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Disordered mechanical systems can deform along a network of pathways that branch and recom-
bine at special configurations called bifurcation points. Multiple pathways are accessible from these
bifurcation points; consequently, computer-aided design algorithms have been sought to achieve a
specific structure of pathways at bifurcations by rationally designing the geometry and material
properties of these systems. Here, we explore an alternative physical training framework in which
the topology of folding pathways in a disordered sheet is changed in a desired manner due to changes
in crease stiffnesses induced by prior folding. We study the quality and robustness of such training
for different ‘learning rules’, that is, different quantitative ways in which local strain changes the
local folding stiffness. We experimentally demonstrate these ideas using sheets with epoxy-filled
creases whose stiffnesses change due to folding before the epoxy sets. Our work shows how spe-
cific forms of plasticity in materials enable them to learn non-linear behaviors through their prior
deformation history in a robust manner.

Metamaterials [1, 2] and smart materials [3] are of-
ten designed to show specific behaviors. For exam-
ple, mechanical topological insulators localize response
to forces [4, 5] while elastic networks with allostery com-
municate deformations over a long range [6–8]. More
complex mechanical structures can show a specific de-
formation, e.g., a smile-shaped deformation, in response
to a spatially textured pattern of forces [9]. Most com-
monly, mechanical systems are rationally designed to
show such behaviors by searching parameter space on
a computer [10, 11]. However, an alternate approach ex-
plored recently is that of physical learning [12–16]: dur-
ing a period of training, the material is shown examples of
the desired behavior, prompting autonomous changes in
the material parameters that promote the desired behav-
ior. No computers are involved in optimizing the prop-
erties of such a system [17–19].

Physical learning is a more constrained way of explor-
ing parameter space than optimization on a computer.
However, an autonomous physical learning process offers
the advantage of learning from real examples of stimuli
and response [20] (as opposed to a theoretical specifica-
tion of the problem) and does not rely on an accurate
model of the material [21]. Physical learning might also
allow for continual learning of new functionalities in situ,
as requirements change [14]. A major open question is
what kinds of local adaptive processes available in real
systems constrain physical learning [12]. Recent work
has shown that natural processes within an EVA foam
network can train the network for an auxetic response by
simply aging the material in different configurations [13].
Broader questions remain - what is the impact of differ-
ent kinds of local learning dynamics on the feasibility and
quality of learning?

Here, we explore how the quality of physical learn-
ing depends on local adaptive processes (which we call
‘learning rules’) through theoretical analyses and an ex-
perimental demonstration. We focus on training a funda-
mentally non-linear feature in marginal mechanical sys-
tems, a bifurcation point [22–27]. Mechanical bifurca-

tions occur at degenerate configurations from which mul-
tiple non-linear zero modes are accessible. Bifurcations
cannot be described by a linear approximation even for
small deformations since the energy vanishes to two lead-
ing orders; they correspond to singularities of the energy
function with an excess of linearized zero modes and self-
stress states that disappear at next to leading order.

Bifurcation points can potentially be exploited to cre-
ate multi-functional systems [15] and have been studied
in the context of mechanical linkages [28–30] for robotics
and topological meta-materials [26]. However, bifurca-
tions can also make the system hard to control [31]. For
example, folding outcomes at these singularities can be
unpredictable and depend on the precise spatial pattern
of forces used [27, 32–34]. While generic mechanical sys-
tems show bifurcations in some parts of configuration
space [35–37], bifurcations are especially a problem for
thin creased sheets because the flat state configuration is
necessarily degenerate [27, 32, 38]. In particular, creased
thin sheets with nominally 1 degree of freedom (according
to Maxwell counting), often called ‘self-folding origami’,
always have a bifurcation at the flat state (henceforth re-
ferred to as a ”flat state bifurcation”) that is the meeting
point of an exponentially large number of distinct folding
modes. Consequently, such ‘self-folding’ sheets are hard
to control at the flat state (despite the name) since the
precise spatial pattern of forces applied will determine
the folding geometry.

We focus on the training of such creased thin sheets
[39–41] to manipulate the bifurcation point in configu-
ration space (Fig.1A); in particular, we seek to increase
the fraction of all force patterns that result in one folding
pathway (i.e., attractor size, Fig.1B) through a physical
learning rule - crease softening due to folding (Fig.1C,
Fig.1D). We find that successful training relies on cre-
ating heterogeneity in stiffnesses across the sheet. How-
ever, this heterogeneity can rapidly diminish with fur-
ther training for some classes of learning rules while other
classes of learning rules, threshold-like in strain, are more
robust. We test some of these ideas with an experimen-
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tal prototype in which a sheet with epoxy-filled creases is
folded back and forth along one pathway at a bifurcation.
Such folding during the ‘training period’ (i.e., before the
epoxy sets) extrudes epoxy to different extents in differ-
ent creases, creating a heterogeneous system. We test
the trained sheet by applying different forces and find
successful training in systems with 4 and 7 creases.

