Legendre polynomial.  Typical  2r t ,  1C t and  2C t as observed in a molecular 

dynamic (MD) simulation of a model system of molecular dumbbells are shown in Fig. 1.  

 

FIG. 1. Results of MD simulation of a 3D dumbbell system. (Data courtesy of J. Yungbluth) Details of the 

molecular potential are in Ref[1]. (a) MSD of the center-of-mass of a dumbbell, (b) rotational 

autocorrelators:  1 cosC t  - blue (upper curve at 10log 0t  ) and   2

2 3 cos 2 1 2C t   - red. 

Dashed line in (a) is the asymptote with the slope of unity. 



There are several remarkable features of these dependencies. The MSD curve in Fig. 1(a) exhibits a sub-

diffusive regime at intermediate times, where  2log r t  vs  log t has a slope of less than 1,  and at long 

times a diffusive regime, where  2log r t  vs log t  has a slope of 1. (At shorter times not shown in Fig. 1(a) 

a ballistic regime is observed, where  2log r t  vs log t  has a slope of 2.) Asymptote for the diffusive regime 

in 3D, i.e., the dashed line in Fig. 1(a), is    2log log 6 logtransasymp
r t D t  , where

transD is the translational 

diffusion coefficient. Analysis of the MSD data for several temperatures shows that
transD decreases rapidly 

with temperature, T .[1-3] More precisely,  transD T has an Arrhenian dependence above some material 

specific
AT and an even stronger super-Arrhenian dependence below

AT . As temperature decreases the sub-

diffusive regime expands so that the diffusive regime is reached at increasingly longer times. At some 

temperature the diffusive regime cannot be reached within a practical simulation time; that temperature is 

the glass transition temperature, gT . The simulated  1C t  curve in Fig. 1(b) is in a qualitative agreement 

with the one extracted from the analysis of the dielectric relaxation data. The autocorrelator decay is 

significantly broader than single exponential. Experimentally, for most materials two distinct peaks, 

traditionally called α- and β-relaxation processes, are seen in the spectrum.[4,5] The magnitude of the β-

peak is typically an order of magnitude less than the magnitude of the α-peak.[6] There are exceptions, 

notably a tetramethyl tetraphenyl trisiloxane (DC704), for which virtually no β-relaxation is detected.[7] 

Below
AT the α-process (i.e., the slower process) exhibits a super-Arrhenian temperature dependence and 

the β-process (i.e., the faster process) exhibits an Arrhenian temperature dependence. An interesting feature 

observed in Fig. 1(b) is that the  2C t autocorrelator initially decays more rapidly than the  1C t , but  

eventually begins decaying slower than the  1C t so that the curves cross (see also Ref[8]).  

The physical mechanism(s) responsible for the behavior of  2r t ,  1C t and  2C t described above is not 

understood.  For comparison, consider the case of a Brownian particle moving in a viscous medium. The 

well-known results for the  2r t ,  1C t and  2C t functions are (in 3D) 

          2

1 26 exp 2 exp 6trans rot rotr t D t C t D t C t D t      (1) 

Here
rotD is the rotational diffusion coefficient related to the translational diffusion coefficient as

2

trans rotD D l where l is on the order of the size of the Brownian particle. In contrast to the behavior depicted 

in Fig. 1,  2r t  in Eq. 1 has no sub-diffusive regime,  1C t  and  2C t decay is single exponential and  2C t

always decays faster than  1C t . Glass formers are known to exhibit dynamic heterogeneity where different 

nanometer scale regions throughout the material have different local rates of relaxation as measured by 

various spectroscopic techniques.[9] An obvious idea then is to apply the Brownian particle model locally, 

so that the
transD and corresponding

rotD vary from one region to another. Under that assumption, and 

provided the particles do not move from one region to another over the time interval of interest, Eq. 1 is 

replaced with 

          2

, 1 , 2 ,6 exp 2 exp 6n trans n n rot n n rot n

n n n

r t w D t C t w D t C t w D t        (2) 



Here index n enumerates possible values of the local diffusion coefficient ,trans nD and
nw is the corresponding 

distribution, where 1nn
w  . While Eq. 2 does describe multi-exponential  1C t  and  2C t functions, it 

still does not capture the behavior seen in Fig. 1. The  2r t as predicted by Eq. 2 is always diffusive, where 

the only effect of heterogeneity is that
transD  in Eq. 1 is replaced by

,trans n trans nn
D w D . Also, for every n,

 ,exp 6n rot nw D t decays three times faster than  ,exp 2n rot nw D t , so the overall  2C t cannot cross the 

overall  1C t , contrary to what is seen in Fig. 1(b). If, perhaps more realistic assumption is made, that 

particles do not remain within a given region during the observation but move between regions with 

different local mobilities, then the effect of heterogeneity only weakens ultimately reverting to Eq. 1 with 

the effective diffusion coefficients. A Brownian particle is orders of magnitude larger than surrounding 

molecules, where this difference is what allows for treating the latter as an effective medium. An 

inescapable conclusion from the failure of Eqs. 1 and 2 to capture the behavior in Fig. 1 is that such a 

treatment is not appropriate for describing movement of a molecule surrounded by molecules of equal size. 

II. MODEL DEVELOPMENT  

A diffusive behavior described by Eq. 1 results not only from the Brownian particle model but also from a 

mathematically simpler model of a random walk with discrete steps. In the 1D version of the model, a 

walker takes steps with equal probability of moving left or right along a straight line. Position along the 

line is either a spatial coordinate x or an angle . In the former case the domain is infinite; in the latter, the 

periodic boundary conditions are imposed such that 2 steps correspond to a rotation through 2 . As stated 

above, Eq. 1 does not describe the behavior shown in Fig. 1. A modification of the standard random walk 

model is proposed, which is depicted schematically in Fig. 2. In the new model a path, along which a walker 

moves, is an infinite sequence of blocks, where each block comprises
rN switchback ramps of length L (i.e., 

it takes 1L discrete steps to walk from one end of the ramp to another). The number of sites in a block is

 1 rB L N  . Note that the model is strictly one-dimensional, so no physical meaning is assigned to the 

“displacement” in the y-direction in Fig. 2, which is for the clarity of the drawing only. A base diffusion 

coefficient for movement along the path is
1D . In order to make progress along the x -axis a walker must 

complete all the switchbacks within a block. Intuitively one expects the short-term behavior to be sub-

diffusive and the long-term behavior to be diffusive, albeit with a diffusion coefficient smaller than
1D . The 

following scaling argument applies. In the asymptotic regime, a ‘step’ is the entire block (i.e., with the 

length of 1L ) so the corresponding diffusion coefficient is given by the standard expression

 
2

1 BD L   , where
B is the average time to traverse a block. This time is estimated to be 2

1B B D  . 

Thus, the asymptotic diffusion coefficient is estimated as 
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In other words, the block length is canceled out and the asymptotic diffusion coefficient only depends on 

the number of ramps; specifically, it is inversely proportional to 2

rN . 



 

FIG. 2. Schematic of a switchback structure. The case of 7, 5rN L  is shown. Site A is between 

adjacent blocks; site B is at the center of a block. 

A formal treatment is possible using the characteristic function method, details of which are sketched in the 

Supplemental Material.[10] It involves solving an eigenproblem for the transition matrix (Hermitian of rank

B ), where the moments of the distribution are obtained via differentiation of the characteristic function. 

Although numerical differentiation is possible in principle, analytical expressions for the eigenvalues and 

the eigenvectors are preferred. This renders the analytical solution impractical except for the case of

2, 3rL N  , for which the mean squared displacement is obtained as 

    2 8 8 1
3 1

9 27 27 2

t
t

x t t
 

     
 

 (4) 

where discrete time, t , is the number of steps. (See details of the derivation in the Supplemental 

Material.[10]) This is compared to the standard case of a random walk on a straight line where  2x t t . 

As number of steps increases, Eq. 4 approaches the asymptote 2 9, 1x t t  ; so, the scaling result of 

Eq. 3 is confirmed. 

For the rest of the values of Land
rN considered here, a numerical simulation of a random walk is employed. 

In the steady-state regime, which is of interest here, initial position of a walker is uniformly distributed 

within a block. Averaging is over at least 105 trajectories, which has proven sufficient to generate smooth 

 2r t ,  1C t and  2C t curves shown below. Note that the saw-like pattern seen in the curves in Fig. 3 at 

short times is not noise but a consequence of the discreteness of the system.  
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FIG. 3. MSD vs time for the switchback model; (a) effect of varying the number of ramps at fixed 4L  in 

the order indicated by the arrow: orange - 7rN  , green - 9rN  , blue - 11rN  , magenta - 13rN  ; (b) 

effect of varying the ramp length at fixed 7rN  in the order indicated by the arrow: orange - 4L , cyan -

6L , red - 8L , black - 10L  . Dashed line is the standard case of a discrete random walk on a straight 

line  2x t t . 