RESULTS

Training and Stiffness heterogeneity

We begin with a theoretical study of crease patterns
made of 4-valent vertices as shown in Fig.1A. Maxwell
constraint counting gives this system 1 degree of free-
dom but in reality, this structure has two non-linear 1
degree of freedom pathways that meet at a bifurcation
at the flat state [42]. As a toy model of energy near
a generic bifurcation, consider E(x, y) = λx2y2 where
x, y parameterize deformations of a mechanical system.
Motions along x = 0 and y = 0 are true zero energy
pathways, staying at zero energy for large deformations.
However, a linearized analysis at (x, y) = (0, 0) suggests
a 2-dimensional vector space of zero modes (along with a
self-stress state if we had a mechanistic model); further,
any small deformation along x = 0 or y = 0 will reduce
the zero mode space to 1 dimension (and eliminate the
self-stress mode). Thus, any linearized analysis will fail
to identify the true zero modes x = 0 and y = 0. On the
other hand, any spatial pattern of forces applied to a 4-
vertex [27] in its unfolded flat state will result in folding
along one of the two zero energy folding pathways.

The non-linear force-response relationship of disor-
dered mechanical systems at such bifurcations can be
summarized by an ‘attractor diagram’, shown schemati-
cally in Fig.1B. The space is a 2-d schematic representa-
tion of high-dimensional space of spatial force patterns.
Each shaded region represents one of the discrete fold-
ing outcomes that is realized for all force patterns repre-
sented by that region. Earlier work has shown that this
attractor structure can be changed by changing the ge-
ometry [27, 32], pre-biasing preferred directions [43–45]
of the sheet, or controlling the relative stiffness of differ-
ent creases [46].

Typically, solving the inverse problem for attractors
requires a complex computer algorithm; for example,
Linear or Quadratic Programming algorithms on a com-
puter [46] can determine crease stiffnesses that eliminate
all but a chosen pathway in a saddle-node bifurcation - a
local bifurcation in the energy landscape of a dynamical
system, where minima collide with adjacent maxima and
both disappear as the parameters of the dynamical sys-
tem is changed (in this case, changing the stiffnesses of
the origami creases). After the insertion of these calcu-
lated crease stiffnesses, the origami sheet folds only along
a chosen desired pathway. Every other folding pathway,
hitherto, accessible is now eliminated; as the energy min-
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FIG. 1. The topology of folding pathways at a bifurcation can
be changed through a physical training protocol. (A) Thin
creased sheets can fold along distinct folding pathways that
bifurcate from the flat state with outcomes determined by
the spatial force pattern. (B) A 2-d schematic representation
of high-dimensional attractors in the space of force patterns.
Each colored region represents one of the discrete folding out-
comes that is realized for all force patterns represented by
that region. Specific attractors can be enlarged, shrunk or
eliminated by changing crease stiffnesses through design or
physical learning. (C,D) We model a physical learning pro-
cess that changes a crease i’s stiffness κi (about the flat state)
based on its folding strain ρi.

ima eliminated correspond to the myriad folded modes
accessible from the rest/unfolded state. Here, we investi-
gate whether this same inverse problem can be solved by
the sheet itself through a natural physical process, with
no computers involved.

Throughout this paper, each crease, i, has a ‘crease
stiffness’, κi which refers to the stiffness for the folding
strain (or folding angle) about the flat state (i.e., un-
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strained/unfolded state) with rest angle maintained at
zero; i.e., each crease, i has a folding energy (1/2)κiρ

2
i

for folding strain ρi (see Fig.1D) and crease stiffness
κi. Thus, this stiffness does not prefer any folding ori-
entation (ρ → −ρ, which is known as mountain-valley
symmetry) and only depends on the magnitude of the
folding strain/angle of the creases, ρ2i . In contrast, a
creased sheet of paper develops non-zero rest angles at
each crease that breaks the mountain-valley symmetry
(ρ → −ρ) at creases and maintains the sheet away from
the flat state bifurcation, without actually reshaping the
bifurcation itself [46]. In this work, we focus on the non-
trivial problem of shaping bifurcations, while maintaining
mountain-valley symmetry at each crease, so the trained
sheet can still be completely flattened to its unfolded/rest
state. Consequently, our trained sheet can symmetrically
access either the positive or negative components of a
given folding pathway.

As a first pass, we considered learning rules of the type
shown in Fig.1C and Fig.1D that softens different creases
based on the current folding strain:

dκi/dt = −λρ2iκi. (1)

where λ, the ‘learning rate’, sets the learning timescale.
We have chosen to study these crease-softening learn-

ing rules because they are the behavior expected of most
materials. While there are materials that harden when
strained, these require deformations in the plasticity re-
gion and far away from the rest state, invalidating the
linear-spring folding energy assumption - (1/2)κiρ

2
i .

As a case study, we begin by applying the above learn-
ing rule to 4-vertex shown in Fig.2A; the 4-vertex gener-
ically has two distinct folding branches that meet at the
flat state bifurcation[42]. We simulated a training process
in which the vertex initially has creases of equal stiffness
κ0i ; the sheet is folded repeatedly (using a spatial pattern
of forces) along the positive and negative components of
one of the two pathways at the bifurcation. The sheet is
folded to a configuration of finite strain and the parame-
ters κi are updated according to learning rule above for
a time interval τ . The sheet is then relaxed back to the
flat state and re-folded with the negative of the same pat-
tern of forces and the learning process is continued. See
Appendices for parameters. We test the attractor size of
each pathway throughout training; the attractor size is
determined by applying a library of 500 randomly cho-
sen spatial pattern of folding torques to the creases and
counting the fraction of folding torques that result in the
chosen folding pathway. We assume that testing does not
cause further changes in the stiffnesses κi in our simula-
tions (though a real system would continue changing due
to testing).