III. RESULTS AND DISCUSSION 

Representative results of the MSD simulation are shown in Fig. 3. The shape of the curves is in qualitative 

agreement with the MD results in Fig. 1(a). Specifically, the sub-diffusive regime followed by the diffusive 

regime (i.e., the asymptote with the slope of 1) are apparent. Holding the ramp length Lconstant and 

increasing the number of ramps
rN shifts the diffusive regime to longer times, where the logarithm of the 

diffusion coefficient behaves as 2

1rD N D in agreement with the scaling estimate of Eq. 3. Increasing L

while holding
rN constant does not affect the diffusion asymptote, but changes the shape of the sub-diffusive 

portion of the curve as seen in Fig. 3(b).  

 

  

FIG. 4. Autocorrelator vs time for the switchback model for 15 (number of step lengths in ); (a) effect 

of varying the number of ramps at fixed 12L in the order indicated by the arrow: red - 5rN  , orange -

7rN  , green - 9rN  , cyan - 11rN  , blue - 13rN  , magenta - 15rN  ; (b) effect of varying the ramp 

length at fixed 13rN  in the order indicated by the arrow: red - 5L , orange - 6L , green - 8L , cyan -

10L  , blue - 12L .  Dashed line is for the case of a discrete random walk on a circle for 15 .  

For orientational relaxation, the discrete steps are in terms of the angle x   . In the simplest case of 

a random walk on a circle, i.e., without the switchbacks, an analytical solution is available, where the details 

are given in the Supplemental Material.[10] Specifically, the autocorrelators are single exponential 

functions    expk kC t t   , where
1lnk k  and  cosk k   for 1,2k  . Approximate expressions, 

using the Taylor expansion of the cosine, are
2 2

1 2  and
2 1 4  , which become increasingly 

accurate as increases. The effect of increasingon the base relaxation time
1 is equivalent to the effect 

of decreasing the step size on the base diffusion coefficient
1D .  

In case of a random walk on the switchback structure, the value of the L   ratio is consequential. If it is 

greater than unity, then the orientational autocorrelator can decay to zero without the walker having to leave 

the block where it was situated at 0t  . If the ratio is less than unity, the walker has to visit more than a 

single block for the autocorrelator to fully decay. Here the focus is on the 1L  case, while holding   



constant, where representative examples of the
1( )C t decay are shown in Fig. 4. At 1 3L  (red curve in 

Fig. 4(b)) the decay is nearly single exponential, but as L  increases (as
rN is held constant) a shoulder 

develops and a two-tier decay is observed. In keeping with the traditional nomenclature, the long-term 

process will be called the α-relaxation and the short-term process the β-relaxation. It is apparent from Fig. 

4(a) that when the ramp length L is held constant and the number of ramps
rN is increased, the α-process 

shifts to longer times while the β-process does not move. When the ramp length L is increased and the 

number of ramps
rN is held constant (i.e., in Fig. 4(b)), the relative contributions of the α- and β-processes 

change but there is no shifting to longer times. 

The above conclusion can be made quantitative using the Prony series expansion, where a decaying function 

is fit to a sum of exponentials, e.g.,    1 expn nn
C t H t   . A representative example of such an 

expansion for the case of a well-developed two-tier decay is shown in Fig. 5(b) – blue symbols, where the 

spectrum is found to consists of five terms. The details of the analysis are provided in the Supplemental 

Material.[10] It is observed that the three terms with longer
n s shift with increase in

rN , while the two 

terms with shorter
n s do not. Consequentially, the three longer

n s are assigned to the α-relaxation process 

and the two shorter
n s are assigned to the β-relaxation process. Applying the analysis to the data in Fig. 4, 

it is obtained for the main α-peak 

  

 

    2

1 1 1 1

1

exp 1.2 0.07 r

t
H H L N

  


 



 
    
  

 (5) 

and for the main β-peak 

  

 

    2 1
1 1 1

1

exp 0.04 0.1
250

t
H H L L

  








 
    
  

 (6) 

As stated above,
 
1


 is a function of

rN but not Land
 
1


 is a function of Lbut not

rN . Also, in agreement 

with the scaling reasoning that led to Eq. 3, the α-relaxation time scales as 2

rN . According to Eq. 5, the 

spectral strength of the main α-peak does not change when
rN changes, which confirms that it is an objective 

feature rather than an artifact of fitting.  The spectral strength of the main α-peak decreases with increase 

in the ramp length L  whereas the spectral strength of the main β-peak increases with L . The relaxation times 

of the lesser α- and β-peaks qualitatively behave like the relaxation times of the corresponding main peaks.    

  

FIG. 5. (a) Orientational autocorrelators for 15, 6, 13rL N   case - dashed lines and 

15, 12, 13rL N   case - solid lines;  1C t - blue (upper) and  2C t  - red (lower) lines (b) Spectral 



strength vs relaxation time for the Prony series expansion of  1C t - blue and  2C t  - red (filled) for the 

15, 12, 13rL N   case. Main α- and β-peaks are indicated. 

Of particular interest is the effect of varying the L   ratio on the relative behavior of the  1C t and  2C t

autocorrelators. As mentioned above, in the base case of a random walk on a circle with no switchbacks

 2C t decays four times faster than  1C t . This remains approximately true in case of a switchback structure 

for 6L  (where 15 ) as illustrated in Fig. 5(a) (dashed lines). In contrast, for 6 15L   the  2C t

ultimately relaxes even slower than  1C t  as illustrated in Fig. 5(a) (solid lines). The corresponding Prony 

series expansions are shown in Fig. 5(b), where the expansion for  2C t (red filled symbols) contains a long-

term contribution. Analysis (see the Supplemental Material[10]) shows that the corresponding relaxation 

time is approximately a factor of 2 larger than the main α-relaxation time
 
1


 given in Eq. 5, where it also 

scales as 2

rN . The reason for the difference in  1C t vs  2C t relaxation is easily understood. It takes a 

rotation through 2 angle to relax  2C t and  angle to relax  1C t . In case of a simple diffusion on a 

circle, the average time required for the latter is a factor of four longer than for the former. Same mechanism 

applies when there are multiple switchback blocks within the  ,  range, i.e., when the L   ratio is 

small; only, in this case, as far as the asymptotic behavior is concerned, the ‘step’ is the entire block. The 

situation changes when the L   ratio approaches1 2 , that is when the size of a single block approaches

2 . Now the time controlling the relaxation of both  1C t and  2C t is the same – the time for traversing 

a single block. In some systems studied by the MD simulations the  2C t relaxation is delayed as compared 

to the  1C t relaxation by much greater amount than that shown in Fig. 1(b). Chong et al found that in a 

binary mixture of Lennard-Jones dumbbells for some dumbbell geometries the  2C t decay was slower than 

 1C t  by three orders of magnitude.[11] The current model as described by Fig. 2 does not predict this. 

However, this is a result of a choice of a particular topology, where the model can be easily generalized. In 

experimental studies using the single-molecule spectroscopy, it was found that 180° flips of the embedded 

fluorescent probe were common even at temperatures near gT .[12] In terms of the current model this would 

correspond to some of the adjacent switchback blocks being farther apart from each other along the -axis, 

so that a walker exiting one block and entering another would make a step equivalent to rotating through 

the angle of  . In such a version of the model the relaxation of  1C t  is accelerated and the relaxation of 

 2C t is not, thereby explaining the Chong et al result. 

The  1C t  and  2C t autocorrelator decay curves shown in Figs. 4 and 5 are averages where walker’s 

position at 0t   is uniformly distributed within a block, which is consistent with the steady state 

assumption. However, the subsets of walkers located at 0t   at different positions within a block do exhibit 

different relaxation responses.  In Fig. 6, the autocorrelator decay for a walker initially located between 

adjacent blocks (i.e., at the point A in Fig. 2) is juxtaposed against that for a walker initially located in the 

center of a block (i.e., at the point B in Fig. 2). The responses are clearly different until the terminal stage 

of the relaxation. In other words, the switchback model naturally predicts some dynamic heterogeneity 

occurring on the time scale shorter than the main α-relaxation time. The effect is more pronounced when 

the block size is large. Unlike the weighted average response (i.e., dashed), the solid curves in Fig. 6 cannot 



be fit in their entirety by the Prony series; only the terminal stage of the relaxation in Fig. 6(a), which is 

independent of the initial condition, is fit by a single exponential function with the relaxation time
 
1


 .   