We find that during training, different creases fold to
different extents ρi in specific ratios characteristic of the
branch we fold along. Consequently, the learning rule
Eq.1 creates heterogeneity in the initially homogeneous
creases stiffness κi. When crease stiffnesses are relatively
heterogeneous, the attractor size of the chosen pathway
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FIG. 2. Eliminating a select folding pathway for a 4-vertex
through physical training. (A) A single 4-vertex has two dis-
tinct folding modes (light-grey, dark-grey). (B) The dark-grey
pathway’s attractor size during a training process in which
the 4-vertex is folded by a fixed force pattern repeatedly. The
stiffness κi of each crease, i, are represented by four hori-
zontal lines at each time point during training; all κi start
at the same stiffness and decrease according to Eq.1. κi are
in units of the bulk modulus of the stiff faces. Crease stiff-
nesses, κi, become heterogeneous during training, before be-
coming homogeneous again upon over-training. (C) Energy
landscape of a sheet at different points during training (φ is
an angular coordinate in 2-dimensional null space; see Appen-
dices for details). Landscape before training (circles) and af-
ter over-training (pentagons) show two distinct minima; but
when attractor size ∼ 1 (squares), light-grey’s minimum is
eliminated via a saddle-node bifurcation. Note in the under-
trained regime (triangle), the attractor size is below 1, but
well above the initial value of 0.50
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increases from an initial value of 0.50 to nearly 1, i.e.,
nearly all spatial patterns of forces result in the chosen
folding pathway; see Fig.2B. However, further training
reduces the heterogeneity in creases as all stiffnesses ap-
proach zero. In this ‘overtrained’ regime, the attractor
size of the desired pathway drops down to 0.50 again, no
bigger than for the initial untrained sheet; see Fig.2B.

To illustrate the phenomenon of saddle-node bifurca-
tion, we computed the energy of the origami sheet in dif-
ferent folded configurations, while its crease stiffnesses,κi
were evolved by the learning rule, Eq.1. We stud-
ied folded configurations within the null space of the
origami’s potential at the flat state. The origami’s poten-
tial is defined by three non-linear constraint equations for
each vertex. The sum of squares of the residue of these
constraint equations for a given folded configuration gives
the energy of the origami associated with only the vertex
of the origami (energy of crease stiffness is not included).
To study folding just away from the flat/unfolded state,
we can linearize these three constrain equations around
the flat state into a 3 · V × M matrix H, where M is
the number of creases in the origami pattern and V is
the number of vertices in the origami pattern. However,
in the flat state, two of the three constrain equations
become degenerate, thus reducing H to a 2 · V ×M ma-
trix. The kernel of this 2 · V ×M , H matrix defines the
null space of the origami potential at the flat state. For
a single vertex with 4 creases, applying the rank-nullity
theorem, we see that the null space is 2-dimensional [46].
We parameterize this null space with the variables r and
φ. We selected a circle (defined as r = 0.5) in this null
space and computed the energies of various folded con-
figurations represented by points on the circumference
of this circle. Since this is a null space of the origami
potential at the flat state, the only non-zero energy com-
ponent left is the energy resulting from the stiffnesses of
the origami creases. An energy minimum in this energy
plot (Fig.2C) corresponds to the existence of a stable
folded configuration. For untrained sheets, we see two
minima corresponding to the two true non-linear folding
modes. During training (i.e. the evolution of the crease
stiffnesses by the chosen learning rule), the attractor size
of one of these true non-linear folding modes is reduced
to zero, as the mode is destroyed in a saddle-node bifur-
cation. This is illustrated in Fig.2C (see light-grey line),
as the local minimum on the left gradually transforms to
a local maximum in the course of training. In the over-
trained regime, the eliminated mode (local minimum on
the left) reappears and we find that both pathways are
accessible in response to some spatial patterns of forces
(See images of the two modes atop Fig.2C).

Hence, we find that training can solve an inverse prob-
lem for non-linear behavior, namely that of eliminating
one select branch in a saddle-node bifurcation and, thus,
changing the topology of pathways. Further, successful
training is correlated with the development of stiffness
heterogeneity (see Fig.2B); this observation is an exam-
ple of a larger principle that disordered systems can learn

because the information must be stored in the trained de-
grees of freedom; homogeneous creases cannot store such
information. Finally, we find that this particular train-
ing rule is prone to over-training and homogenization of
creases if training is carried on for too long (see Fig.2B).

We have found that heterogeneity in the crease stiff-
nesses stores the learned information about the desired
pathway; but the learning rule that created the desired
heterogeneity also erases that information upon further
training. Similar erasure of trained response was ob-
served in systems like cyclically sheared Brownian sus-
pensions and charge-density wave conductors [47].

Robustness of different learning rules

Qualitatively, many real materials soften with strain as
captured by the learning rule Eq.1, but might differ quan-
titatively. Different materials will have different learning
rules; some might soften proportionally to their strain
or to higher powers of their strain and yet others might
be even more sensitive, softening only for strains above
a specific threshold. Other non-equilibrium systems can
show more complex learning, where synaptic weights or
learning degrees of freedom can both strengthen or soften
over time; we do not investigate those cases.

We investigated whether such quantitative differences
in material properties might have a qualitative effect on
the quality and robustness of learning. We considered
families of rules of the type:

dκi/dt = −λf(ρi)κi. (2)

The first family we considered were different polynomial
forms f(ρi) ∼ ρNi . Note that Eq.1 is the case where
N=2 (See Fig.3A). The second family, defined by a Hill
coefficient M , f(ρi) ∼ ρMi /(ρ

M
i + TM ) corresponds to

sigmoidal dependence often seen in real systems; small
strains do not cause significant aging or change in stiff-
ness but strains above a characteristic threshold T cause
stiffness changes; further the precise amount of strain
does not matter beyond this threshold T (See Fig.3A).

We trained a larger disordered creased sheet with 13
creases and 4 vertices (See Fig.3B); this sheet had 16
non-linear modes meeting at the flat state bifurcation.
We used the same training protocol as for the single
vertex (4-vertex) in Fig.2: we selected one pathway as
the desired pathway and applied the learning rule as the
structure was folded repeatedly into the positive and neg-
ative components of the selected pathway. As earlier, we
quantified successful learning by the attractor size of the
desired pathway, i.e., folding the sheet with a library of
500 random force patterns and computing the fraction of
force patterns that result in a specific folded mode. We
assume that stiffnesses do not change during such testing.

Among polynomial learning rules f(ρi) ∼ ρNi , we
found that training rules with higher order polyno-
mials (higher N) resulted in better training in large
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FIG. 3. Quality and robustness of learning depend on the learning rule. (A,B) For the sheet with 13 creases shown, we model
a family of ‘training rules’ with crease stiffness κi that change with strain ρi (which has been normalized and, thus,ranges from
0 to 1) in a polynomial f(ρi) ∼ ρNi or threshold f(ρi) ∼ ρMi /(ρ

M
i +TM ) manner. (C) Learning quality (peak attractor size; see

D,F) and robustness (length of training time over which attractor size > 0.70; see D,F) for different learning rules are explored
here. (D) With f(ρi) ∼ ρNi rules, the attractor size of the desired pathway rises to a peak before falling. The peak attractor
size (quality of learning) increases with N . (E) The stiffness of each of the 13 creases, i, of the origami are represented by the
13 horizontal lines. They all start out with the same stiffness and decrease according to the different polynomial learning rules
indicated by the markers of the line. κi are in units of the bulk modulus of the stiff faces. The polynomial rules also show a
regime of over-training where stiffness κi become homogeneous again as all κi go to zero. The horizontal lines representing the
crease stiffnesses for the different polynomial learning rules are plotted at select times, so as to avoid the lines of the different
polynomial learning rules from overlapping. (F) Attractor size vs training time for threshold learning rules. (G) The stiffness
of each of the 13 creases, i, of the origami are represented by the 13 horizontal lines. They all start out with the same stiffness
and decrease according to the different threshold learning rules indicated by the markers of the line. κi are in units of the bulk
modulus of the stiff faces. Crease heterogeneity grows with training, and does not decrease (no overtraining) with continued
training for some of the threshold learning rules (asterisked line).The horizontal lines representing the crease stiffnesses for the
different threshold learning rules are plotted at select times, so as to avoid the lines of the different threshold learning rules
from overlapping.

origami patterns. We found a higher attractor am-
plitude (i.e. peak attractor size) and a greater train-
ing time robustness - learning quality stayed higher for
longer (See Fig.3C). However, all polynomial learning
rules were still susceptible to overtraining, during which
the crease stiffness heterogeneity was lost (See Fig.3D,
Fig.3E). With threshold-like learning rules, the over-
training problem was nearly eliminated (See Fig.3F). We
found that creases that fold less than the threshold T
do not soften at all and hence the learned heterogeneity
in stiffness is maintained over time. However, there is a
trade-off; the threshold T of the learning rule needs to be
within the range of strains experienced during training.
If T is too large, no training would occur. If T is too
small, training will fail to create sufficient heterogeneity
in stiffnesses κi to encode information about the desired
mode (See Fig.3G).

Moreover, the heterogeneity of crease stiffnesses ar-
rived via threshold learning protocol (where some creases
are untrained while others are trained during the train-
ing protocol, resulting in creases with stiffnesses and oth-
ers without stiffnesses), suggests the concept of ”critical

creases”, i.e. a desired folding pathway can be defined
by a specific set of creases having stiffnesses and others
without stiffnesses; a binomial kind of distribution (1s
and 0s).

Experimental demonstration

With these theoretical results in place, we demon-
strated these ideas with an experimental proto-
type. While many previous works have implemented
creased sheets in systems ranging from graphene on
the nanoscale [48] to mylar and cardboard on the
mesoscale [49] to solar panels on satellites [50], these
works generally have fixed stiffness in different creases
and thus an inability to learn folding behaviors. We note
that paper or cardboard is affected by folding but typi-
cally develops a non-zero rest angle upon folding and is
thus likely to fold in the same way again. But as noted
earlier, such a displacement from the bifurcation does not
reshape the bifurcation which still exists if the sheet is
forced into the flat state. Here, we create a prototype
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that maintains ρ → −ρ symmetry at each crease and
hence can still be laid flat after training.