  

FIG. 6. Effect of initial conditions on the autocorrelator functions  1C t and  2C t  for the 

15, 12, 13rL N   case. Initial position: uniformly distributed within a block – dashed, located 

between adjacent blocks – solid blue (lower), located in the center of a block – solid red (upper).   

The switchbacks picture shown in Fig. 2 should not be interpreted as suggesting that a super-molecular 

structure exists in liquid. Analyzing the MSD simulation data like the one shown in Fig 1(a), one observes 

that the diffusive regime emerges when a molecule’s displacement is on the order of the size of a molecule. 

In other words, the spatial scale of a block is that of a single molecule, where the switchback topology 

accounts for the effect of intermolecular interactions. As a discrete random walk model is not based on the 

realistic dynamic equations, it is not capable of predicting the thermal effects, in particular the temperature 

dependence of the relaxation times. However, a meaningful question may be posed as to what temperature 

dependence the parameters of the model must have in order to produce the experimentally observed 

behavior. Above we have shown that the logarithms of the α- and β-relaxation times are 
    2

1log log log logref rN
 

     and 
    2

1log log log logref L
 

     , respectively. Here
 
ref


 and

 
ref




are the relaxation times in some reference state and
1 is the base relaxation time. Any temperature 

dependence can be postulated for
1 . In particular, seeing that the temperature dependence of the β-

relaxation time results from the temperature dependence of the
1 , the latter can be made Arrhenian to be 

in agreement with the experiments. The α-relaxation time may have an additional (i.e., beyond that of
1 ) 

temperature dependence provided the number of switchback ramps
rN is a function of temperature. For 

example, if it is assumed that each switchback ramp splits into two when temperature is decreased by T

then an exponential dependence of the relaxation time, and hence a linear dependence of its logarithm on 

T , is obtained. If the temperature decrement required to double the number of ramps is not constant but 

decreases as T decreases, then the temperature dependence of the relaxation time becomes even stronger, 

for example it can be super-Arrhenian. Thus, the current model offers an alternative mechanism for the 

super-Arrhenian temperature dependence, as compared to the traditional models. The traditional models 

rely on the growing energy barriers and the current model does not involve overcoming any energy barrier. 

However, it may still be possible that the free energy barrier is being overcome if it is established that the 

greater number of switchbacks corresponds to lower local entropy. 

Although the autocorrelators in Figs. 4 and 5 need to be fit with several exponential functions, the main α- 

and β-relaxation processes are single exponential.  Experimentally determined α- and β-processes are broad, 

where the spectrum for the α-process has a characteristic wedge-like shape with the longer time components 

dominating.[13] There is no agreed upon mechanism by which the wedge-like α-spectrum arises. A scenario 

can be proposed from the perspective of the switchback model. One speculates that the environments 



throughout the material vary. In this view, the schematic in Fig. 2 represents an ideal situation, where in 

equilibrium, at a given temperature and density, all blocks have equal number of switchback ramps
rN . In 

reality, defects i.e., shortcuts, will occur, where in a particular environment some blocks will have a number 

of switchback ramps less than
rN . This will result in the local relaxation time   being shorter than the one 

in the intact environment. Presumably, more drastic shortcuts occur less frequently, which would explain 

the experimentally observed wedge-like shape of the α-relaxation process. The idea of shortcuts also 

provides a plausible mechanism for the effect of large deformation, which is known to accelerate the 

relaxation in glassy materials.[14] It seems natural to assume that the deformation disrupts the switchback 

structure causing the
rN , and hence   , to decrease. In a similar vein, in a material that is not fully 

equilibrated the ideal switchback structure has not yet developed, which would explain why the relaxation 

times in such a material are shorter than in the equilibrated one. 

IV. CONCLUSIONS 

In conclusion, a discrete random walk model has been proposed, where the path along which a walker 

moves is a sequence of blocks consisting of switchback ramps. The model predicts several features of the 

relaxation behavior of the glass formers, including the sub-diffusive MSD regime, emergence of the α- and 

β-processes, short-term dynamic heterogeneity, and the fact that in some cases the  2C t orientational 

autocorrelator decays slower than the  1C t autocorrelator. The main relaxation time of the α-process is 

controlled by the number of ramps in a block,
rN , and the main relaxation time of the β-processes is 

independent of
rN . Thus, the mechanism for the increase in the relaxation time with decrease in temperature 

suggested by the model is the increase in the number of the switchback ramps. This is a different perspective 

as compared to the models where the super-Arrhenian growth of the relaxation time is attributed to increase 

in an energy barrier.  
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