We created a sheet with gullies at creases by sandwich-
ing a Tyvek sheet between acrylic pieces that were laser
cut to serve as stiff faces of a crease pattern. See Fig.4A.
Consequently, the creases correspond to gullies of width
w (set by the gap between adjacent acrylic pieces) and
depth h (set by the thickness of acrylic) on both sides
of the sheet. A slow setting epoxy solution is created
from a mixture of epoxy resin and a curing agent in the
ratio 1 : 2. The creases are filled with epoxy on both
sides of the sheet; the epoxy takes ∼ 60 minutes to set.
See Appendices for details. During this setting time (the
‘training phase’), the crease is manually folded to an an-
gle +ρ, flattened to the rest state (i.e. when all crease
fold angles = 0) and then folded to angle −ρ in the other
direction. Such folding will extrude an amount of epoxy
h(|ρi|) from the crease gully that depends on the mag-
nitude of folding |ρi|. Only epoxy remaining inside the
crease determines the stiffness of that crease at the end of
the training phase. Thus, the amount of epoxy extruded
h(|ρi|) determines the change in stiffness ∆κ during train-
ing and thus determines the form of the learning rule in
Eq.2. By folding in both directions (±ρ) during training,
we maintain mountain-valley symmetry and zero rest an-
gles at the crease in its flat/rest state; consequently, the
trained sheet can still be laid flat.The training protocol
is illustrated in Fig.4B.

We constructed a vertex with 4 creases (studied theo-
retically in Fig.1), resulting in two folding modes (light-
grey and dark-grey) shown in Fig.4C. Initially, before any
epoxy is added, all creases are free folding. We tested
the response of this free folding vertex to forces applied
at different points along the boundary of one of the sec-
tors. We found that forces at 3 of 7 locations leads to
the dark-grey folding mode while forces at the 4 loca-
tions result in the light-grey folding mode (See Fig.4C).
Forces applied to all points in the other sectors led to ei-
ther the dark-grey or the light-grey mode. We then filled
the creases with slow setting epoxy, marking the start
of the training phase. We manually folded the vertex
into a selected mode (dark-grey mode) with character-

istic folding angles ρdarkgreyi at each crease, reverted to
the flat state and folded along the negative component

−ρdarkgreyi of the same dark-grey pathway. We folded un-
til the largest folded crease could not be folded further;
in this way, the magnitude of folding is approximately
the same along the positive and negative components of
the pathway and over multiple instances of folding dur-
ing training. Throughout this training, the vertex was
clamped in a vertical configuration but was rotated peri-
odically to prevent epoxy from flowing out of the creases
due to gravity. We repeated this folding process for 60
minutes, folding back and forth along the positive and
negative components of the dark-grey mode. See Appen-
dices for details of the experiment.

After the epoxy set, we found that forces at all 7 test
locations now lead to the dark-grey mode as illustrated in

(A)

(B)

(C)
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trained vertex
(epoxy is set)
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(fold and extrude epoxy)

folding outcomes
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faces
(acrylic)

crease reduced stiffness
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fold

fold

epoxy lost
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FIG. 4. Experimental realization of training through epoxy
extrusion. (A) (schematic) We created creased sheets by sand-
wiching a thin membrane between thick acrylic sheets that
serve as stiff faces; the resulting creases of width w and height
h are filled with epoxy (black lines on creases). Folding by
angles ρi before the epoxy sets (the training period) will ex-
trude epoxy; creases with larger ρi will extrude more epoxy,
resulting in lower stiffness κ after the epoxy sets. (B) A 4-
crease vertex with epoxy filled creases was trained by repeat-
edly folding along one of the two pathways during the setting
period; folding is repeated along positive and negative compo-
nents of the chosen pathway to avoid any directional folding
bias in the creases. (C) Testing: Folding outcomes are deter-
mined for folding forces applied at different locations. The
untrained sheet folds along two distinct pathways depending
on location of applied force (light-grey and dark-grey dots).
The trained sheet folds along only one pathway for all folding
forces (dark-grey dots), demonstrating an increased attractor
for the dark-grey pathway.

Fig.4C, showing that the training procedure had modified
the flat state bifurcation, presumably by eliminating the
light-grey branch at a saddle-node bifurcation away from
the flat state [46]. Using a fresh sample, we also suc-
cessfully repeated the training process above to retain
the light-grey mode and eliminate the dark-grey mode
instead.

To see if the principles behind this simple demonstra-
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(A) (B)folding outcomes

Black Mode Dark-Grey Mode Light-Grey Mode Unrealized Mode

before training
folding outcomes

after training

FIG. 5. Learning to expand a select attractor in a complex
sheet. A sheet with 7 creases and 2 vertices has 4 distinct
folding pathways (shown at the bottom). (A) Before train-
ing, three pathways are accessible by forces applied to differ-
ent locations shown (circles) or by torques applied to specific
creases (stars). (B) The creases were filled with epoxy and
folded back and forth along the dark-grey pathway as the
epoxy set (the training period). After training, the sheet was
‘tested’ with the same forces and torques used in (A). All test
forces and torques now result in the dark-grey pathway, indi-
cating an expanded attractor size for that pathway.

tion are robust enough to work in more complex disor-
dered systems, we attempted training on a sheet with 7
creases, 2 vertices and thus 4 distinct pathways at the bi-
furcation; see Fig.1A. As shown in Fig.5A, the untrained
sheet folds along 3 of those 4 pathways for test forces
applied to the center of different faces with one face held
clamped. (The fourth pathway requires torques at spe-
cific creases that cannot be realized by forces at a single
face in the clamped configuration we used.) We filled the
creases with epoxy and trained with the same protocol
as earlier, manually folding along a select pathway (the
dark-grey pathway), flattening the sheet, folding along
the negative branch of that pathway and repeating the
process for 60 minutes. After the training process is
completed and the epoxy has set, we tested the sheet
with the same test forces applied to the faces when it
was untrained; we now find that all forces lead to fold-
ing along the target dark-grey pathway as illustrated in
Fig.5B. Thus, the flat state bifurcation has been success-
fully trained to eliminate the other pathways, presum-
ably through saddle-node bifurcations away from the flat
state.

DISCUSSION

The study of bifurcations in mechanical systems has
attracted attention from mathematicians [51], roboti-
cists [52, 53] and physicists [27, 32, 46]. Most work has
focused on changing the structure of bifurcations by ra-
tionally changing parameters such as lengths of the el-
ements. Our work here shows at least some versions
of this design problem can be solved by changing stiff-
ness of joints through a physical training protocol. Our

work further suggests that bifurcations might be physi-
cally trainable in mechanical linkages where the lengths
of elements change according to learning rules; changes
in length have been used as a basis for physical training
in other contexts [13, 16, 54, 55].

The experimental demonstration here illustrates how
a generic physical process - the extrusion of material at
creases - can naturally implement ‘learning rules’ that
confer specific functionality on the system. Other mate-
rials naturally show softening with strain [13], possibly
allowing for the implementation of different functional
forms of our learning rules.

The locality of physical learning in mechanical systems
contrasts the global nature of most machine learning al-
gorithm, where learning parameters are non-locally up-
dated (gradient descent protocols). The training rules are
local, softening each crease in response to strain in that
crease. Further, even at the end of training, the learned
stiffness in any one crease does not immediately favor
one folding pathway over another. However, creases that
meet at a vertex [49] have non-linear interactions that
constrain their relative folding; such interacting creases
are able to collectively learn and encode information
about a desired pathway even if each individual crease
does not select a pathway by itself.

While we trained for one attractor to grow and oc-
cupy most of the force pattern space, one can also train
a system for multiple attractors [15]. Such training can
create a mechanical pattern recognizer, folding into one
configuration in response to one set of force patterns and
a distinct configuration in response to a different set of
force patterns. Unlike similar responsive materials de-
signed on a computer, the learning paradigm here lets
structures learn in situ from real examples of force pat-
terns [13].
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I. APPENDICES

A. Theory

Theoretical Modeling of Self-Folding Sheets

We model creased sheets using energy-based models
developed in previous work [39, 49, 56]. We assume
that creases have a stiffness modeled by torsional spring
elements on each crease [15, 27, 46]. We briefly review
the elements of this model as we build upon this work to
simulate the physical learning of desired folding pathways
of self folding origami sheets.

The energy of thin sheet origami is dominated by
face bending governed by mechanical constraints at the
origami vertices. Each vertex contributes 3 constraints
on the folding angles of creases around it [56]. Take a ver-
tex surrounded by N creases denoted with an index i and
each folded to an angle ρi. At the flat state, all ρi = 0,
which trivially satisfies all mechanical constraints. One
can write down an expansion for these 3 non-linear con-
straints Ta(ρi) [27]. The energy of the folded origami
is taken as the sum of squares of the residues of these
constraints EVertex ∼

∑
a T

2
a , which is independently

summed over different vertices [46]. The energy due to
the stiffness in the creases is ECrease,i = 1

2κiρ
2
i as dis-

cussed in the main text. Thus, the total energy of a
folded sheet is the sum of vertex and stiff crease energies

Esheet(ρi) =
∑

v∈vertices

3∑
a=1

T 2
va +

1

2

∑
i∈creases

κiρ
2
i . (3)

In the learning protocol presented in this work, the
crease geometry is fixed and so are the vertex constraints
Tva. The change in the energy of a folded configuration
ρi during training stems directly from the change in the
individual crease stiffness values

dE

dt
=
∂E

∂κi

dκi
dt

=
1

2
ρ2i
dκi
dt
. (4)

Simulated Sheet Folding

Using the energy model described previously, we sim-
ulated the folding of the self folding origami via several
numerical folding methods [46].

Origami sheets are numerically folded similarly to the
way described in [15]. The folded sheet’s configurations
are initialized at

ρi0 = ρ
τi
||τi||

by a set of external folding torques (τi) on the creases
with ρ ≡ ||ρi||, the folding magnitude, chosen to be ρ =
0.5. However, this initialization point is typically not an

energy minimum on the surface of the hyper-sphere of
radius ρ. Thus, we numerically relax the sheet to a local
minimum of Eq.3 using MATLAB, subject to a constraint
that fixes the folding magnitude ρ:

minimize
ρi

Esheet(ρi)

subject to ||ρi|| = ρ.
(5)

This protocol mimics the experimental fast folding of
origami sheets, and the clamping of one crease at a spe-
cific folded dihedral angle. It was tested and validated
in [46]. The results of this folding protocol are similar to
torque based folding of sheets using Newtonian methods.

Simulation of Sculpting Folding Pathways Through
Physical Learning

Starting with Eq.4 above we see that the evolution of
the energy landscape and, thus, folding pathway is driven
by dκi

dt . Physical learning is introduced by the dynamic

specification of dκi

dt defined by various physical learning
rules, which are functions of the fold angles of the mode
ρTeacheri , whose attractor size we desire to expand:

dκi/dt = −λf(|ρTeacheri |)κi. (6)

where λ, the ‘learning rate’, sets the learning timescale
and ρTeacheri is a vector defining the fold angles of the
creases of the desired mode whose attractor size we want
to increase. Note that ρTeacheri is obtained by folding the
creases of the origami with an external torque, FTeacheri

as described above. We generated the components of
FTeacheri by first randomly selecting a number from a
normal distribution. Next we normalized this vector and
used it to fold the creases of the origami as described
above. We checked if the scalar product between the
normalized vector and the resulting normalized folded
mode is greater than 0.99. If it is not, we generate an-
other FTeacheri by selecting another random set of num-
bers for its components and check if the new vector and
its resulting folded mode have a scalar product greater
than 0.99. If the scalar product is greater than 0.99,
then the final resulting folded mode is then normalized
and assigned to FTeacheri . The learning rule is speci-
fied by f(ρTeacheri ) which can be a linear, quadratic or
a threshold function of ρTeacheri . We simulated a phys-
ical learning process in which the creases initially had
a uniform stiffness κ0i = 0.05 (for single-vertex origami)
and κ0i = 0.02 (for double vertex origami). A unit of
stiffness represents the bending modulus of the stiff faces
of the origami. The crease stiffnesses are evolved with
a learning rate λ = 0.01 per training round. Thus, we
have specified not just a teacher for the physical learning
process, FTeacheri , but also a curriculum or learning rule,
f(ρTeacheri ), for the physical learning process.
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Simulation of Testing Protocol

After each round of training via physical learning as
described above, the attractor size of the desired mode
is computed. To calculate the attractor size, a set of an
array of test torques, TestTorqueSet is created. Each
element of the set, TestTorqueSet is defined by a vec-
tor F externali , whose components, F externali,j , represent the
magnitude of the torque applied to each crease. Each vec-
tor F externali is normalized and used to fold the creases of
the self folding origami sheet as described above. Folding
with each external torque, FExternali , results in a folded
mode ρFoldedi . Note that the folded mode vector, ρFoldedi

is also normalized as well. This folded mode, ρFoldedi is
compared to the desired mode, ρTeacheri whose attractor
size we seek to increase.

To compare the folded mode, ρFoldedi , with the desired
mode, ρTeacheri , we take the scalar product between both
vectors. If the scalar product between the two vectors
is above 0.9, then we consider the two modes as similar,
and one and the same. We count the number of exter-
nal torques, FExternali , in the set TestTorqueSet, whose
folded mode, ρFoldedi , are considered similar to ρTeacheri .
We then express this count number as a fraction of the
cardinality of the set TestTorqueSet. This fraction de-
fines the attractor size of the desired mode.

Quality of Learning

Two agents drive the physical learning process: the
teacher, FTeacheri , and the curriculum/learning rule,
f(ρTeacheri ). We found the kind of teacher selected does
not affect the quality of the physical learning as long as
it results in the desired folded mode. Hence, the qual-
ity of learning is determined by the kind of learning rule
selected. We quantify the quality of learning for various
learning rules with two parameters: the peak attractor
size attainable and the time robustness of the learning
rule. The peak attractor size compares the maximum at-
tractor size achieved for a desired mode for the different
learning rules. Meanwhile, the time robustness measures
the percentage of the training round for which the self
folding origami is optimally trained (i.e. attractor size
is above 0.70). The time robustness is a measure of the
training protocol’s resilience against over-training.

Calculation of Energy Landscape for A Single
Vertex (4-vertex) Origami

To illustrate the mechanism by which physical learning
alters the energy landscape of the self folding origami via
a saddle-node bifurcation, we plotted the energy, Eq.3
of the different folded configurations at several points
during the training of the origami. After each round
of training, the stiffnesses in the creases of the single
vertex (4-vertex) changes and the energy landscape of

the folded configuration space is re-computed.This time-
energy landscape plot shows the elimination of the un-
wanted folding pathway (mode) via a saddle-node bifur-
cation, and the preservation of the desired folding path-
way (mode) after several rounds of training. Further
training results in a recovery of the previously eliminated
mode.

B. Experiments

Acrylic sheet setup

To create a system naturally capable of learning, we ex-
ploited an origami system with fresh epoxy totally filled
into the crease pattern of the origami. This epoxy is ex-
truded from the creases during the folding of the origami
during the training protocol. This results in a final stiff-
ness (after the epoxy sets) that depends on the amount of
folding of each of the creases. We laser cut origami pat-
terns in acrylic sheets of thickness 1.5mm; crease lines
were designed to have a gap (or width) of 30mm. Test
holes of 10mm diameter are laser cut on the acrylic sheet
at various strategic positions (along the circumference of
the 90◦ plate for the single vertex (4-vertex) and on the
center of each plate of the double vertex). Two copies of
such acrylic patterns were each glued to both sides of a
sheet of Tyvek.The corresponding plates of the origami
patterns on each side of the sheet of Tyvek are lined
up with each other before the glue sets. After the glue
is set, holes for applying testing forces on the faces of
the origami plates are perforated. The resulting setup
has stiff faces (bending stiffness set by acrylic) and soft
creases (stiffness set by the Tyvek sheet). Origami pat-
terns studied were for a single vertex (4-vertex) and dou-
ble vertex. The single vertex (4-vertex) has four creases
radiating from a single vertex at the center of the pat-
tern. The creases of this single vertex (4-vertex) pattern
form sector-angles 150◦, 60◦, 90◦, and 60◦. The double
vertex pattern with a total of 7 creases consists of two in-
ternal vertices; one vertex has the following sector angles
107◦, 123◦, 82◦, and 48◦, while the second vertex is sur-
rounded by sector angles 82◦, 54◦, 99◦, and 125◦. The
two vertices are connected by a common crease. This
connecting crease serves as the boundary dividing the
82◦ sector plate from the 48◦ sector plate of the first ver-
tex, and the 82◦ sector plate from the 54◦ sector plate
of the second vertex. The sector angles, crease lengths,
and position of the vertices for both the single vertex and
double vertex are specified in a supplementary PDF file
which can be used to laser cut these patterns [57, 58].

Epoxy and training

a. Epoxy Mixture An epoxy solution is made by
mixing epoxy resin with its curing agent in the ratio 1:2.
This mixture is stirred for about five minutes and poured
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into the creases of the origami pattern on both sides of
the assembly. Note, that if the epoxy had been mixed
in the ratio 1:1, upon curing, it would be so stiff that
the origami assembly would be difficult to fold, without
destroying the assembly; such epoxy when hardened is
also brittle and would fracture under a bending moment
attempting to fold the origami assembly. Hence, we mix
epoxy resin and curing agent in the ratio 1:2, allowing for
crease folding upon curing of the epoxy mixture, without
disintegration of the origami assembly.

b. Folding of Origami Assembly The origami assem-
bly filled with watery epoxy in its creases is manually
folded into the desired configuration that is to be trained
for. The origami assembly is trained by manually folding
the assembly back and forth along the positive and nega-
tive components of a desired folding pathway. This cyclic
manual folding between both pairs of the desired mode
is repeated for an hour, during which the epoxy solution
begins to cure and is no longer watery. A simple folding
protocol is utilized to fold the origami assembly into the
desired configuration: one of the plates of the origami
assembly is fixed while pushing or pulling on any of the
other plates of the origami assembly with a normal force
or a turning torque exerted at a single contact point on
any of the non-fixed origami plates.

c. Training Under Gravity Since the epoxy is still
watery during origami training, it needs to be trained on
a rotating platform to avoid epoxy from flowing out of the
creases due to the influence of gravity. The rotating plat-
form consists of two standing laboratory clamps screwed
to the optical table and situated 600mm apart. A rod is
horizontally supported by the claws of the two standing
laboratory clamps, but the rod is allowed to freely ro-
tate within the claws of the clamp. A lab clamp retort is
then fixed clamped (allows for no rotation or slipping) to
the rotation-free horizontally placed rod with the claws
on one end of lab clamp retort, while the claws on the

other end of the lab clamp retort is clamped to one of
the plates of the origami (the plate fixed during training
as previously described). As one hand is used to exert a
normal force or turning torque on one of the free plates of
the origami assembly in order to fold it into the positive
and negative components of the desired mode, the other
hand is used to manually turn the rotation-free horizontal
rod. This combined process results in the folding of the
origami assembly, while under rotation, and, thus, pre-
vents the flow of the epoxy solution from the origami’s
creases during this training; while under the influence of
gravity.

Emergence of Crease Stiffness

After training the origami assembly, the origami sam-
ples are allowed to further cure and are left hanging in
the lab for a week. This allows the epoxy solution in the
creases to harden, thus, producing an effective stiffness
on the creases of the origami.

Testing protocol

The plate of the origami assembly fixed during training
is clamped. A 100mm long thread knotted on one end is
passed through each of the testing holes of the origami
assembly. The threads are gently pulled normal to the
surface of the origami plate. Upon pulling each thread
in each hole, the origami folds into a given configuration.
The resulting configuration for each pull is recorded. The
attractor size of the different folding modes of the origami
assembly is computed. This process is repeated for both
the trained and untrained samples of the origami assem-
bly. The attractor size of the chosen trained mode before
and after training are compared to one another.
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